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An effective and robust soft recovery system for supersonic projectiles is required for the
test of intelligent projectiles in development phase. The survivability of the projectiles after
initial impact onto the target is the most important requirement of them. A soft recovery
system, consisting of multiple equally spaced metal plates, was designed and fabricated. Nu-
merical simulations were performed to estimate the deceleration of the projectile after piercing
through a thin steel plate with various speeds. Next, the thickness distribution of the plate for
uniform deceleration could be designed. An aluminum foil sensor system was used to measure
the arrival time of the projectile onto each plate and multi-channel time recording system for
this test was developed. Field tests were done using a rifled barrel gun and a smooth bore
gun. Deceleration data were acquired successfully. The trajectories of the projectile after the
impact tended to veer off from the initial firing line with an increasing yaw angle. Deceleration
increased with the increase of the yaw angle. Field data were used to design a final recovery
system to retrieve the projectile with a minimum deceleration and damage.

Key words: soft recovery, projectile, impact, simulation.

1. Introduction

In the field of modern weapon systems, a demand for smart and intelligent
warheads with maximum effectiveness and minimum collateral damage is ever
increasing. The survivability of the warheads after initial impact onto the target
is the most crucial requirement of them. Traditional powder gun is the most
common launching method but an initial acceleration may be too severe and
may not guarantee the survival of the electronic components in the projectile.
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Rocket launching method is available for a less severe initial acceleration but
it requires vast resources and is time consuming. And the recovery of the pro-
jectile after initial impact with minimum damage is of the utmost importance
to determine the survivability of the projectile. The technique for soft recov-
ery of supersonic projectile is not well established yet. A few researches were
published related to this subject [1]. For sub-sonic projectiles, various soft and
light- weight materials are utilized to “catch” them, but in case of super-sonic
projectiles the magnitude of initial deceleration is either too light or too severe
and most often it ends with fractured projectiles. In this study, the numerical
simulations were performed to estimate individual deceleration of the projectile
after perforating the thin steel plates with various speeds. The analytical inter-
polation equations for the deceleration rate of projectile piercing through plates
of different thickness were tabulated from the data. The optimum thickness dis-
tributions of the plates for overall uniform deceleration could be determined by
utilizing the equations. And a soft recovery system, consisting of steel frame
with multiple equally spaced metal plates, was designed and fabricated. Finally,
the field tests were conducted using a 40 mm caliber rifled barrel gun and a
155 mm caliber smooth bore gun. The test results of 40 mm gun showed all the
projectiles veered off from the initial firing line and exited at the midsection of
the frame; the retrieved projectiles were damaged. The 155 mm gun test results
were more satisfactory, i.e., a smooth deceleration span was much longer and the
projectiles were recovered intact. Comparing the results from the two different
guns we can conclude that the initial spin of the projectile attributes to faster
yaw increase. Even with a perfect test condition the axis symmetric assumption
cannot be maintained throughout the test. Hence, further numerical studies of
three- dimensional oblique impact behavior of the projectile are required. More
tests with different thickness distribution of the plates and careful alignment are
needed to complete the soft recovery test.

2. Numerical simulation

At the design stage of the soft recovery system, the thickness distribution
of 60 equally spaced metal plates for overall uniform deceleration of projectile
was estimated by the axis-symmetric normal impact simulations, changing the
striking velocity of a projectile to 200, 300, 400, 500, 600 m/s and the thick-
ness of the plate to 0.6, 1.2, 2.3, 3.2 mm, respectively. For the simulation task,
the two- dimensional Lagrangian explicit finite element program using quadri-
lateral element NET2D developed by Chung [2, 3] was used. The AISI 4340
steel projectile was assumed to be elastic. Dynamic behavior of the steel plate
was assumed to be the Johnson-Cook model [4] as in Eq. (2.1) with material
parameters as shown in Table 1. This model is the most widely used phenomeno-
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Table 1. Johnson-Cook model parameters for a mild steel plate.

A [GPa] B [GPa] C [GPa] n m Troom [
◦C] Tmelt [

◦C]

0.5320 0.2295 0.0274 0.3024 1.0 25 1520

logical ductile fracture model, which decomposes the total strain rate into an
elastic and plastic portion, and involves five constants: A, B, C, n and m. It was
also assumed that almost deformated energy is converted into a heat. In order
to describe the ductile fracture and piercing of the plate material, the element
erosion algorithm was used: when the equivalent plastic strain of an element
exceeds 200%, the element is deleted and is excluded from further computation.

(2.1) σy = (A+Bεp
n)

(
1 + C log

(
·
εp /

·
ε0

))(
1− T − Troom

Tmelt − Troom

)m

.

It was found that the velocity reduction factor (α) of a projectile, after
piercing plate, depends on both the plate thickness and the striking velocity
of a projectile as shown in Fig. 1; a thicker plate with slower striking velocity
produced a high reduction factor. With the simulation results, the factor α was
interpolated as Eq. (2.2).

(2.2) α(tsheet, Vstrinking) = a(tsheet) exp
−Vstriking/τ(tsheet)+b(tsheet),

where parametric values of a, τ , and b are summarized in Table 2.

Fig. 1. Velocity reduction factors of projectile after piercing the metal plate.
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Table 2. Interpolation parameters of Eq. (2.2) with various plate thicknesses.

Steel plate Thickness:
0.6 mm

Thickness:
1.2 mm

Thickness:
2.3 mm

Thickness:
3.2 mm

a −0.42380 −0.10103 −0.23423 −0.38021

τ 0.120482 0.117647 0.116279 0.114943

b 0.999053 0.997771 0.994868 0.992354

(2.3) Adecel =

∣∣∣∣∣
V 2
after piercing − V 2

strinking

2tsheet

∣∣∣∣∣ =
∣∣∣∣
α2 − 1

2tsheet

∣∣∣∣V
2
strinking.

From Eq. (2.2) and (2.3) the average deceleration of a projectile after piercing
individual plate could be estimated, and the thickness distribution of the plate
for overall uniform deceleration could be designed. Figures 2a and 2b show the
distribution of 60 plate arrays and the estimated deceleration of a projectile
with the range of constant deceleration of about 100 000 G.

a)

b)

Fig. 2. Estimation of thickness distribution of plate array for soft recovery of projectile:
a) thickness distribution of sheet array, b) estimated deceleration of a projectile.
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3. Field tests

A soft recovery system was designed and fabricated. It consists of three
identical steel frames bolted together to have an overall length of 12 m, Fig. 3.
The dimensions of the frame are 900 mm × 900 mm × 4000 mm and the frame is
made of 100 mm × 100 mm steel square tube. Each frame can house 19 equally
spaced steel square plates of 600 mm × 600 mm which is held by steel clamps
at four corners. The steel plates of three different gauges: 0.6 mm, 1.2 mm, and
2.3 mm were tested.

Fig. 3. Soft recovery system with plates installed.

An aluminum foil sensor is glued onto every plate to measure the arrival time
of the projectile onto each plate. Dedicated multi-channel time recording system,
to conduct this assessment, was developed in-house. The arrival time of the
projectile onto each plate was captured successfully and an overall deceleration
curve was obtained from the data.

Fig. 4. Velocity measuring equipment (front and rear).
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For the field test 180 mm long, a 40 mm caliber hardened steel projectile
weighting 1 kg was used and two different guns were used: 40 mm rifled barrel
gun and 155 mm smooth bore gun with sabot. The amount of the propellant for
each shot was carefully controlled to achieve muzzle velocity of 600 m/s. The
sabot assembly launched by 155 mm gun was stopped by the stopper plate while
the projectile continued to fly to pierce through steel plates.
After the shot, all the plates were removed, measured, and photographed.

The trajectories of the projectile can be reconstructed from postmortem analysis
of the plates. The high speed video system was used to record a detailed behavior
of the projectile piercing through the plates.

Fig. 5. 40 mm rifled gun.

Fig. 6. 155 mm smooth bore gun.
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Fig. 7. Schematic of projectile and sabot separation.

Fig. 8. Sabot assembly.

Fig. 9. Deformed plates, front section.
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Fig. 10. Deformed plates, mid section.

Fig. 11. Deformed plates end section.

Fig. 12. Projectile wedged in wooden block.
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Fig. 13. Trojectory of projectile reconsructed from plates data.

4. Results and discussion

Two different guns were used for the field firing test: a rifled barrel gun and
smooth bore gun. Total of eight effective shots were fired by 40 mm rifled gun
and three different gauge plates were tested. Only two projectiles were retrieved
but were severely deformed and fractured. The clamps holding the plates were
often damaged and had to be replaced for subsequent tests. Sections of the
frame were also damaged by the high speed projectile exiting out of the frame’s
sideway. The test results were almost identical regardless of a thickness of the
plate. The projectiles veered off from the initial firing line and exited at the mid-
section of the frame. Initially, the projectile was piercing through 10–15 plates
with no significant yaw angle deviation occurring at two to three meters. Then,
the projectile experienced a rapid deceleration caused by fast increase of yaw
angle. Finally, the projectile started to tumble. The projectile was deformed and
fractured by high impact forces acting from random directions. Once the axis of

Fig. 14. Distance-velocity data using 40 mm rifled gun.
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the projectile is not parallel with flying line, the directions of the stopping forces
exerted from the plates are not in the axis of the projectile, i.e., axis-symmetric
assumption is no longer valid. Consequently, magnitude of the stopping force
increases with the yaw angle.

Fig. 15. Distance-velocity data using 155 mm smooth bore gun.

Next, the four effective shots were fired by 155 mm smooth bore gun with
plastic sabot assembly. The sabot assembly, launched without a spin, was stopped
by stopper plate while the projectile continued to fly, in the end, piercing through
steel plates. A short cylinder chunk of the plastic sabot, which punched through
the hole of the stopper plate, was following the projectile. This plastic chunk
was piercing the larger hole in the plates made in a place where there was al-
ready a hole made by the projectile. Thus, the trajectory and posture data were
destroyed. Fortunately, the high speed video was operational to record the tra-
jectory and posture data. One projectile was found wedged into the wooden
block behind the frame with a minor deformation and another one was found
intact on the ground before the end of the frame. According to the high speed
video the last projectile entered the test section with initial yaw about 10 de-
grees thus slowed down much faster and tumbled away. The initial yaw may be
caused by a misalignment of the stopper plate in front of the frame. Compared
with the rifled gun case, a smooth bore gun test results were more satisfactory,
i.e., smooth deceleration span was much longer and projectiles were recovered
intact. In the case of 0.6 mm thick plates, the projectile pierced through first
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20–30 plates, in a span of four to six meters, with no significant yaw angle devi-
ation. The average deceleration rate, about 0.3%, calculated from the test data
agrees well with a numerical simulation estimation. In case of next 10–15 plates,
in a span of two to three meters, the deceleration rate increased slightly with a
slight increase of yaw angle. Then, the projectile speed was slow enough and the
projectile experienced rapid deceleration caused by a fast increase of yaw angle.
In Fig. 13 we can find the projectile trajectory reconstructed from the post-
mortem analysis of the recovered plates. The projectile was piercing through
the plates in a straight manner and started to veer slowly to top- left direc-
tion around a half span and changed direction to bottom- right while rubbing
with metal clamps about two- thirds of the span. Finally it exited through the
end of the frame, then wedged into the wooden block in the back, see Fig. 12.
For 1.2 mm thickness case, the same sequence was observed but the projectile
stopped in a half length of the span.
For the projectile with a zero spin and zero yaw, the deceleration character-

istics can be described by three different zones: (1) smooth and steady decelera-
tion, (2) deceleration rate increases yet remains constant, (3) sudden increase of
deceleration. A perfect alignment of the projectile and the plates is the crucial
condition for a successful soft- recovery test but it cannot avoid the axis force
components. Comparing the results from the two different guns, it is evident
that the initial spin of the projectile attributes to a faster yaw increase. The
fast yaw angle increase is caused by the gyroscopic force from the interaction
between the spinning projectile and the plate. The final phase of an abrupt
deceleration begins at critical speed or critical yaw angle.
Even with perfect test condition, the axis symmetric assumption cannot

be maintained throughout the test. Hence, further numerical studies of three-
dimensional oblique impact behavior of the projectile are required. More tests
with different thickness distribution of the plates and careful alignment are
needed to complete the soft recovery test.
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The present paper analyzes the possible modes of shear plugging and adiabatic shear
plugging in the perforation of metal plates struck by a blunt rigid projectile. The modified
ballistic limit and residual velocity under the condition of adiabatic shear plugging are further
formulated. Further experimental analyses are conducted on the perforations of Weldox E
steel plates in order to discuss the effects of plate thickness and material strength/hardness on
the terminal ballistic performance. More experimental evidence confirms the jump of residual
velocity at the ballistic limit induced by the structural response of the plate. With increasing
the thickness of plate and the material strength, failure modes of the plate may transform from
shear plugging to adiabatic shear plugging.

Key words: blunt rigid projectile, metallic plate, perforation, shear plugging, adiabatic shear
plugging.

1. Introduction

Perforation of intermediate thick metallic plates by a blunt rigid projec-
tile has been paid much attention [1–7] for a long time because of its civil
and military applications, and recent work may be referenced to Børvik et al.
[2, 8–11], Dey et al. [4], Chen and Li [12–13], and Chen et al. [1, 14–16].
With increasing the plate thickness and impact velocity, shear plugging becomes
a likely failure mode of the final perforation of an intermediate thick metallic
plate.
There exist many analytical models to predict the ballistic performance, e.g.

Wen and Jone [17], Bai and Johnson [18], and Ravid and Bodner [19].
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Based on the conservation of momentum and energy, Recht and Ipson [20]
proposed a shear plugging model to predict the residual velocity according to
a given impact velocity and a ballistic limit velocity obtained from a dimensional
analysis. Recht and Ipson [20] completely ignore the structural response for
relatively thin plates and the local penetration for relatively thick plate. Using
the energy-balance approach, Srivathsa and Ramakrishnan [21, 22] derived
a ballistic performance index to estimate and compare the ballistic quality of
metal materials. This index is a function of the commonly determined mechan-
ical properties of the target material and the striking velocity of the projectile.
Chen and Li [12] presented closed-form analytic solutions for ballistic perfo-
ration of ductile circular plates struck by blunt projectiles. In addition to the
localized shear deformation at the peripheral of the central plug, their rigid-
plastic structural model also considered the effect of plate bending and mem-
brane stretching. The local indentation/penetration employs a dynamic cavity
model. With the assistance of numerical simulation, Chen et al. [16] further
discuss the applicability of this model and its discrepancy when compared to
the experimental results and simulation.
Basically, the perforation mechanism of the ballistic performances depends

on the target material property (e.g., strength or hardness), target dimensions,
projectile nose shape, mass and impact velocity. By means of experiment and nu-
merical simulation, Børvik et al. [2] and Dey et al. [3] systematically analyzed
the effect of target thickness and strength on the ballistic performance. In gen-
eral, the ballistic limit rises monotonically with increasing the target thickness
and strength when the shear plugging dominates in the perforation of the plate.
However, the perforation is always an adiabatic heat process and under the adi-
abatic condition, the majority of the plastic energy is converted into heat. This
generates localized high temperature and adiabatic shearing occurs when the
thermal softening outbalances the incremental strain and the strain-rate hard-
ening of the target material, which eventually leads to the catastrophic failure
within the Adiabatic Shear Band (ASB). With increasing the target thickness
and strength, the failure mode easily transform from shear plugging to adiabatic
shear plugging. ASB distinctly influences the ballistic performance, and one de-
duction is that the monotonic relationship between the ballistic limit and target
thickness and strength never come into existence. Instead, it becomes an approx-
imate relationship [23, 24]. With further considering the possible transforming
mechanism of material failure, Chen et al. [1] check the initiation condition for
adiabatic shear band failure and present the criterion of adiabatic shear plugging
in the case of a blunt projectile perforating a metallic plate.
Based on the analytical models by Chen and Li [12] and Chen et al. [1],

the present paper analyzes the possible modes of shear plugging and adiabatic
shear plugging in the perforation of metal plates struck by a blunt rigid projec-
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tile. The modified ballistic limit and residual velocity under condition of adia-
batic shear plugging are further formulated. Further experimental analyses are
conducted on the perforations of Weldox E steel plates [2, 3], to discuss the ef-
fects of plate thickness and material strength/hardness on the terminal ballistic
performance.

2. Shear plugging and perforation of ductile circulate plates
struck by a blunt projectile

Chen and Li [12] studied the formation of shear plug during the perfora-
tion of ductile circular plates struck by a blunt projectile. In their studies, the
effects of shear, plate bending, and membrane stretching were considered via
a rigid-plastic analysis, while the local indentation/penetration was represented
in a dynamic cavity expansion model.
Consider a blunt projectile of mass M and caliber d impacting a clamped

ductile circular plate of thickness H and diameter D. The yielding stress and
density of target material are σy and ρ respectively. Thus the dimensionless
thickness and mass of target are χ = H/d and η = ρπd2H/4M respectively.
The intermediate thick plate and plate bending are included only, i.e., membrane
stretching and local indentation/penetration are ignored. It corresponds to the
case of χ1 < χ ≤

√
3 (A+BΦJ)/4, in which χ1 is the empirical upper limit of

thin plate and it depends on the target material and diameter D, usually we
have χ1 ≈ 0.2. A and B are the dimensionless material constants used in the
dynamic cavity model.
It is assumed that a central plug will be formed in front of the projectile at

a critical condition when the total compressive force on the projectile nose equals
to the fully plastic shear force on the peripheral of the plug. After the plug is
formed, it moves with the projectile under constant shear resistance, Q0, which
is equal to Hτy = Hσy/

√
3 according to the von Mises yielding criterion, where

τy and σy are the shear yield stress and compressive yield stress of the mate-
rial, respectively. Dimensionless mass between the central plug and projectile is
denoted by η = ρπd2H/4M . M0 = σyH

2/4 and N0 = σyH are the fully-plastic
bending moment and membrane force in a rigid-perfectly-plastic circular plate,
respectively. With considering the plate bending, Chen and Li [12] presents the
ballistic limit of plate and residual velocity of projectile are as following,

(2.1)

VBL = 2

√
2χ (1 + η) (η + ϑ)√

3
·
√
σy
ρ
,

Vr =
ϑVi + η

√(
V 2
i − V 2

BL

)

(1 + η) (η + ϑ)
≥ VJump.
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Regarding the residual velocity, a jump of residual velocity

VJump =
ϑVBL

(1 + η) (η + ϑ)
> 0

exists at the ballistic limit. ϑ in Eqs. (2.1) is a dimensionless parameter which
depends on the plate thickness and diameter,

(2.2) ϑ=





3
(
1−

√
3χ
)
(1 + η)

2 (2ξ/d− 1) (ξ/d+ 1)
, χ1 < χ <

1√
3

[
(D/d)2 − 1

(D/d+ 1)2 + 2

]
,

3
(
1−

√
3χ
)
(1 + η)

(D/d− 1) (D/d+ 2)
,

1√
3

[
(D/d)2 − 1

(D/d+ 1)2 + 2

]
≤ χ <

1√
3
.

If 1
/√

3 ≤ χ ≤
√
3 (A+BΦJ)/4, we have ϑ = 0, and in that case, Eq. (2.1)2 of

residual velocity is same as Recht and Ipson [20]. ξ in Eq. (2.2) denotes the
stationary location of a bending hinge during the shear sliding phase, and we
have [12],

(2.3)
ξ

d
=





√
3χ+

√
1 + 2

√
3χ− 6χ2

2
(
1−

√
3χ
) , χ1<χ<

1√
3

[
(D/d)2 − 1

(D/d+ 1)2 + 2

]
,

D

2d
,

1√
3

[
(D/d)2 − 1

(D/d+ 1)2 + 2

]
≤χ< 1√

3
.

3. Transition Criteria from shear plugging
to adiabatic shear plugging

The target material property (e.g., strength or hardness), target thickness
and impact velocity have obviously influence on the ballistic performances of
a blunt projectile impacting on a metallic plate. Under the adiabatic condition,
accompanied with increasing the target thickness and strength, the failure mode
easily transforms from shear plugging to adiabatic shear plugging or to the
hybrid of these two modes. ASB distinctly influences the ballistic performance,
and Chen et al. [1] further check the initiation condition for adiabatic shear
band failure for the case of a blunt projectile perforating a metallic plate.
The characteristic width of a shear hinge is eb = αH/3, and α is an empirical

coefficient,

(3.1) α =

{
1, Vi/cp < 1;

exp [C (1− Vi/cp)] , Vi/cp ≥ 1,
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where cp =
√
Eh/3ρ is the propagating velocity of shear hinge disturbance and

Eh is the linear hardening modulus which may decrease due to thermal softening.
C is an empirical constant and suppose C = 5. More details on the discussion
of the characteristic width of a shear hinge can be found in Chen et al. [1].
Consequently, in case of un-perforation or ballistic limit, i.e., Vi ≤ VBL, the
maximum engineering shear strain and the average shear strain rate within the
shear hinges around the peripheral of the striker are calculated respectively as
follows [1],

(3.2)

γ1 =
3
√
3

16αχ (1 + η) (η + ϑ)
· ρV

2
i

σy
,

γ̇1 =
3

4α (1 + η)
· Vi
H
.

Whereas in case of perforation, i.e., Vi > VBL, the maximum engineering shear
strain and the average shear strain rate within the shear hinges are different,

(3.3)

γ1∗ =
1.5

α
,

γ̇1∗ =
2
√
3 (η + ϑ)

α
[
Vi −

√(
V 2
i − V 2

BL

)] ·
σy
ρd
.

Taking into account the effects of temperature and strain-rate, and using
the Johnson-Cook flow law, we have a simple shear constitutive equation of the
following form:

(3.4) τ =
1√
3

[
a+ b

(
γ√
3

)n] [
1 + c ln

(
γ̇√
3ε̇0

)] [
1−

(
T − Tr
Tm − Tr

)m]

in which the von Mises equivalent stress, strain, and strain rate (i.e., τ = σ/
√
3,

ε = γ/
√
3 and ε̇ = γ̇/

√
3) are used in the formulation. The parameters: a (or a =

σy), b (nearly as Eh), c and n are all material constants, and ε̇0 is a prescribed
reference strain rate. Tr and Tm are respectively the environmental reference
temperature and the melting temperature of target material.
The adiabatic temperature-rise within the shear hinges may be integrated

by the formula dT =
β

ρ CV
τ dγ and Eq. (3.4). Simply, we have m = 1, and CV is

the specific heat and β is the Taylor-Quinney coefficient. Usually, the strain-rate
effects are measured by its average value during the dynamic deformation. Thus,
the expression for the maximum shear stress (dτ = 0) criterion with constant
strain-rate (dγ̇ = 0) is [25],

(3.5)
∂τ

∂γ
+

βτ

ρCV
· ∂τ
∂T

= 0.
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According to the definitions of maximum engineering shear strain and aver-
age shear strain rate within the shear hinges, i.e. Eqs. (3.2), (3.3). The critical
velocity VA corresponding to the initiation of adiabatic shear failure may be
deducted from Eq. (3.5) [1]. Hence, we have,

(3.6)

[
a+ b ·

(
3ρV 2

A

16αχ (1 + η) (η + ϑ) σy

)n]2 [
1 + c ln

( √
3VA

4α (1 + η) ε̇0H

)]

=
nbρCV (Tm − Tr)

β
·
(

3ρV 2
A

16αχ (1 + η) (η + ϑ)σy

)n−1

, if Vi ≤ VBL,

[
a+ b ·

( √
3

2α

)n]2

1 + c ln




2 (η + ϑ)

α
[
VA −

√(
V 2
A − V 2

BL

)]
ε̇0







=
nbρCV (Tm − Tr)

β
·
( √

3

2α

)n−1

, if Vi > VBL.

Actually, Eqs. (3.6) are the explicit relations among the critical velocities
corresponding to adiabatic shear failure, target thickness, target parameters
(material hardness, density and mechanics etc.) and projectile parameters (ge-
ometry, mass).

4. Adiabatic shear plugging of ductile circulate plates struck
by a blunt projectile

Once the initiation condition for adiabatic shear band failure is achieved
for the case of a blunt projectile perforating a metallic plate, the adiabatic
temperature-rise within the shear hinges will cause the material thermal soften-
ing in the local zone, and thus the material failure of the target will be reached
much more easily, as it requires less energy compared to shear failure. It is
reasonable that the failure mode of blunt projectile perforating a metallic plate
will transform from shear plugging to adiabatic shear plugging. Therein the per-
foration includes two possible failure modes, i.e, shear plugging and adiabatic
shear plugging. The ballistic performance of the first mode can be completely
depicted by Sec. 2. Regarding the second mode, i.e., adiabatic shear plugging,
the perforation scenarios are much more complicated and respectively need to
be analyzed.
1. VA ≤ VBL

Adiabatic shear plugging occurs prior to the shear plugging, and it is con-
cluded that the perforation mode is the first one. Thus, the ballistic limit is
modified as
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(4.1) VASB−BL = VA.

Chen et al. [1] indicated that this scenario corresponds to a thicker plate
and the structural response of the plate is ignored. Under higher impact velocity
than the ballistic limit, the residual velocity of both projectile and plug is

(4.2) Vr =
√(

V 2
i − V 2

ASB−BL

)/
(1 + η).

2. VA > VBL

Chen et al. [1] indicated that this scenario corresponds to a thinner plate
and the structural response of the plate should be taken into account.
In the case of an un-perforation or in the ballistic limit, i.e., Vi ≤ VBL < VA,

no adiabatic shear plugging occurs.
If VBL < Vi < VA, the projectile perforates the plate as shear plugging and

no adiabatic shear failure occurs. Therein its ballistic performance is formulated
by Eq. (2.1) of Sec. 2.
If Vi ≥ VA, the projectile perforates the plate as adiabatic shear plugging.

Since the failure mode is transformed, the residual velocity of Eq. (2.1)2 is
modified to

(4.3) Vr =
ϑVi + η

√(
V 2
i − V 2

ASB−BL

)

(1 + η) (η + ϑ)

and we suppose VASB−BL = VA here.
Furthermore, during the transformation from shear plugging to adiabatic

shear plugging, the material failure mode in the shear hinge is not absolutely
singleness. The experimental results indicate that it should be a hybrid of shear
failure and adiabatic shear failure. More generally, we suppose that the ballistic
limit of the adiabatic shear plugging has the following relationship,

(4.4) VASB−BL = (1− δ) · VA + δ · VBL, where 0 < δ ≤ 1,

where the value of δ depends on which one dominates in the target material
failure. If δ = 0.5, we have VASB−BL = (VA + VBL)/2. Employing Eq. (4.4) into
this section, the modified ballistic performance of blunt projectile perforating
metallic plate as adiabatic shear plugging is obtained.

5. Experimental analyses

Chen and Li [12] first theoretically explained some special phenomenon, such
as, that the residual velocity will behave as a jump near the ballistic limit in
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the case of perforation of a thin metallic plate and the ballistic limit abnormally
descend with increasing the target thickness regarding a range of plate thick-
nesses. The present paper further analyzes the experimental data of Børvik
et al. [2] and Dey et al. [3] and again confirm these special phenomenon. Also
we will discuss the applicability of Chen and Li [12], Chen et al. [1] and the
present modified model with changing the target thickness and strength.
The present analytical model assumes that the projectile and plug have

the same residual velocity after perforation. In order to compare the analytical
results with experimental data, a nominal residual velocity in a test is defined
based on the conservation of momentum

(5.1) Vr =
M · Vpr +Mpl · Vplr

(M +Mpl)
,

where, in a test, Vpr and Vplr are the residual velocities of the projectile and the
target plug respectively. The mass of target plug is Mpl = πρd2H/4.
The target material inBørvik et al. [2] is Weldox460E and the corresponding

material properties can be found in that reference. Dey et al. [3] employed three
steel alloys of Weldox460E, Weldox700E and Weldox900E, which have different
yielding strength, i.e., 499 MPa, 859 MPa and 992 MPa, respectively. The blunt
projectile is made of high strength steel of Arne with σy = 1900 MPa. Its mass
is 0.197 kg, and its diameter and length are 20 mm and 80 mm respectively.

5.1. Effect of target thickness on the ballistic performance

Børvik et al. [2] published a large amount of experimental results on the
ballistic performance of ductile plates struck by blunt projectiles, as seen in
Fig. 1. Their plate thicknesses ranged from thin to intermediate, i.e., target
thickness areH = 6mm, 8 mm, 10 mm, 12 mm, 16 mm, and 20 mm respectively.
The corresponding dimensionless thickness are χ = 0.3, 0.4, 0.5, 0.6, 0.8, and
1.0, respectively.
The experimental results of Børvik et al. [2] showed that regarding rela-

tively thin plates, i.e., χ = 0.3, 0.4 and 0.5, due to the bending response of plate,
a jump of residual velocity occurs at the ballistic limit and its value decreases
with raising the target thickness; whereas regarding the thick targets (χ = 0.6,
0.8 and 1.0), the curves of residual velocity vary continuously. Figure 1 demon-
strates the comparison between experimental data and theoretical predictions
by Chen and Li [12], and it clearly shows validation of Chen and Li’s [12]
model. The experimental data are the weighted average values of the residual
velocities of projectile and plug.
Figure 2 shows the effect of target thickness (χ = H/d) of Weldox 460E on

the ballistic limit. The test data of Børvik et al. [2] showed that regarding



PERFORATION MODES OF METAL PLATES STRUCK. . . 23

Fig. 1. Comparison between the prediction from Chen and Li [12] and the test data
of ballistic performances [2].

Fig. 2. Variations of critical velocities for the ballistic limit (VBL) and initiation of adiabatic
shear (VA) against plate thickness (H/d).

the thin plates, the ballistic limit rises very slowly with increasing the target
thickness; differently, it rises linearly and distinctly regarding the thick plates.
Further popularly, Chen and Li [12] indicate in a range of target thickness that
it is due to the structural response of thin plate that results in the abnormal
descending of ballistic limit with increasing target thickness.
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Figure 2 simultaneously presents the prediction of the critical velocity of adi-
abatic shear failure with varying thickness. Børvik et al. [2, 8, 9] also analyzed
the different failure modes of the perforation of plates with different thickness.
It demonstrates that with increasing the target thickness, the deformation of
plate transforms from structural response of thin plate and local shear plugging
to adiabatic shear failure. The adiabatic shear failure behaves as a deformed
ASB and a transformed ASB respectively.
It is emphasized that the two theoretical curves in Fig. 2 intersect at χ =

0.7. This indicates that, in the case of χ < 0.7, as VA > VBL, even if the
impact velocity is greater than the ballistic limit, the target failure may be
still shear plugging. The adiabatic shear failure does not easily occur, and it
requires a higher impact velocity, i.e., Vi > VA. In case of χ > 0.7, as VA < VBL,
adiabatic shear failure may appear easily, even if impact at lower velocity and
no perforation. In particular, the ballistic limit should be modified based on
Eq. (4.4) because of the hybrid of failure modes. In Fig. 2, the test data locate
much close to the prediction of shear plugging, and it indicates the shear plugging
dominates in the perforation rather than adiabatic shear failure. Therein suggest
δ = 0.9 in Eq. (4.4) regarding Børvik et al. [2] test.
Chen et al. [1] discussed in detail the variation of adiabatic temperature-

rise, strain and strain rate against the target thickness and impact velocity in
a local shear zone, which agrees well with the experimental results and numerical
simulation. Here, this is not repeated.
Regarding the thin plates, the prediction of the ballistic limit and jump of

residual velocity in Fig. 1 is somehow discrepant from the test data. Chen and
Li [12] also presented a thinner plate model with considering the membrane ef-
fect, and demonstrated that the test data is located between the predictions of
thinner and medium plates. However, regarding the thicker plates, e.g., χ = 1.0,
the discrepancy of residual velocity between the prediction and test of residual
velocity is due to the assumption of rigid projectile. In that case, the projectile
deforms and blunts more seriously and much more impact energy is devoted to
the plastic deformation of projectile. The projectile even breaks when it perfo-
rates much thicker plates, e.g., χ = 1.25 or χ = 1.5. Therein, the model of Chen
and Li [12] has its specific applicability for target thickness.

5.2. Effect of target strength or hardness on the ballistic performance

There are limited experimental data to show the affect of material strength
on the ballistic performance of a small thickness target (or plate). Sangoy
et al. [23] demonstrated that there are three zones in the hardness-ballistic
limit relationships, i.e., (1) low hardness regime, where perforation resistance
increases with hardness, (2) medium hardness regime, where the ballistic limit
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decreases due to the onset of adiabatic shear damage, and (3) high hardness
regime, where perforation resistance increases again due to the projectile break-
up. It means that ASB distinctly influences the ballistic performance. In an
engineering perspective, it is usually assumed that the hardness is proportional
to the material yielding strength; and thus, the monotonic relationship between
the ballistic limit and target thickness and strength never come into existence.
Instead it converts into an approximate relationship [23, 24], i.e., the variation
of the ballistic limit may have a phenomenon of an “up-down-up” trend with
an increase in the target thickness and strength.
Dey et al. [3] conducted a large amount of perforation tests on the steel

alloy plates of Weldox 460E, Weldox 700E, and Weldox 900E respectively with
thickness H = 12 mm, and analyzed the effect of target strength or hardness on
the ballistic performance. The main discrepancy of the three steel alloys is that
they have different yielding strength, i.e., 499 MPa, 859 MPa, and 992 MPa
respectively. Thus, in this analysis we assume that the other parameters of
Weldox 700E and Weldox 900E are same as those of Weldox 460E.
A Johnson-Cook material model is employed in Chen et al. [1] to discuss

the influence of adiabatic shear failure, and the effect of target material strength
is demonstrated as well. Figure 3 shows the critical velocity at initiation of adi-
abatic shear failure and the variation of the ballistic limit against the target
material yielding a strength as predicted by Chen and Li [12], as well as the
experimental results of ballistic limit. According to the model of shear plugging,
the theoretical ballistic limit VBL increases monotonously with the yielding stress
(hardness) of plate material. On the other hand, according to the model of adia-
batic shear plugging, the critical velocity VA at adiabatic shear failure increases
more gently with the yielding stress in the lower range of σy, and then gently

Fig. 3. Affect of plate strength on ballistic performance for χ = H/d = 0.6.
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decreases. Particularly in thinner plates, this phenomenon of up-and-down trend
against σy seems more remarkable. It concludes that Chen et al. [1] may also
have predicted the first two zones defined by Sangoy et al. [23]. In the present
study, the projectile is assumed non-deformable, and thus, Fig. 3 demonstrates
the performance in the low- to medium-hardness regime only, but fails to predict
the phenomenon in the high-hardness regime.
Figures 4–6 show the test data of residual velocity of Weldox 460E, Weldox

700E, and Weldox 900E plates and the corresponding theoretical predictions by

Fig. 4. Prediction of residual velocity and test data (Weldox 460E).

Fig. 5. Prediction of residual velocity and test data (Weldox 700E).
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Fig. 6. Prediction of residual velocity and test data (Weldox 900E).

Chen and Li [12] and Chen et al. [1]. Obviously, for Weldox 460E, the test
data of a lower impact velocity fits Chen and Li [12] well and implies that
the dominating failure mode of the plate is shear plugging; whilst the data of
a higher impact velocity locate between two models and thus shear plugging
and adiabatic shear plugging both play an important role in plate perforation.
Regarding Weldox 700E and Weldox 900E, all of the test data are close to Chen
et al. [1] and the dominating failure mode of plate is adiabatic shear plugging.
The similar transition of perforation mode is also found in the sharp projec-

tile striking Weldox 460E, Weldox 700E, and Weldox 900E plates [3]. In general,
accompanied by an increase of target strength and thickness, the assumption
of a rigid projectile trends to violated, and the perforation model tends toward
transformation. It should be emphasized that any theoretical model has its spe-
cific applicable range.

6. Conclusions

Based on the analytical models by Chen and Li [12] and Chen et al. [1],
the present paper analyzes the possible modes of shear plugging and adiabatic
shear plugging in the perforation of metal plates struck by a blunt rigid pro-
jectile. The modified ballistic limit and residual velocity under the condition of
adiabatic shear plugging are further formulated. Further experimental analyses
were conducted on the perforations of Weldox E steel plates [2, 3], to discuss the
affect of plate thickness and material strength/hardness on the terminal ballistic
performance. More experimental evidence confirms the jump of residual velocity
at ballistic limit induced by the structural response of plate. With increasing
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plate thickness and material strength, failure modes of plate may transform
from shear plugging to adiabatic shear plugging. Due to adiabatic shear plug-
ging, the monotonic relationship between the ballistic limit and target thickness
and strength never come into existence.
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This work aims to analyze the effect of the cutting parameters on chip segmentation of
the aluminium alloy A2024-T351 during machining process. In this work, two parameters
are considered: the tool rake angle of the cutting tool and the feed under dry machining. An
orthogonal cutting FE model is developed in Abaqus/Explicit for this purpose. A thermo-visco-
plastic-damage model for the machined material and thermo-rigid behaviour for the cutting
tool have been assumed. At the chip/tool contact zone, the modified Coulomb friction model
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showed the effect of the tool rake angle and feed on the cutting force and chip morphology as
well as temperature distribution at the tool rake face.
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1. Introduction

Machining processes are widely used in industry to produce parts with com-
plex shapes. An accurate modelling of cutting operations requires consideration
of several interacting factors and remains a challenge in industry. Behaviour and
numerical aspects should be well considered to obtain accurate results which can
be exploited later in an optimisation procedure. To generate a chip in machin-
ing, particularly segmented chip, modelling should include a suitable behaviour
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law for the workpiece and cutting tool, taking into account work-hardening,
strain-rate and temperature effects [2], and adequate contact behaviour at the
workpiece-tool interface. A thermo-mechanical coupling should be considered,
like the evolution of the heat generated by inelastic strain in the workpiece
material and by friction between the chip and tool [3].
To analyse the chip formation process in machining several studies have been

carried out following the analytical approach (e.g., [7, 8]). With the development
of numerical methods and computation codes simulation of more realistic ma-
chining case became possible. The Finite Element (FE) method is widely used
for this purpose [3]. Recently, the Smoothed Particle Hydrodynamics (SPH)
method has been also applied to analyse cutting processes [4]. In the present
paper, an orthogonal cutting operation has been analysed by FE simulations,
using Abaqus/Explicit software [1], to analyse both the tool rake angle and feed
rate effects on the cutting force, chip morphology as well as temperature dis-
tribution at the tool rake face during machining aluminium alloy A2024-T351
with uncoated carbide inserts.

2. Modelling considerations

Since the machining involves intense thermo-mechanical phenomena, each
material point in the cutting tool and the workpiece should satisfy simultane-
ously two equilibrium equations:

(2.1) divσ + fv = ρü and k∇2T − ρcpṪ + q̇ = 0,

where σ is the Cauchy stress tensor, fv is the body forces, ü is the acceleration,
T is the temperature, ρ is the material density, k is the thermal conductivity, cp
is the thermal capacity, and q̇ is the heat source. These equations are strongly
nonlinear and coupled, since the stress σ depends on the temperature T via the
material behaviour law, as it can be seen in the relationships (2.2)–(2.3). Also,
a part of the mechanical inelastic work is to transform to heat, so a part of the
heat flux q̇ is a function of the flow stress and plastic strain (see Eq. (2.5)).
Moreover, in the contact zone a part of q̇ is generated by the friction process
(see Eq. (2.7)). The heat flux can then be written as q̇ = q̇p + q̇f , where q̇p and
q̇f are the heat fluxes due to inelastic and friction work, respectively.

2.1. Constitutive model

To represent the behaviour of the workpiece material during machining
a Johnson-Cook visco-plastic-damage model has been adopted. The flow stress
is given by the following constitutive equation:

(2.2) σ = [A+B(εp)n]
[
1 + C ln(ε̇

p
/ε̇0)

]
[1− ((T − T0)/(Tm − T0))

m] ,
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where A, B, C, m, and n are the material parameters, εp is the Von Mises
equivalent plastic strain, ε̇

p
is the strain rate, ε̇0 is the reference equivalent plas-

tic strain rate, Tm and T0 are, respectively, the material melting and reference
ambient temperatures. The fracture behaviour is described by a damage initia-
tion criterion and a damage evolution law up to fracture. The damage initiation
criterion is given by:

(2.3)
ωd =

∫
dεp

εpd
with 0 ≤ ωd ≤ 1 and

εpd = [d1 + d2 exp(d3P/σ)]
[
1 + d4 ln ε̇

∗
]
[1− d5T

∗] ,

where εpd is the equivalent strain at the onset of damage, function of the stress
triaxiality, plastic strain rate, and temperature, while d1, ..., d5 are the material
damage parameters. The criterion for damage initiation is met when ωd = 1. The
true stress evolution after damage initiation (ωd = 1) and the damage evolution
are given by:

(2.4) σ̃ = (1− d)σ with d = up/uf = Lεp/uf ,

where up is the equivalent plastic displacement and uf is the equivalent plastic
displacement at failure, which is a function of the equivalent plastic strain εp

and the characteristic length L of the corresponding finite element. This law is
introduced to avoid the mesh dependency during damage at the FE scale [1].
As the mechanical behaviour is affected by temperature, the mechanical

plastic work generates a heat flux, which results in a temperature rise. The heat
flux due to this phenomenon is described by:

(2.5) q̇p = ηpσ : ε̇p,

where ηp is the plastic work conversion factor, generally taken equal to 0.9 for
metals.

2.2. Tool-workpiece interface behaviour

The contact behaviour at the tool-workpiece interface is defined by the rela-
tionship between the normal friction stress σn and the shear friction stress τf :

(2.6) τf = min(µσn, τmax),

where µ is the friction coefficient and τmax is the shear stress limit considered
generally equal to the initial plastic flow shear stress. The friction heat flux at
the contact interface is given by:

(2.7) q̇f = ffηfτf γ̇,
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where γ̇ is the sliding velocity, τf is the friction stress (Eq. (2.6)), ηf is the fric-
tional work conversion factor (ηf is assumed as equal 1), and ff is the fraction
of the thermal energy conducted into the chip. The value of ff depends on the
thermal properties of the cutting tool and workpiece materials, as well as the
temperature gradient near the chip-tool interface [3] (ff is assumed as equal 0.9).

3. Problem description

The problem of the orthogonal cutting test is simulated, with the cutting con-
ditions given Table 1. The corresponding experimental tests are taken from [5].
The experimental setup used to perform the tests is shown in Fig. 1.

Table 1. Cutting conditions: variation of feed and tool rake angle.

Cutting speed VC [m/min] Width of cut w [mm] Feed f [mm] Tool rake angle α [◦]

60 4 0.05, 0.1, 0.3 0, 15, 30

a)

b)

Fig. 1. Experimental setup used for the numerical analysis [5]: a) tool geometry with
different tool rake angles, b) orthogonal cutting device.
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Geometrical characteristics of the cutting tool and workpiece are given in
Fig. 2. Basic physical properties of the workpiece and tool materials are given
in Table 2 and behaviour parameters of the workpiece material are given in
Table 3.

Fig. 2. Geometrical characteristics and mesh of the model.

Table 2. Basic thermo-mechanical properties of the machined workpiece
and cutting tool [6].

Physical parameter Workpiece (A2024-T351) Tool (WC)

Density, ρ [kg/m3] 2700 11900

Elastic modulus, E [GPa] 73 534

Poisson’s ratio, ν 0.33 0.22

Specific heat, Cp [J/kg/◦C] Cp = 0.557T + 877.6 400

Thermal conductivity, λ [W/m/C]
25 ≤ T ≤ 300 : λ = 0.247T + 114.4

300 ≤ T ≤ Tm : λ = 0.125T + 226
50

Thermal expansion, α [µm·m/◦C] α = 8.9× 10−3T + 22.2 ×

Tm [
◦C] 520 ×

T0 [
◦C] 25 25

Table 3. Johnson-Cook parameters of the machined workpiece [6].

Visco-plastic parameters Damage parameters

A [MPa] B [MPa] n C m d1 d2 d3 d4 d5 uf [mm]

352 440 0.42 0.0083 1 0.13 0.13 1.5 0.011 0 0.02
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4. Results and analysis

4.1. Chip morphology

Several numerical simulations have been performed; some of them are il-
lustrated by Fig. 3. The comparison between the numerical and experimental
results shows the direct influence of the cutting parameters on the chip mor-
phology and the temperature distribution at the tool-chip interface. From sim-
ulations, the chip thickness and its curvature are dependent on the feed rate as
well as on the tool rake angle. This point has been confirmed by experiments.
For small feeds (f = 0.05 and 0.1 mm), the simulation confirmed the continuous
shape of chips, while for large feeds (f = 0.3 mm), the chip segmentation is well
produced compared to experimental tests. Segmentation intensity is more pro-
nounced for high feeds and small rake angles. The segmentation process is due
to the strain localisation in adiabatic shear bands where the thermal softening
dominates inducing a decrease of the yield stress inside the bands.

f = 0.05 mm

α = 0◦ α = 15◦ α = 30◦

f = 0.1 mm

α = 0◦ α = 15◦ α = 30◦

f = 0.3 mm

α = 0◦ α = 15◦ α = 30◦

Fig. 3. Comparison between the morphology of the experimental and numerical chips.
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4.2. Compression ratio and cutting forces

Variation of the cutting forces with the feed and tool rake angle at a constant
cutting velocity is summarized in Fig. 4a. One can observe an increase in the
cutting force vs. the feed rate and a decrease vs. the tool-rake angle.

a) b)

Fig. 4. Cutting force and compression ratio as a function of the tool rake angle and feed.

Variation of the compression ratio, defined as a ratio between the chip thick-
ness and feed, decreases with both feed rate and tool rake angle, as shown
in Fig. 4b. A high value is obtained for the small feed and tool rake angle
(f = 0.05 mm and α = 0◦), while the small one corresponds to the high feed
and tool rake angle (f = 0.3 mm and α = 30◦).

4.3. Tool-chip interface temperature

As shown in Fig. 5, the tool-chip interface temperature increases with the
feed (f = 0.05, 0.1, and 0.3 mm) and decreases with the tool rake angle (α =
0, 15, and 30◦). For the high feed (0.3 mm) and high rake angles (30◦), the
maximum temperature is about 250◦C, while for the smallest one, i.e., for the
feed (0.05 mm) and tool rake angle (0◦), about 150◦C is obtained.

a) f = 0.05 mm b) f = 0.1 mm c) f = 0.3 mm

Fig. 5. Tool-rake face temperature distribution at the same cutting length.
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The decrease in the temperature level with the rake angle can be explained
by the fact that during machining of metallic materials, when the rake angle is
large enough, the material flow occurs under sliding contact and with low plastic
deformation at the secondary shear zone. Then the produced heat during the
chip formation process is lower for the large angles than for the smallest one.

5. Conclusions

The numerical analysis of the cutting process shows in this study the impact
of two cutting parameters on some important factors such as the chip mor-
phology, cutting forces, temperature, and compression ratio. The main obtained
results can be summarized as follows:

1. For small feeds (f = 0.05 and 0.1 mm), the chip has a continuous shape,
while for high feeds (f = 0.3 mm) it exhibits a segmented shape. However,
the numerical simulation for the segmentation process has to be improved,
since for f = 0.3 mm and α = 30◦ a continuous shape is shown by experi-
mental tests.

2. Cutting forces show an increase function vs. the feed rate and a decrease
function vs. the tool rake angle. It has also been shown in numerical sim-
ulations that oscillations in the cutting force curve are obtained when the
segmentation occurs.

3. The compression ratio is inversely proportional to both the feed rate and
tool rake angle. With this parameter the plastic deformation intensity can
be estimated in the chip.

4. One important result from this work concerns the evolution of the cutting
temperature with cutting parameters. The numerical results confirm that
the tool-chip temperature can be strongly controlled by the tool geometry
and feed.

In a future work, chip segmentation prediction will be improved by introducing
an adequate damage behaviour for the workpiece material. Simulations with
a high cutting speed (HSM) will be performed to highlight its impact on the
chip morphology and cutting force reduction.
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In the paper a theoretical basis of determination of the steering wheel stub axle position
and orientation in the suspension movements space, realized by the suspension mechanism are
presented. The designed instrument allows measurement of quantities that are needed to com-
pute the translation and orientation of the stub axleand to draw the kinematic characteristics
of the suspension.
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1. Introduction

Analysis of the car movement parameters on the curved track is one of the
fundamental issues of stability and steerability. A change of these parameters is
always caused by a change of the external forces acting on the vehicle.
The car comparative studies carried out so far show that even at the same

kinematic extortion, realized by the change of steering angle, the change of the
forces generated at the wheel-road contact patch is dependent on many factors
associated with tire, suspension, and steering system construction.
Steering wheels are carried out against the car body through the spatial

mechanisms with flexible constraints. Flexibility is the reason that during a car
ride along the same path, with different speeds, the real kinematic steering ratio
is changing; a significant difference between the real and theoretical steering
angles appears. Measurement of real steering and camber angles in experimental
car studies has a significant value. Results of such measurements are used to work
out the relationships between car movement parameters as well as for stability
and steerability evaluation [4, 9].
In case of independent suspensions, wheel vertical movements caused by un-

evenness of the road surface cause a track change. It leads to wheels drifting
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and adversely affects straight driving [6, 11]. Measurement of position and ori-
entation of the wheel relative to the car body is very difficult, only a few studies
on this topic, mainly related to the dynamic measurement of the steering an-
gle, can be found in the literature [1, 7]. A Datron RV-3 instrument [12] allows
measurement of position and orientation of the steering wheel relative to the
car body. This measurement, however, is complicated and measured values are
not obtained directly but as a result of complex calculations. This instrument
has large dimensions and considerable weight as compared to the weight of the
wheel. Persistence of the instrument is being reduced under the influence of
dynamic loads generated while driving the car over the road unevenness.

2. The goal and scope of the work

The main goal of the work is introduction of an indirect measurement method
of the stub axle with steering wheel translation and rotation.
The scope of this work concerns problems of resolving the kinematics of

a four-link suspension and the proposed instrument mechanisms, as well as de-
termination of the steering and camber angles and the characteristics of lateral
displacements of the wheel centre.

3. Multi-link steering wheels suspension mechanism structure

In Fig. 1, a four-link steering wheel suspension mechanism scheme is shown.
Points B1, B2, B4, and B5 are centres of ball joints connecting links with the
stub axle. Point B3 is the centre of the ball joint connecting steering linkage
with the stub axle arm.

Fig. 1. Scheme of a four-link steering wheels suspension mechanism.
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Points A1, A2, A4, and A5 are centres of ball joints which replace metal-
rubber joints connecting links with the car body. Point A3 is the centre of
the ball joint connecting the steering linkage with a rack. A lower front link,
represented in the figure by the link A1B1, is connected with an anti-roll bar
at the point W . A telescopic column is connected with this link at the point C.
Frames {N} and {K} are associated, respectively, with the car body and the
stub axle.

4. Equations of geometric constrains of the suspension mechanism

The equations of geometric constraints of the mechanism shown in Fig. 1
can be written as 14 or 5 non-linear algebraic equations. In the first method
the equations express squares of distances between characteristic points of the
suspension:

(4.1)

rTAjBj
· rAjBj

= l2j , for j = (1)5,

rTBjBk
· rBjBk

= l2jk for





j = 1 and k = (2)5,
j = 2 and k = (3)5,
j = 3 and k = (4)5.

In the above system of equations given parameters are: the coordinate zB1

of the point B1(xB1, yB1, zB1) and the steering rack displacement up, added to
the coordinate yA3 of the point A3(xA3, yA3+up, zA3). At the given parameters
zB1 and up, coordinates of the point Bj(xBj , yBj , zBk), for j = 1, . . ., 5 and
k = 2, . . ., 5 are determined from the system (4.1). The constructional positions
of the points B6 and B7 are given, therefore, determination of their coordinates
in the movements space of the suspension {N} is possible from the following
systems of equations:
– for the point B6

(4.2) rTBkBj
· rBkBj

= l2kj, for





k = 6 and j = 1,
k = 6 and j = 3,
k = 6 and j = 5,

– for the point B7

(4.3) rTBkBj
· rBkBj

= l2kj, for





k = 7 and j = 1,
k = 7 and j = 2,
k = 7 and j = 4.

In the second method, the equations of the geometric constraints are ex-
pressed by the squares of lengths of vectors beginning and ending, respectively,
at the points Aj and Bj , for j = 1, . . ., 5, written as:
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(4.4) (rNK.N +ANK · rKBj .K − rNAj .N )T

· (rNK.N +ANK · rKBj .K − rNAj .N ) = l2j , for j = 1, . . ., 5,

where

(4.5) ANK = AγAβAα =



cγ −sγ 0
sγ cγ 0
0 0 1


·




cβ 0 sβ
0 1 0

−sβ 0 cβ


·



1 0 0
0 cα −sα
0 sα cα




is a rotation matrix of {K} against {N}.
From the system of Eq. (4.4) at given parameters q3 and up, coordinates q1

and q2 of the wheel centre K(q1, q2, q3), as well as the rotation angles of {K}
against {N}: α, β, γ, are determined.
To ensure equivalence of the computing range of the algorithms based on the

systems (4.1) and (4.4), determination of the rotation angles of {K} : α, β, γ
against {N} is needed. Thus, the system of Eqs. (4.1) must be supplemented
by calculations of the mentioned angles. After calculating the coordinates of the
points K and Bj (j = 1, . . ., 5) three vectors rKBj

for j ∈ {1, 2, 3, 4, 5} can be
created. For each of these vectors a following matrix equation is satisfied:

(4.6) rKBj .K = AKN · rKBj .N ,

where rKBj .K is a vector in {K}, rKBj .N is a vector in {N},

(4.7) AKN = AT
NK =




cβ ·cγ cβ ·sγ −sβ
sα·sβ ·cγ−cα·sγ sα·sβ ·sγ+sα·cγ sα·cβ
cα·sβ ·cγ+sα·sγ cα·sβ ·sγ−sα·cγ cα·cβ


.

Denoting the vectors’ coordinates:

rKBj .K = [xbj , ybj, zbj ]
T , rKBj .N = [xjb, yjb, zjb]

T

and assuming j = n,m, v on the basis of (4.6) we obtain:

(4.8)

xbn = (xnb · cγ + ynb · sγ)cβ − znb · sβ,

xbm = (xmb · cγ + ymb · sγ)cβ − zmb · sβ,

xbv = (xvb · cγ + yvb · sγ)cβ − zvb · sβ.

From the system of Eqs. (4.8), the rotation angles β and γ are calculated. In
order to calculate the angle α Eq. (4.9) is used:

(4.9) ybv = (xvb · sβ · cγ)sα − (xvb · sγ)cα
+ (yvb · sβ · sγ)sα+ (yvb · cγ)cα + (zvb · cβ)sα.
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Then, having the rotation angles of the system {K} against system {N}, coor-
dinates of the vector rB6B7.N are:

(4.10) rB6B7.N = ANK · rB6B7.K ,

the unit vector eK = [ekx, eky, ekz]
T , lying on the wheel rotation axis, as well

as the steering and camber angles:

δk = −arc tan
(
ekx
eky

)
,(4.11)

γk = −arc sin(ekz),(4.12)

were calculated.
Calculation of the angles δk and γk in both algorithms is similar.
It should be noted that solution of the algorithm based on the system of four-

teen Eqs. (4.1) takes much less time than the solution based on the system (4.4)
consisting of five transcendental equations [10].

5. Solving of the geometric constraints systems of equations
of the suspension mechanism

Solutions of the systems of Eqs. (4.1) and (4.4) were obtained by the pertur-
bation method [3, 7]. In the case of the five transcendental Eqs. (4.4) trigono-
metric functions were expanded into the series:

sin(x0 + x) = sinx0 + x cos x0 −
x2 sinx0

2
,(5.1)

cos(x0 + x) = cos x0 − x sinx0 −
x2 cos x0

2
.(5.2)

System of equations which can be written down in a general form:

(5.3) fj(q1, q2, α, β, γ) = 0, j = 1, . . ., 5,

were obtained.
Equations of the system (5.3) were separated into nonlinear and linear parts:

(5.4) fjN(q1, q2, α, β, γ) + fjL(q1, q2, α, β, γ) = 0, j = 1, . . . , 5.

Nonlinear parts of these equations were multiplied by the perturbation pa-
rameter ε and a system of auxiliary equations was obtained:

(5.5) gj(ε, q1, q2, α, β, γ) = ε · fjN + fjL, j = 1, . . . , 5.
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For ε = 1 systems of Eqs. (5.4) and (5.5) are identical, whereas for ε = 0
system (5.5) consists only of linear equations. It was assumed that solutions of
the system (5.5) are the numerical series:

(5.6)

q1 =

m∑

i=0

εiq1i, q2 =

m∑

i=0

εiq2i,

α =
m∑

i=0

εiαi, β =
m∑

i=0

εiβi, γ =
m∑

i=0

εiγi.

After substituting (5.6) to (5.5) we obtain:

(5.7) gj(ε, q1(ε), q2(ε), α(ε), β(ε), γ(ε)) = 0, j = 1, . . ., 5.

The system of Eq. (5.7) was expanded into a series with respect to ε powers:

(5.8)
3∑

i=0

εigji = 0, j = 1, . . ., 5.

Then the linear systems of equations gji = 0 were solved, first for i = 0 then
for i = 1, 2, 3. The solutions which can be presented in a general form:

(5.9)

q1 =
3∑

i=0

q1i, q2 =
3∑

i=0

q2i,

α =
3∑

i=0

αi, β =
3∑

i=0

βi, γ =
3∑

i=0

γi,

were obtained.
The systems of Eqs. (4.1) were solved in an analogical way.

6. Characteristic points of the suspension mechanism coordinates

A constructional location of the mechanism in the suspension movements
space {N}, defined by the coordinates of ball joints connecting links with the
car body and the stub axle [2]:

A1 (144.1, 345.2,−92.2); A2 (−229.2, 362.2,−101.7);

A3 (−99.7, 400.0, 306.2); A4 (−69.0, 396.3, 413.5);

A5 (134.6, 428.5, 408.9); B1 (28.7, 690.9,−98.0);

B2 (−24.4, 687.0,−131.6); B3 (−135.7, 617.1, 286.9);

B4 (−18.1, 639.8, 388.4); B5 (15.4, 673.3, 389.5).



THEORETICAL BASIS OF DETERMINING THE TRANSLATION. . . 47

The coordinates of points B6 and B7 ≡ K lying on the wheel rotation axis:

B6 (0.5, 647.0, 1.1); B7 (1.0, 747.0, 0.6).

Coordinates values were given in [mm].

7. The structure and mobility of the measuring instrument
mechanism

The measuring mechanism to determinate the translation and rotation of the
steering wheel stub axle shown in Fig. 2 is composed of six links di, i = 1, . . ., 6,
connected by rotary-sliding kinematic pairs si, i = 1, . . ., 6. At the points D1,
D2, and D3 links are connected with the stub axle by kinematic pairs. It is
characteristic for this mechanism that the point D1 is a common centre of three
joints, point D2 is a centre of two such joints, and the point D3 is a centre of
the ball joint. By points Hi, i = 1, . . ., 6, centres of ball joints connecting links
with the car body were noted in the figure.

Fig. 2. Scheme of the measuring instrument to determine the translation and rotation of the
steering wheel stub axle.

The instrument mechanism has 6 mobility degrees – using the formula from
the theory of mechanisms and machines:

(7.1) R = Rt −Rp,

where

(7.2) Rt = 6(n − 1)−
5∑

i=1

i · pi,



48 J. STRUSKI, K. WACH

where R is real mobility of the mechanism, Rt is theoretical mobility of the
mechanism, Rp is apparent mobility of the mechanism, pi is kinematic pairs of
the i-th class, n is number of links creating the mechanism.
With regard to the considered mechanism: n = 13, p4 = 6, p3 = 12, p5 =

p2 = p1 = 0, Rt = 18. After subtracting the apparent degrees of mobility
Rp = 12 from the theoretical mobility, the real mobility R = 6; it is equal to
the stub axle degrees of freedom in {N}.

8. Kinematics of the measuring instrument mechanism

Centres of the ball joints: D1, D2, and D3 belong to the wheel stub axle.
So the distances of these points from the points Bj , j = 1, . . ., 6 can be calcu-
lated. However, the coordinates of the points: D1, D2, and D3 in {N} can be
determined from the systems of equations:
– for the point D1

(8.1) rTBjD1.N · rBjD1.N = l2D1Bj
, for j = 1, 2, 3.

– for the point D2

(8.2) rTBjD2.N · rBjD2.N = l2D2Bj
, for j = 1, 3, 5.

– for the point D3

(8.3) rTBjD3.N
· rBjD3.N = l2D3Bj

, for j = 2, 4, 5.

Thus, it becomes possible to calculate relative elongations si of links di, i =
1, . . ., 6, relative to their constructional distances. Elongations si depend on the
given parameters q3 and up, i.e., si(q3, up).
In practical applications of the measuring instrument for determining the

rotation and translation of the steering wheel stub axle it is needed to measure
the coordinates of points D1, D2, and D3, as well as Hi, i = 1, . . ., 6, for the
constructional suspension configuration; links elongations si(q3, up) measured
by the sensors are also needed.
Determination of the steering wheel stub axle rotation and translation using

a measuring instrument boils down to solving of the inverse problem. In this case,
at given elongations si(q3 and up) of the links di, i = (1)6 and constructional
positions of the points D1, D2, and D3, as well as the additional point, e.g.,
D4 ≡ B7, the coordinates of these points as the functions of parameters q3 and
up should be determined from the systems of equations:
– for the point D1

(8.4) rTD1Hi.N · rD1H.N = (lD1Hi
+ si)

2, for i = 1, 4, 5.
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– for the point D2

(8.5)
rTD2D1.N · rD2D1.N = l2D2D1

,

rTD2Hi.N · rD2Hi.N = (lD2Hi
+ si)

2, for i = 2, 6.

– for the point D3

(8.6)

rT
D3D1.N

· r
D3D1.N

= l2D3D1
,

rT
D3D2.N

· r
D3D2.N

= l2D3D2
,

rT
D3H3.N

· r
D3H3.N

= (lD3H3 + s3)
2.

– for the point D4

(8.7)

rT
D4D1.N

· r
D4D1.N

= l2D4D1
,

rT
D4D2.N

· r
D4D2.N

= l2D4D2
,

rT
D4D3.N

· r
D4D3.N

= l2D4D3
.

The coordinates of the point D5 ≡ B6 are calculated similarly to the one of the
point D4.
The way of determining the angles of rotation α, β, γ {K} against {N}, the

steering and camber angles δd, γd on the basis of the coordinates of the points
Di, i = 1, . . ., 5, and the points Bj , j = 1, . . ., 6, is the same.

9. Coordinates of the measuring instrument to the car body
and the stub axle anchorage points

The coordinates of the centres of joints D1, D2, and D3 in [mm], as well
as coordinates of the points D4 and D5 belonging to the wheel rotation axis
assigned to the constructional configuration of the suspension are given below:

H1(90.0, 355.0,−40.0); H2(10.0, 250.0,−70.0); H3(−40.0, 280.0, 270.0);

H4(45.0, 360.0,−90.0); H5(110.0, 362.0, 10.0); H6(30.0, 300.0,−95.0);

D1(50.0, 560.0,−30.0); D2(25.0, 580.0,−90.0); D3(−50.0, 600.0, 200.0).

The coordinates of the points D4 ≡ K and D5 belonging to the wheel rotation
axis are as follows:

D4(1.0, 747.0, 0.6); D5(0.5, 647.0, 1.1).
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10. Characteristics of the stub axle rotation angles

In Fig. 3 the stub axle rotation angles characteristics are shown. α, β, and γ
are angles of rotation of the frame {K} against the x, y, z axes of the frame {N}.

a) b)

c)

Fig. 3. Dependences of the stub axle rotation angles on suspension deflection q3 and steering
rack displacement up.

11. Elongations of the measuring instrument links as a function
of the suspension deflection and the steering rack

displacement

The following graphs show dependences of individual links of the measuring
instrument elongations on the steering rack displacement up and the suspension
deflection q3. As the elongations of the sensors are simultaneously the suspension
deflection and the steering rack displacement functions, they were shown on
spatial graphs.
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a) b)

c) d)

e) f)

Fig. 4. Dependences of the measuring instrument links elongations on suspension deflection
q3 and steering rack displacement up.
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12. Suspension characteristics

In Figs. 5, 6, and 7 characteristics of the analysed mechanism obtained on the
basis of its kinematics solution and using the described measuring instrument
are shown.

a) b)

Fig. 5. Dependences of the steering angle δ on suspension deflection q3 and steering rack
displacement up, determined on the basis of: a) the suspension kinematics solution, b) using

measuring instrument.

a) b)

Fig. 6. Dependences of the camber angle γ on suspension deflection q3 and steering rack
displacement up, determined on the basis of: a) the suspension kinematics solution, b) using

measuring instrument.
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a) b)

Fig. 7. Relative changes in the lateral position of the wheel centre, depending on suspension
deflection q3 and steering rack displacement up, determined on the basis of: a) the suspension

kinematics solution, b) using measuring instrument.

13. Conclusion

The structure of the proposed measuring instrument mechanism enables its
connection to the stub axle via three joints. One of these joints is a conjunction
of three joints with a common centre, each with three degrees of freedom. This
solution allows easiest measuring instrument joints to the stub axle connection.
A Stewart platform mechanism can be used instead of the presented instrument
to translation and rotation of the stub axle determination; it requires six ball
joints connections to the stub axle.
The basis of the method of indirect measurement of translation and rotation

of the stub axle with the steering wheel in the suspension movements space are
algorithms that include geometric constraints system of equations of four-link
suspension and measuring instrument mechanisms. Solutions of these systems
of equations were used to compile characteristics of steering and camber angles
and of wheel centre displacement in the lateral direction.
On the basis of an analysis of the results of a computer simulation of the

measure method it is to conclude that the worked out instrument can be used
in experimental car tests.
Analysis of the kinematic characteristics contained in the work shows that

the examined mechanism does not have singular points in the suspension move-
ments space.
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Notations

q – velocity of fluid,

p – pressure,

g – gravitational acceleration vector,

g – gravitational acceleration,

k – wave number of disturbance,

p1 – thermal Prandtl number,

Pl – dimensionless medium permeability.
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Greek symbols

ǫ – medium porosity,

ρ – fluid density,

µ – fluid viscosity,

µ′ – fluid viscoelasticity,

υ – kinematic viscosity,

υ′ – kinematic viscoelasticity,

κ – thermal diffusitivity,

α – thermal coefficient of expansion,

β – adverse temperature gradient,

θ – perturbation in temperature,

δ – perturbation in respective physical quantity,

ζ – Z-component of vorticity,

Ω – rotation vector having components (0, 0, Ω).

1. Introduction

A detailed account of the thermal instability of a Newtonian fluid under
varying assumptions of hydrodynamics and hydromagnetics has been given by
Chandrasekhar [1]. Lapwood [2] has studied the convective flow in a porous
medium using the linearized stability theory. The Rayleigh instability of a ther-
mal boundary layer in flow through a porous medium has been considered by
Wooding [15], whereas Scanlon and Segel [7] have considered the effect
of suspended particles on the onset of Be’nard convection and found that the
critical Rayleigh number was reduced solely because the heat capacity of the
pure gas was supplemented by the particles. The suspended particles were thus
found to destabilize the layer. Sharma [8] has studied thermal instability of
a viscoelastic fluid in hydromagnetics.
Sharma and Sunil [9] have studied thermal instability of an Oldroydian vis-

coelastic fluid with suspended particles in hydromagnetics in a porous medium.
There are many viscoelastic fluids that cannot be characterized by Maxwell’s or
Oldroyd’s constitutive relations. One such class of fluids is Walters’ (model B′)
viscoelastic fluid having relevance both in the chemical technology and indus-
try. Walters’ [14] reported that the mixture of polymethyl methacrylate and
pyridine at 25◦C containing 30.5 g of polymer per litre with density 0.98 g per
litre behaves very nearly as the Walters (model B′) viscoelastic fluid. Walters’
(model B′) viscoelastic fluid forms the basis for the manufacture of many im-
portant polymers and useful products.
Stommel and Fedorov [13] and Linden [3] have remarked that the length

scalar characteristic of double diffusive convecting layers in the ocean may be
sufficiently large, so that the Earth’s rotation might be important in their forma-
tion. Moreover, the rotation of the Earth distorts the boundaries of a hexagonal
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convection cell in a fluid through a porous medium, and the distortion plays
an important role in extraction of energy in geothermal regions. The problem
of thermal instability of a fluid in a porous medium is of importance in geo-
physics, soil sciences, ground water hydrology, and astrophysics. The scientific
importance of the field has also increased because hydrothermal circulation is
the dominant heat transfer mechanism in the development of a young oceanic
crust (Lister, [4]).
Thermal instability of a fluid layer under a variable gravitational field heated

from below or above is investigated analytically by Pradhan and Samal [5].
Although the gravity field of the Earth is varying with the height from its
surface, we usually neglect this variation for laboratory purposes and treat the
field as constant. However, this may not be the case for large scale flows in the
ocean, atmosphere, or mantle. It can become imperative to consider gravity as
a quantity varying with distance from the centre of the Earth.
Sharma andRana [10] have studied thermal instability of a Walters’ (model

B′) viscoelastic fluid in the presence of a variable gravity field and rotation in
a porous medium. Sharma and Rana [11] have also studied the thermosolu-
tal instability of Rivlin-Ericksen rotating fluid in the presence of a magnetic
field and variable gravity field in a porous medium. Recently, Sharma and
Gupta [12] have studied the effect of rotation on thermal convection of microp-
olar fluids in the presence of suspended particles, whereas Rana and Kango [6]
have studied the effect of rotation on thermal instability of a compressible Wal-
ters’ (model B′) viscoelastic fluid in a porous medium.
Keeping in mind the importance in various applications mentioned above,

our interest in the present paper is to study the effect of rotation and suspended
particles on the stability of an incompressible Walters’ (model B′) fluid heated
from below under a variable gravity field in a porous medium.

2. Formulation of the problem and perturbation equations

Here we consider an infinite, horizontal, incompressible Walters’ (model B′)
viscoelastic fluid of the depth d, bounded by the planes z = 0 and z = d in
an isotropic and homogeneous medium of porosity ǫ and permeability k1, which
is acted upon by a uniform rotation Ω(0, 0, Ω) and variable gravity g(0, 0,−g),
where g = λg0, g0(> 0) is the value of g at z = 0, and λ can be positive or
negative as the gravity increases or decreases upwards from its value g0. This
layer is heated from below such that a steady adverse temperature gradient

β

(
=

∣∣∣∣
dT

dz

∣∣∣∣
)
is maintained. The character of equilibrium of this initial static

state is determined by supposing that the system is slightly disturbed and then
following its further evolution.
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Schematic Sketch of Physical Situation

Let ρ, υ, υ′, p, ǫ, T , α, and q(0, 0, 0), denote, respectively, the density, kine-
matic viscosity, kinematic viscoelasticity, pressure, medium porosity, tempera-
ture, thermal coefficient of expansion, and velocity of the fluid. The equations
expressing the conservation of momentum, mass, temperature, and equation of
state for the Walters’ (model B′) viscoelastic fluid are as follows:

(2.1)
1

ǫ

[
∂q

∂t
+

1

ǫ
(q.∇) q

]
= − 1

ρ0
∇p+ g

(
1 +

δρ

ρ0

)

− 1

k1

(
υ − υ′

∂

∂t

)
q +

2

ǫ
(q ×Ω) +

K ′N

ρ0ǫ
(qd − q),

(2.2) ∇.q = 0,

(2.3) E
∂T

∂t
+ (q.∇)T +

mNCpt

ρ0Cf

[
ǫ
∂

∂t
+ qd.∇

]
T = κ∇2T,

and

(2.4) ρ = ρ0 [1− α(T − T0)] ,

where the suffix zero refers to values at the reference level z = 0.
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Here qd(x, t) and N(x, t) denote the velocity and number density of the
particles, respectively, qd = (l, r, s), x = (xyz), K = 6πηρυ, where η is the
Stokes drag coefficient, where η is the particle radius and,

E = ǫ+ (1− ǫ)

(
ρscs
ρ0cf

)

is constant, κ is the thermal diffusivity, and ρs, cs, ρ0, cf denote the density and
heat capacity of the solid (porous) matrix and fluid, respectively.
If mN is the mass of particles per unit volume, then the equations of motion

and continuity for the particles are as follows:

mN

[
∂qd
∂t

+
1

ǫ
(qd.∇) qd

]
= K ′N (q − qd) ,(2.5)

ǫ
∂N

∂t
+∇. (Nqd) = 0.(2.6)

The presence of particles adds an extra force term proportional to the velocity
difference between particles and fluid, and appears in the equation of motion
(2.1). Since the force exerted by the fluid on the particles is equal and opposite
to that exerted by the particles on the fluid, there must be an extra force term,
equal in magnitude but opposite in sign, in the equations of motion for the
particles (2.6). The buoyancy force on the particles is neglected. Interparticles’
reactions are not considered either since we assume that the distance between
the particles is quite large as compared to their diameters. These assumptions
have been used in writing the equations of motion (2.6) for the particles.
The initial state of the system is taken to be quiescent layer (no settling)

with a uniform particle distribution number. The initial state is as follows:

(2.7)
q = (0, 0, 0), qd = (0, 0, 0),

T = −βz + T0, ρ = ρ0(1 + αβz), N0 = constant

and is an exact solution to the governing equations.
Let q(u, v, w), qd(l, r, s), θ, δp, and δρ denote the perturbations, respectively,

in fluid velocity q(0, 0, 0), particle velocity qd(0, 0, 0), temperature T , pressure
p, and density ρ.
The change in density δρ caused by the perturbation θ in temperature is

given by:

(2.8) δρ = −αρ0θ.
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The linearized perturbation equations governing the motion of fluids are as
follows:

1

ǫ

∂q

∂t
= − 1

ρ0
∇δp − g

δρ

ρ0
− 1

k1

(
υ − υ′

∂

∂t

)
q(2.9)

+
K ′N

ǫ
(qd − q) +

2

ǫ
(q ×Ω) ,

∇q = 0,(2.10)

(
m

K ′

∂

∂t
+ 1

)
qd = q,(2.11)

(E + bǫ)
∂θ

∂t
= β (w + bs) + κ∇2θ,(2.12)

where b =
mNCpt

ρ0Cf
, and w, s are the vertical fluid and particles velocity.

In the Cartesian form, Eqs. (2.9)–(2.12) with the help of Eq. (2.8) can be
expressed as follows:

(2.13)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂u

∂t
= − 1

ρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂x
(δp)

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
u− mN

ǫρ0

∂u

∂t
+

2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ωv,

(2.14)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂v

∂t
= − 1

ρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂y
(δp)

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
v − mN

ǫρ0

∂v

∂t
+

2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ωu,

(2.15)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂w

∂t
= − 1

ρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂z
(δp)

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
w − mN

ǫρ0

∂w

∂t
+ g

(
m

K ′

∂

∂t
+ 1

)
αθ,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,(2.16)

(E + bǫ)
∂θ

∂t
= β (w + bs) + κ∇2θ.(2.17)
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Operating Eqs. (2.13) and (2.14) by
∂

∂x
and

∂

∂y
, respectively, adding them and

using Eq. (2.16), we get:

(2.18)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂

∂t

(
∂w

∂z

)
=

1

ρ0

(
m

K ′

∂

∂t
+ 1

)(
∇2 − ∂2

∂z2

)
δp

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)(
∂w

∂z

)
− mN

ǫρ0

∂

∂t

(
∂w

∂z

)

− 2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ωζ,

where ζ =
∂v

∂x
− ∂u

∂y
is the z-component of vorticity.

Operating Eqs. (2.15) and (2.18) by

(
∇2 − ∂2

∂z2

)
and

∂

∂z
, respectively, and

adding them to eliminate δp between these equations, we get:

(2.19)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂

∂t

(
∇2w

)
= − 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
∇2w

+ g

(
∂2

∂x2
+

∂2

∂y2

)(
m

K ′

∂

∂t
+ 1

)
αθ − mN

ǫρ0

∂

∂t

(
∇2w

)

− 2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ω
∂ζ

∂z
,

where ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Operating Eqs. (2.13) and (2.14) by − ∂

∂y
and

∂

∂x
, respectively, and adding

them, we get

(2.20)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂ζ

∂t
= − 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
ζ

− mN

ǫρ0

∂ζ

∂t
+

2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ω
∂w

∂z
.

3. The dispersion relation

Following the normal mode analyses, we assume that the perturbation quan-
tities have x, y, and t dependence of the form:

(3.1) [w, s, θ, ζ] = [W (z), S(z), Θ(z), Z(z)] exp (ikxx+ ikyy + nt) ,
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where kx and ky are the wave numbers in the x and y directions, k =
(
k2x + k2y

)1/2
is the resultant wave number, and n is the frequency of the harmonic distur-
bance, which is, in general, a complex constant.
Using expression (3.1) Eqs. (2.19), (2.20), and (2.17) become:

n

ǫ

[
d2

dz2
− k2

]
W = −gk2αΘ − 1

k1

(
υ − υ′n

)( d2

dz2
− k2

)
W(3.2)

− mNn

ǫρ0

(m
K ′
n+ 1

)
(
d2

dz2
− k2

)
W − 2Ω

ǫ

dZ

dz
,

n

ǫ
Z = − 1

k1

(
υ − υ′n

)
− mNn

ǫρ0

(m
K ′
n+ 1

)Z +
2Ω

ǫ

dW

dz
,(3.3)

(E + bǫ)nΘ = β (W + bS) + κ

(
d2

dz2
− k2

)
Θ.(3.4)

Equations (3.2)–(3.4) in a non-dimensional form become:
[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

](
D2 − a2

)
W +

ga2d2αΘ

υ
+

2Ωd3

ǫυ
DZ = 0,(3.5)

[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

]
Z =

(
2Ωd

ǫυ

)
DW,(3.6)

[(
D2 − a2

)
− E1p1σ

]
Θ = −βd

2

κ

(
B + τ1σ

1 + τ1σ

)
W,(3.7)

where we have put:

a = kd, σ =
nd2

υ
, τ =

m

K ′
, τ1 =

τυ

d2
,

M =
mN

ρ0
, E1 = E + bǫ, B = b+ 1, F =

υ′

d2
,

and Pl =
k1
d2
is the dimensionless medium permeability, p1 =

υ

κ
, is the thermal

Prandtl number.
Eliminating Θ and Z from Eqs. (3.5)–(3.7), we obtain:

(3.8)

[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

] (
D2 − a2

) (
D2 − a2 − E1p1σ

)
W

− Ra2λ

(
B + τ1σ

1 + τ1σ

)
W +




TA
ǫ2
(
D2 − a2 − E1p1σ

)

σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl


D

2W = 0,
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where R =
g0αβd

4

υκ
, is the thermal Rayleigh number and TA =

(
2Ωd2

υ

)2

, is the

Taylor number.
Here we assume that the temperature at the boundaries is kept fixed, the

fluid layer is confined between two boundaries, and adjoining medium is electri-
cally non-conducting. The boundary conditions appropriate to the problem are
(Chandrasekhar, [1]):

(3.9) W = D2W = DZ = Θ = 0 at z = 0 and z = 1.

The case of two free boundaries, though a little artificial, is the most ap-
propriate for stellar atmospheres. Using the boundary conditions (3.9), we can
show that all the even order derivatives of W must vanish for z = 0 and z = 1,
and hence the proper solution of W characterizing the lowest mode is:

(3.10) W =W0 sin πz,

where W0 is a constant.
Substituting Eq. (3.10) in (3.8), we obtain the following dispersion relation:

(3.11) R1xλ =

[
iσ1
ǫ

(
1 +

M

1 + τ1π2iσ1

)
+

1− Fπ2iσ1
P

]

· (1 + x)(1 + x+ E1p1iσ1)

(
1 + τ1π

2iσ1
B + τ1π2iσ1

)

+

TA1

ǫ2
(1 + x+ E1p1iσ1)

iσ1
ǫ

(
1 +

M

1 + τ1π2iσ1

)
+

1− Fπ2iσ1
P

(
1 + τ1π

2iσ1
B + τ1π2iσ1

)
,

where

R1 =
R

π4
, TA1 =

TA
π4
, x =

a2

π2
, iσ1 =

σ

π2
, P = π2Pl.

Equation (3.11) is a required dispersion relation accounting for the effect
of suspended particles, medium permeability, variable gravity field, rotation on
the stability of a Walters’ (model B′) viscoelastic fluid heated from below in a
porous medium.

4. Stability of the system and oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in a Walters’
(model B′) viscoelastic fluid due to the presence of suspended particles, rota-
tion, viscoelasticity, and variable gravity field. Multiplying Eq. (3.5) by W ∗, the
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complex conjugate of W , integrating over the range of z, and making use of
Eqs. (3.6)–(3.7) with the help of the boundary conditions (3.9), we obtain:

(4.1)

[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

]
I1 −

αa2λg0κ

υβ

(
1 + τ1σ

∗

B + τ1σ∗

)

× (I2 + E1p1σ
∗I3) + d2

[
σ∗

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ∗

Pl

]
I4 = 0,

where

I1 =

1∫

0

(
|DW |2 + a2 |W |2

)
dz, I2 =

1∫

0

(
|DΘ|2 + a2 |Θ|2

)
dz,

I3 =

1∫

0

|Θ|2 dz, I4 =

1∫

0

|Z|2 dz.

The integral parts I1−I4 are all positive definite. Putting σ = iσi in Eq. (4.1),
where σi is real and equating the imaginary parts, we obtain:

(4.2) σi

[
1

ǫ

(
1 +

M

1 + τ21σ
2
i

)
− F

Pl

] (
I1 + d2I4

)
+
αa2λg0κ

υβ

·
[(

τ1(B − 1)

B2 + τ21σ
2
i

)
I2 +

B + τ21σ
2
i

B2 + τ21σ
2
i

E1p1I3

]
= 0.

Equation (4.2) implies that σi = 0 or σi 6= 0, which means that modes may be
non-oscillatory or oscillatory. The oscillatory modes are introduced due to the
presence of rotation, gravity field, suspended particles, and viscoelasticity.

5. The stationary convection

For the stationary convection, putting σ = 0 in Eq. (3.11) reduces it to:

(5.1) R1 =
1 + x

λxB

[
1 + x

P
+
TA1

ǫ2
P

]
,

which expresses the modified Rayleigh number R1 as a function of the dimen-
sionless wave number x and the parameters TA1 , B, P ; and then the Walters’
(model B′) viscoelastic fluid behaves like an ordinary Newtonian fluid, since the
viscoelastic parameter F vanishes with σ.
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To study the effects of suspended particles, rotation, and medium perme-

ability, we examine the behavior of
dR1

dB
,
dR1

dTA1

, and
dR1

dP
analytically.

Equation (5.1) yields:

(5.2)
dR1

dB
= − 1 + x

λxB2

[
1 + x

P
+
TA1

ǫ2
P

]
,

which is negative implying thereby that the effect of suspended particles is to
destabilize the system when the gravity increases upwards from its value g0 (i.e.,
λ > 0).
From Eq. (5.1), we also get:

(5.3)
dR1

dTA1

=
1 + x

λxBǫ2
P,

which shows that rotation has a stabilizing effect on the system when the gravity
increases upwards from its value g0 (i.e., λ > 0).
It is evident from Eq. (5.1) that:

(5.4)
dR1

dP
= −1 + x

λxB

[
1 + x

P 2
− TA1

ǫ2

]
.

From Eq. (5.4), we observe that the medium permeability has a destabilizing

effect when
1 + x

P 2
>
TA1

ǫ2
, and it has a stabilizing effect when

1 + x

P 2
<
TA1

ǫ2
,

when the gravity increases upwards from its value g0 (i.e., λ > 0 ).

In the absence of rotation and for a constant gravity field,
dR1

dP
is always

negative implying thereby the destabilizing effect of the medium permeability.
The dispersion relation (5.1) is analyzed numerically. Graphs have been plot-

ted by giving some numerical values to the parameters, to depict the stability
characteristics.
In Fig. 1, Rayleigh number R1 is plotted against suspended particles B for

λ = 2, TA1 = 5, ǫ = 0.5, P = 0.2 for fixed wave numbers x = 0.2, x = 0.5,
and x = 0.8. For the wave numbers x = 0.2, x = 0.5, and x = 0.8, suspended
particles have a destabilizing effect.
In Fig. 2, Rayleigh number R1 is plotted against rotation TA1 for B = 3,

λ = 2, ǫ = 0.5, P = 0.2 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.
This shows that rotation has a stabilizing effect for fixed wave numbers x = 0.2,
x = 0.5, and x = 0.8.
In Fig. 3, Rayleigh number R1 is plotted against the medium permeability

P for B = 3, λ = 2, ǫ = 0.5, TA1 = 5 for fixed wave numbers x = 0.2, x = 0.5,
and x = 0.8. This shows that the medium permeability has a destabilizing effect
for P = 0.1 to 0.3, and has a stabilizing effect for P = 0.3 to 1.0.
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Fig. 1. Variation of Rayleigh number R1 with suspended particles B for λ = 2, TA1
= 5,

ǫ = 0.5, P = 0.2 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.

Fig. 2. Variation of Rayleigh number R1 with rotation TA1
for B = 3, λ = 2, ǫ = 0.5,

P = 0.2 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.

Fig. 3. Variation of Rayleigh number R1 with the medium permeability P for B = 3, λ = 2,
ǫ = 0.5, TA1

= 5 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.
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6. Conclusions

The effect of rotation and suspended particles on the stability of an incom-
pressible Walters’ (model B′) fluid heated from below under a variable grav-
ity field in a porous medium has been investigated. For the stationary con-
vection, it has been found that the rotation has a stabilizing effect for λ > 0
and destabilizing effect for λ < 0, opposite to the Newtonian fluids. Suspended
particles are found to have a destabilizing effect on the system as the gravity
increases upwards from its value g0 (i.e., for λ > 0) and a stabilizing effect
as the gravity decreases upwards from its value g0 (i.e., for λ < 0), whereas
the medium permeability has a destabilizing/stabilizing effect on the system for
1 + x

P 2
>
TA1

ǫ2

/
1 + x

P 2
<
TA1

ǫ2
as the gravity increases upwards from its value g0

(i.e., for λ > 0). The presence of rotation, gravity field, suspended particles, and
viscoelasticity introduces oscillatory modes. The effects of rotation, suspended
particles, and medium permeability on thermal instability have also been shown
graphically.
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1. Introduction

The high speed processes that generate rates of deformation of order 104–
107 s−1 for ductile and brittle materials are still in focus of interests. There are
crucial for those who work on constitutive modeling as well as computations.
These two areas have to be carefully investigated. In particular, when we face
the problems of softening due to fundamental thermal effects one can expect the
difficulties connected with mathematical well posedness of the boundary value
problems and in consequence the uniqueness of the obtained results. This effect
appears when non-positive constitutive stiffness follows the overcoming of local
peak in stress-strain space. In classical plasticity formulation the consequences
of softening drive to lose of the type of the governing set of differential equa-
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tions and this requires a regularization. It can be done in different manner: 1) on
the level of mathematical formulation of constitutive relations (rate dependent
viscoplastic models, higher order gradient etc) or 2) on the level of numerical
applications (introducing the localization zones into the approximation). Both
those treatments we believe could be successful and the results for some partic-
ular cases are comparable with the real behavior of the matter, however only
this which has the strong physical background should be acceptable.

2. Selected constitutive models

2.1. General remarks

The constitutive formulations which introduce the rate dependence have
a chance for regularization of initial value problems and in consequence, after
numerical discretization, can reproduce the behavior with a proper accuracy.
There are some main constitutive formulations commonly used which serve

to describe the behavior of ductile materials including plastic strain localiza-
tion and thermal softening. These constitutive models introduce implicitly or
explicitly the internal length scale which plays the role of regularization param-
eter. These formulations will be discussed. The discussion will be focused on
viscoplastic (eg. Perzyna’s type) but also Rusinek–Klepaczko models which will
be compared with commonly used and applied in numerical codes like Johnson-
Cook one. Let stress that we focus our attention onto fast dynamic processes.
The governing set of equations is of hyperbolic type until the softening effects
are not present. The speed of the process is measured rather by the rate of stains
than by the velocity of the movements. The process under consideration has to
describe the strain localization followed by local fracture, development of cracks
and finally the failure of the specimen.

2.2. Johnson-Cook model

Let us start with the well established constitutive model proposed by John-
son and Cook (JC) [5] and shortly remind the its well known properties. The
JC model allows to take into account hardening, strain rate and temperature
sensitivity. The explicit formulation of the JC model is defined as follows

(2.1) σ(εpl, ε̇pl, T ) = (A+Bεnpl)

[
1 + C ln

(
ε̇pl
ε̇0

)][
1−

(
T − T0

Tmelt − T0

)m]
,

where A is a yield stress, B and n are strain hardening coefficients, C is a strain
rate sensitivity coefficient andm describes the temperature sensitivity. To define
the thermal softening of the material during dynamic loading, the heat equation
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is used. It allows to compute the temperature rise based on the quantity of plastic
work converted into heat

(2.2) ∆T (ε, ε̇) =
β

ρCp

εmax∫

εe

σdεpl,

where β is the Quinney–Taylor coefficient proportional to the quantity of plastic
work converted into heat, ρ is a density of the material and Cp is a specific heat.
Thus the current temperature T is defined as

(2.3) T (εpl, ε̇) = T0 +∆T (εpl, ε̇),

where T0 is the initial temperature. So to describe any material (metal) one has
to identify 5 constitutive parameters except of knowing its physical constants.
Because of its relative simplicity JC model is widely used in many engi-

neering applications however in comparison with experiments it underestimates
the results for very high strain rates. The constitutive model is implemented in
Abaqus/Explicit environment and will be used for comparison with the other
discussed models.

2.3. Rusinek–Klepaczko model

To describe the thermoviscoplastic behaviour of mild steel, an original consti-
tutive relation has been used which couples hardening, temperature and strain
rate sensitivity. However, it allows to take into account the non linearity in term
of strain rate and temperature sensitivity. The equivalent stress σ(εpl, ε̇pl, T )
is an addition of two components, the internal stress σµ(ε

pl, ε̇pl, T ) and the ef-
fective stress σ∗(ε̇pl, T ). The first one describes the hardening and the second
one, the sensitivity and the reciprocity between strain rate and temperature. It
base mainly on the Arrhenius equation. Due to the microstructure of the ma-
terial, BCC, an additive decomposition is used, Eq. (2.4) allowing for a better
description [7, 23, 28]

(2.4) σ(εpl, ε̇pl, T ) =
E(T )

E0

[
σµ(ε

pl, ε̇pl, T ) + σ∗(ε̇pl, T )
]
,

where E(T ) is the Young’s modulus depending on temperature and E0 is the
Young’s modulus at T = 0 K.
The Young’s modulus itself is defined as follows Eq. (2.5),

(2.5) E(T ) = E0

{
1− T

Tm
exp

[
θ∗
(
1− Tm

T

)]}
,

where θ∗ is a material constant depending of the microstructure. For ferritic
steel θ∗ = 0.59 and for austenitic steel θ∗ = 0.9 as discussed in [26].
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The explicit relations for the internal stresses σµ(ε
pl, ε̇pl, T ) and the effective

stresses σ∗(ε̇pl, T ) are the following, Eqs. (2.6) and (2.7)

σµ(ε
pl, ε̇pl, T ) = B(ε̇pl, T )(ε0 + εpl)n(ε̇

pl,T ),(2.6)

σ∗(ε̇pl, T ) = σ∗0

〈
1−D1

(
T

Tm

)
log

(
ε̇max

ε̇pl

)〉m∗

,(2.7)

where B(ε̇pl, T ) is the modulus of plasticity proportional to the yield stress and
depends on strain rate and temperature. The exponent n(ε̇pl, T ) is the hardening
coefficient which depends on strain rate and temperature and allows to define
properly thermal softening during plastic deformation.D1 is a material constant,
Tm is the melting temperature, σ

∗
0 is a constant of the material, m

∗ is the strain
rate sensitivity parameter. ε0 is a material constant allowing to adjust the yield
stress and ε̇max = 107 s−1 is the maximum strain rate allowed for model based
on experiments.
The explicit expressions for n(ε̇pl, T ) and B(ε̇pl, T ) are defined by Eqs. (2.8)

and (2.9)

n(ε̇pl, T ) = n0

〈
1−D2

(
T

Tm

)
log

(
ε̇pl

ε̇min

)〉
,(2.8)

B(ε̇pl, T ) = B0

〈
T

Tm
log

(
ε̇max

ε̇pl

)〉−νCR

,(2.9)

where ε̇min = 10−5 s−1 is the lower strain rate limit of the model, νCR is the
temperature sensitivity coefficient, D2, B0 and n0 are the constants for the
material studied.
In addition, this model called RK has been developed originally with an

algorithm allowing to define in a precise way all the constants of the model [7].
Therefore, the constants are independent of the user and the set of constants
is unique for each material. The constants are defined step by step following
physical restrictions. This model is used with success to describe the behaviour
of different materials [24–26].

2.4. Perzyna’s type viscoplasticity model

2.4.1. Introductory remarks

The material model is stated in the framework of the thermodynamical the-
ory of viscoplasticity together with a phenomenological approach [4, 22, 32].
Formally, the constitutive structure belongs to the class of simple materials
with fading memory. Due to its final form and the way of incorporating the fun-
damental variables, it also belongs to the class of rate dependent material with
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internal state variables [33]. Such an approach locates the model in the macro
(meso-macro) space scale, thus all variables in the model reflect the homogenised
reactions from smaller scales.
Let us shortly describe the key features of mathematical model for adiabatic

process (for detailed and more general formulation see [31]). They are: (i) the
description is invariant with respect to any diffeomorphism, (ii) the obtained
evolution problem is well-posed, (iii) sensitivity to the rate of deformation, (iv) fi-
nite elasto-viscoplastic deformations, (v) plastic non-normality, (vi) dissipation
effects, (vii) thermo-mechanical couplings and (viii) length scale sensitivity. It
should be emphasised also that every variable in the model has a physical in-
terpretation derived from analysis of single crystal and polycrystal behaviour.
In the discussed model, an important role plays the description of damage.

We introduce the second order microdamage tensorial field (as a state variable),
denoted by ξ cf. [4, 22, 31], which reflects the experimentally observed anisotropy
of metals in the mathematical (constitutive) model. Such approach enables us
to keep good global damage approximation (GDA) (strain-stress curves fitting
from experiment and mathematical model) but especially good local damage
approximation (LDA) (GDA plus coincidence in: macrodamage initiation time,
velocity of macrodamage evolution and the geometry of macrodamage pattern).
Let us emphasise that the Euclidean norm of the microdamage field defines the
scalar quantity called the volume fraction porosity or simply porosity [22] while
its principal values are proportional to the ratio of the damaged area to the
assumed characteristic area of the representative volume element [31], thus they
indicate damage plane as one perpendicular to maximal principal value of ξ (cf.
Fig. 1).

Fig. 1. The concept of microdamage tensor.
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2.4.2. Adiabatic process

Kinematics. The abstract body is a differential manifold. The kinematics
of the finite elasto-viscoplastic deformations is governed by the multiplicative
decomposition of the total deformation gradient to the elastic and viscoplastic
parts [8]

(2.10) F(X, t) = Fe(X, t) · Fp(X, t),

where F =
∂φ(X, t)

∂X
is the deformation gradient, φ describes the motion, X

denotes material coordinates, t is time and Fe, Fp are elastic and viscoplastic
parts, respectively.
From the spatial deformation gradient, denoted by l,

(2.11) l(x, t) =
∂υ(x, t)

∂x
,

where υ denotes spatial velocity and x are spatial coordinates, we obtain

l = d+w = de +we + dp +wp,(2.12)

d =
1

2
(l+ lT ),(2.13)

w =
1

2
(l− lT ),(2.14)

where d is the symmetric part andw is the antisymmetric part, of l, respectively.
Now, assuming that the Euler–Almansi strain is taken as a strain measure and
applying Lie derivative we have the fundamental relation

(2.15) d♭ = Lυ(e
♭),

and simultaneously

(2.16) de♭ = Lυ(e
e♭), dp♭ = Lυ(e

p♭),

where Lυ stands for Lie derivative, e for the Euler–Almansi strain and ♭ indi-
cates the tensor that has all its indices lowered. These relations show that the
symmetric part of spatial deformation gradient d is directly Lie derivative of
the Euler–Almansi strain.
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Constitutive postulates [19]. Assuming that the balance principles hold: con-
servation of mass, balance of momentum, balance of moment of momentum and
balance of energy and entropy production, we define four constitutive postu-
lates [21]:

(i) Existence of the free energy function ψ. Formally we apply it in the fol-
lowing form

(2.17) ψ = ψ̂(e,F, ϑ;µ),

where µ denotes a set of internal state variables governing the description
of dissipation effects and ϑ denotes temperature.

(ii) Axiom of objectivity (spatial covariance). The material model should be
invariant with respect to any superposed motion (diffeomorphism).

(iii) The axiom of the entropy production. For every regular process the con-
stitutive functions should satisfy the second law of thermodynamics.

(iv) The evolution equation for the internal state variables vector µ should be
of the form

(2.18) Lυµ = m̂(e,F, ϑ,µ),

where evolution function m̂ has to be determined based on the experimen-
tal observations.

Initial boundary value problem. Under the above conditions the deforming
body under adiabatic regime is governed by the following set of equations. They
state the initial boundary value problem (IBVP).
Find φ, υ, ρ, τ, ξ, ϑ as functions of t and position x such that [9, 11, 12, 20]:

(i) the field equations

(2.19)

φ̇ = υ,

υ̇ =
1

ρRef

(
divτ+

τ

ρ
· gradρ− τ

1− (ξ : ξ)1/2
grad(ξ : ξ)1/2

)
,

ρ̇ = −ρdivυ+
ρ

1− (ξ : ξ)1/2
(Lυξ : Lυξ)

1/2,

τ̇ = Le : d+ 2τ · d−Lthϑ̇− (Le + gτ + τg) : dp,

ξ̇ = 2ξ · d+
∂g∗

∂τ

1

Tm

〈
Φg

[
Ig

τeq(ξ, ϑ,∈p)
− 1

]〉
,

ϑ̇ =
χ∗

ρcp
τ : dp +

χ∗∗

ρcp
k : Lυξ,
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(ii) the boundary conditions

(a) displacement φ is prescribed on a part Γφ of Γ (B) and tractions
(τ · n)a are prescribed on a part Γτ of Γ (B), where Γφ ∩ Γτ = 0 and
Γφ ∪ Γτ = Γ (B),

(b) heat flux q · n = 0 is prescribed on Γ (B),
(iii) the initial conditions φ,υ, ρ,τ,ξ, ϑ are given for each particle X ∈ B at

t = 0,

are satisfied. In above, we have denoted: ρRef as a referential density, τ as the
Kirchhoff stress tensor, ρ as a current density, Le as an elastic constitutive
tensor, Lth as a thermal operator, g as a metric tensor, ∂g∗/∂τ as the evolution
directions for anisotropic microdamage growth processes, Tm as a relaxation
time of mechanical disturbances, Ig as a stress intensity invariant, τeq as the
threshold stress, χ∗, χ∗∗ as the irreversibility coefficients and cp as a specific
heat.

Material functions. For the evolution problem (2.19) we assume the follow-
ing:

1. For elastic constitutive tensor Le

(2.20) Le = 2µI + λ(g ⊗ g),

where µ, λ are Lamé constants.

2. For thermal operator Lth

(2.21) Lth = (2µ + 3λ)θg,

where θ is thermal expansion coefficient.

3. For viscoplastic flow phenomenon dp [16, 17]

(2.22) dp = Λvpp,

where

Λvp =
1

Tm

〈
Φvp

(
f

κ
− 1

)〉
=

1

Tm

〈(
f

κ
− 1

)mpl
〉
,(2.23)

f =
{
J

′

2 +
[
n1(ϑ) + n2(ϑ)(ξ : ξ)1/2

]
J2
1

}1/2
,(2.24)

n1(ϑ) = 0, n2(ϑ) = n = const.,(2.25)
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(2.26) κ = {κs(ϑ)− [κs(ϑ)− κ0(ϑ)] exp [−δ(ϑ) ∈p]}

·


1−

(
(ξ : ξ)1/2

ξF

)β(ϑ)

 ,

(2.27)
ϑ =

ϑ− ϑ0
ϑ0

, κs(ϑ) = κ∗s − κ∗∗s ϑ, κ0(ϑ) = κ∗0 − κ∗∗0 ϑ,

δ(ϑ) = δ∗ − δ∗∗ϑ, β(ϑ) = β∗ − β∗∗ϑ,

(2.28) ξF = ξF
∗ − ξF

∗∗
〈(‖Lυξ‖ − ‖Lυξc‖

‖Lυξc‖

)mF
〉
,

(2.29) p =
∂f

∂τ

∣∣∣∣
ξ=const

(∥∥∥∥
∂f

∂τ

∥∥∥∥
)−1

=
1

[2J
′

2 + 3A2(trτ)2]1/2
[τ

′

+Atrτδ],

and f denotes the potential function [4, 18, 19, 29], κ is the isotropic
work–hardening–softening function [15, 19], τ

′

represents stress devia-
tor, J1, J

′

2 are the first and the second invariants of Kirchhoff stress
tensor and deviatoric part of the Kirchhoff stress tensor, respectively,
A = 2(n1 + n2(ξ : ξ)1/2), ξF

∗
can be thought as a quasi-static fracture

porosity and ‖Lυξc‖ denotes equivalent critical velocity of microdamage.
Notice, that Eq. (2.28) reflects experimental fact, that the fracture poros-
ity changes for fast processes. Such an approach is consistent with the, so
called, cumulative fracture criterion [2, 6], which assumes the existence of
critical time needed for saturation of microdamage to its fracture limit.

4. For microdamage mechanism we take the additional assumptions [3, 4]:

• increment of the microdamage state is coaxial with the principal di-
rections of stress state,

• only positive (tension) principal stresses induces the growth of the
microdamage,

we have

(2.30)
∂g∗

∂τ
=

〈
∂ĝ

∂τ

〉∥∥∥∥
〈
∂ĝ

∂τ

〉∥∥∥∥
−1

, and ĝ =
1

2
τ : G : τ,

(2.31) Φg

(
Ig

τeq(ξ, ϑ,∈p)
− 1

)
=

(
Ig
τeq

− 1

)mg

,

where

(2.32) τeq = c(ϑ)(1 − (ξ : ξ)1/2) ln
1

(ξ : ξ)1/2

· {2κs(ϑ)− [κs(ϑ)− κ0(ϑ)]F (ξ0,ξ, ϑ)} , c(ϑ) = const.,
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(2.33) F =

(
ξ0

1− ξ0

1− (ξ : ξ)1/2

(ξ : ξ)1/2

) 2
3
δ

+

(
1− (ξ : ξ)1/2

1− ξ0

)2
3
δ

,

and

Ig = b1J1 + b2(J
′

2)
1/2 + b3(J

′

3)
1/3.(2.34)

bi (i = 1, 2, 3) are the material parameters, J
′

3 is the third invariant of
deviatoric part of the Kirchhoff stress tensor.
Now, taking into account the postulates for microdamage evolution, and
assuming that tensor G can be written as a symmetric part of the fourth
order unity tensor I [10]

(2.35) G = Is, Gijkl =
1

2
(δikδjl + δilδjk) ,

we can write the explicit form of the growth function ĝ as

(2.36) ĝ =
1

2

(
τ2I + τ2II + τ2III

)
.

The gradient of ĝ with respect to the stress field gives us the following
matrix representation of a tensor describing the anisotropic evolution of
microdamage

(2.37)
∂ĝ

∂τ
=



g11τI 0 0
0 g22τII 0
0 0 g33τIII


 .

In (2.37) τI , τII , τIII are the principal values of Kirchhoff stress tensor.
It can be noted, that the definition of the threshold stress for microcrack
growth function τeq indicates that the growth term in evolution function
for microdamage is active only after nucleation whereas before nucleation
we have infinite threshold limξ→0 τeq = ∞.

5. For temperature evolution Eq. (2.19) we consider the following relation

(2.38) k = τ.

3. Numerical aspects and some examples

The main purpose of the HSM modeling and computations is to estimate
properly the forces that act in the cutting machine tools. It helps to design the
elements of HSM-machines. For description of the material itself and particularly
its thermo-plastic behaviour we use the constitutive relations of different order of
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complexity. More or less these properties combines the physical observation with
mathematical elegance. One of the fundamental problem is to estimate properly
(identify) the constitutive parameters placed in the mathematical structure.
This could be the topic of a separate study. So, let us allow to use the set of
parameters which describe the same mild steel for three used formulations (JC,
RK, Perzyna models). We will show the results obtained for different speed of
machining and different friction coefficient between specimen and the tool. The
other numerical aspects also will be stressed.

3.1. Orthogonal cutting – geometry, boundary and initial conditions

The analysed HSM set up is presented in Fig. 2. The tool is rigid and its
geometry is described be an exterior angle equal 7◦ and the fillet radius equal
3 µm. The dimensions of the machined sample (3D) are length 2000 µm, height
200 µm and out of plane thickness 5 µm.
The boundary conditions on a sample are applied at the bottom, front and

rear surfaces, while rigid tool can move in horizontal direction only with constant
velocity 12 ms−1. The initial conditions assume room temperature.

a) b)

Fig. 2. a) Configuration of the High Speed Machining; b) Geometry of the rigid tool.

3.2. Material models implementation

The discussed material models are all implemented in Abaqus/Explicit com-
mercial finite element code. While Johnson–Cook model is pre-implemented in
Abaqus/Explicit code, the two other, namely Rusinek–Klepaczko and Perzyna’s
viscoplasticity models are added to the software by taking advantage of a user
subroutine VUMAT, which is coupled with Abaqus system [1]. Let us men-
tion that the Abaqus/Explicit utilises central-difference time integration rule
along with the diagonal (“lumped”) element mass matrices. The details concern-
ing implementation of Rusinek–Klepaczko and Perzyna’s viscoplasticity mod-
els as Abaqus subroutine VUMAT can be found in [27, 34] and [31], respec-
tively.
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3.3. Material parameters for ES mild steel

The material parameters for the ES mild steel for Johnson–Cook, Rusinek–
Klepaczko and Perzyna’s viscoplasticity type models are collected in Tables 1–3,
respectively.

Table 1. Material parameters for ES mild steel – Johnson–Cook model.

Tmelt = 1600 K β = 0.9 ρ = 7800 kg/m3 Cp = 470 J/kgK

α = 10−5 K−1 E = 210 GPa ν = 0.3 A = 57.27 MPa

B = 479.93 MPa n = 0.316 C = 0.0362 ε̇0 = 0.001 1/s

T0 = 300 K m = 0.28

Table 2. Material parameters for ES mild steel – Rusinek–Klepaczko model.

Tm = 1600 K β = 0.9 ρ = 7800 kg/m3 Cp = 470 J/kgK

α = 10−5 K−1 E0 = 210 GPa ν = 0.3 θ∗ = 0.59

T0 = 300 K B0 = 591.6 MPa n0 = 0.285 ε0 = 0.018

D1 = 0.48 νCR = 0.2 σ∗

0 = 406.3 MPa m∗ = 2.8

D2 = 0.19

Table 3. Material parameters for ES mild steel – Perzyna’s type viscoplasticity
model.

λ = 121.154 GPa µ = 80.769 GPa ρRef = 7800 kg/m3 mg = 1

c = 0.067 b1 = 0.02 b2 = 0.5 b3 = 0

ξF
∗

= 0.36 ξF
∗∗

= 0 mF − ‖Lυξc‖ − s−1

δ∗ = 6.0 δ∗∗ = 1.4 Tm = 2.5 µs mpl = 0.14

κ∗

s = 430 MPa κ∗∗

s = 97 MPa κ∗

0 = 317 MPa κ∗∗

0 = 71 MPa

β∗ = 11.0 β∗∗ = 2.5 n1 = 0 n2 = 0.25

χ∗ = 0.8 χ∗∗ = 0.1 θ = 10−5 K−1 cp = 470 J/kgK

3.4. Numerical results

Johnson–Cook model

Plane stress versus plane stress conditions
During the orthogonal cutting (HSM) three dimensional block (volume) is

cut and for simulation of this process the solid elements are used together with
proper description of boundary conditions to assure the plane strain conditions.
We do not use directly plane strain elements because for 3D cases the general
contact algorithm is more efficient.
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It is the reason that in our simulations we have only one layer of finite
elements with out of plane thickness 5 µm. For this thickness and for element
size 10 µm in plane XY we present the distribution of equivalent stresses for
two conditions (plane strain and plain stress), Fig. 3.

Fig. 3. The maps of equivalent stresses for plain stress and plane strain cases; element size
is 10 µm.

The state of deformation presented in Fig. 3 for two cases shows that more
real formation of chip is using plane strain condition [13, 30]. For plane stress
condition the large influence is played by the strain tensor component perpen-
dicular to the plane XY. It leads to fast failure of the material (the chip is
very thin). The force which acts on the tool during cutting process is similar in
both considered cases. The average forces are 0.45 N for both cases for 5 µm
thickness of the model. The force is proportional to the thickness and for ex-
ample if the thickness is 1000 µm (1 mm) the cutting force is equal to 90 N
(0.45 N · 1000 µm/5 µm).

Finite elements size
Previous simulations and analyzes lead to the conclusion that in the case of

orthogonal cutting (HSM) the plane strain condition should be used (all nodes
of the cut material have blocked displacement U3). The important aspect of
numerical modelling with strain and strain rate hardening but with temperature
softening (adiabatic condition), is the description of the mesh size dependency
that proofs the well-possedness of the IBVP. It is presented in this section.
The maps of equivalent stresses and strains for different element sizes: 20 µm,

15 µm, 10 µm are presented in Fig. 4. The used FE meshes are shown above the
HMH stresses maps. The average cutting forces for one layer of finite elements
(5 µm) are of order 0.7 N, 0.5 N and 0.45 N. The important is also that for
larger finite elements the higher fluctuations are obtained, see Fig. 5. In the
next simulations we will use the smallest finite elements size (10 µm). The real
localization zones in the described processes are approximately of the dimensions
of the smallest used elements (10 µm).
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Fig. 5. The cutting force for different element sizes.

Friction
The influence of friction coefficient is significant. Figure 6 present the maps

of the equivalent stresses, strains and temperatures for different friction coeffi-
cients (0.3, 0.1). We can observe the deformation and chip formation processes.
For smaller friction coefficient the chip behaves in more ductile way, however
the maximal temperature and plastic deformation are of the same order. The
maximum value of stresses, strains and temperatures are close for two consid-
ered cases. The cutting force is smaller for friction coefficient 0.1 (0.4 N) than
for friction coefficient 0.3 (0.45 N).

Rectangle versus triangle finite elements
It is well known that the different shapes of the elements can introduce

to the IBVP a kind of numerical anisotropy (dispersion effect). The most cases
this drives to uncorrected estimation of the localization zones. In this section the
influence of alignment for two types of finite elements (rectangle and triangle)
is presented. The density of finite elements is similar (elsize = 10 µm) in both
cases and only element type (eltype) is different.
The deformation of the models is different. In model with the triangle ele-

ments the partitioning of the chip is clearly visible while visible using rectangle
finite element the chip is continuous. Additionally, the cutting forces were com-
pared and in case of triangle elements the average force is about 0.7 N (for
eltype = rectangle it is 0.45 N).
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Fig. 6. The maps of equivalent stresses, temperatures and strains for two friction
coefficients: 0.3 and 0.1 for fixed element size 10 µm.

The different effects in JC modelling
The next considered aspect is the influence of constitutive parameters on

failure mode and chip formation. Four cases were taken into account, see Fig. 8.
In Fig. 8a the all effects are included it means, strain hardening, strain rate
hardening and temperature softening. The results (Fig. 8a) are presented also
in Fig. 6a and Fig. 7a. In Fig. 8b, the yield stress is independent of strains,
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Fig. 7. The maps of equivalent plastic strains, stresses, for two mesh alignments.

strain rates and temperatures. The Fig. 8c presents the situation where yield
stress depends only on strain. The last map of equivalent strains presents the
case where yield stress is a function of strain (hardening) and temperature (soft-
ening), see Fig. 8d. In Fig. 8e the plot of cutting forces for all cases is presented.
In case A the average cutting force is 0.45 N, for case B it is only 0.07 N, for
case C the cutting force is 0.6 N but for case D it is 0.3 N. The results show the
effects of taking into consideration some parts of Eq. (2.1) into JC model and
also using the simplifications.

The depth of cut
As the last effect in this section the depth of the cut is discussed. Previous

results took into account only one depth (100 µm). Now we present the results
for the other depth cut equal (50 µm). The comparison of the obtained results
is presented in Fig. 9. In Fig. 9c one can observe the history of the cutting force
for two depths of cut. The force varies in time but the average cutting force for
cut depth 100 µm is 0.45 N and for 50 µm is 0.27 N. These results are also in
agreement with other reported simulations and with laboratory test for other
materials [13, 30].
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a) b)

c) d)

e)

Fig. 8. The maps of equivalent strains for four cases with different effects: a) all effects are
included, b) independent yield stress only, c) yield stress with strain hardening, d) yield
stress with strain hardening and temperature softening, e) the plot of cutting forces for the

all studied cases.
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a)

b)

c)

Fig. 9. The maps of equivalent strains for different depth cut cases with: a) 50 µm,
b) 100 µm, c) cutting force comparison.

Rusinek-Klepaczko model. The depth of the cut is discussed also in this
section for RK model. These results, as before, took into account two depths
(50 µm and 100 µm). The comparison of the obtained results is presented in
Fig. 10. In Fig. 10c one can observe the history of the cutting force for two
cut depths. The force varies in time but the average cutting force for cut depth
100 µm is 0.55 N (in case of JC it was 0.45 N) and for 50 µm is 0.35 N (in case
of JC it was 0.27 N).
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a)

b)

c)

Fig. 10. The maps of equivalent strains for two cases with different depth of cut: a) 50 µm,
b) 100 µm, c) cutting force comparison.

Perzyna’s type viscoplasticity model. Finally, the results obtained using Pe-
rzyna’s type viscoplasticity model for the machined sample are discussed.
Through the analyses we have accepted mesh refinement or alignment like in pre-
vious examples, so we have used C3D8R element with approximate size 10 µm.
As a case study we have consider two cut depths (50 µm and 100 µm) and
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we have repeted the computations with and without adaptive mesh technique
(Arbitrary Lagrangian Eulerian (ALE) adaptive mesh technique cf. [1]).
Let us point out, that the analysis with Perzyna’s type viscoplasticity model

needs additional assumption concerning the initial microdamage state (distribu-
tion of ξ0), what has a serious consequences on final macrodamage evolution [32].
Because of lack of detailed experimental data, we have assumed in all analyses
homogenous and isotropic initial microdamage state, such that initial porosity
was in every material point equal ‖ξ0‖ = 6 · 10−4 [14]. Notice, that anisotropy
introduced by ξ involves full spatial modeling.

Global response
The comparison of the reaction on a tool for cutting depths 50 µm and

100 µm including influence of ALE adaptive mesh technique is presented in
Fig. 11. Recall, that those results are the most important for machinery de-
signers. Like for previously presented results an average force that acts on the
tool for cutting depth 50 µm is around 0.3 N while for cutting depth 100 µm
reaches approximately 0.6 N. Notice, that like in a real experiment resultant
force changes due to chip sticking to the tool. Nevertheless this small influence
of ALE technique on global level is more distinct on local one concerning e.g.
chip geometry and its damage as will be shown in the following.

Fig. 11. Comparison of the reaction on the tool for cutting depth 50 µm and 100 µm
including influence of ALE adaptive mesh technique.

Local response
The comparison of the HMH stresses, the equivalent viscoplatic strains, the

temperature and the porosity maps for cutting depths 50 µm and 100 µm at
time instant 10−4 s are presented in Figs. 12 and 13, respectively. For both cases
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we present the results obtained without and with using ALE technique. Notice,
that for easier analysis of the maps, each time in rows we use legend with the
same upper and lower bounds.
The first notice from Figs. 12 and 13 is that the chip geometry is different.

For the case of cutting depth 50 µm it is hard to interpret the difference due to
severe fragmentation of the chip, however for cutting depth 100 µm we observe
that without ALE technique the chip bends less and there exist a macrodamage.
Let us emphasise that fragmentation is due to shear banding.
The maps in Figs. 12 and 13 show that the distribution of presented quan-

tities is very similar. We observe that locally (at a tool tip) the HMH stresses
reaches around 1000 MPa, the equivalent viscoplatic strains can obtain even 2.8
and the temperature in close to 680 K. Moreover, the local strain rates (what is
not presented graphically), described by the tensor d (Eq. (2.15), are of the order
4 · 106 s−1. Notice, that cutting of local extrema in plots we have similar results
as for previously presented results concerning J-C and RK material models.

4. Conclusions

The comparison of the results that describe the distribution of stresses and
strains, influence of mesh refinement and alignment also using ALE formulation
as well as friction between tool and specimen were discussed for accepted three
constitutive models (JC, RK, and Perzyna). The obtained results differ in details
but qualitatively gave very similar effects in particular in estimation of forces
that acts on tools.
Using of one of the above constitutive relations in numerical simulations

depends significantly on the possibility of proper identification of material pa-
rameters. Let us stress at the end that in practical engineering easier accepted
are simpler relations (those which have smaller amount of parameters), some-
times not so strongly physically and mathematically proven.
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