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The objective of this work is to develop a technique for reliable comparison of simulations
with SHPB data in order to validate material models for “soft” materials such as polymers.
Comparison with an output stress-strain curve is not sufficient since there are many assump-
tions built into this analysis. Primarily these concern the notion that the specimen is in stress
equilibrium and volume is conserved. The problem is that the choice of material model for the
specimen in the simulation dictates how and when the specimen attains stress equilibrium.
The main methodology is based on comparing the simulations with the raw strain gauge data
on the input and output bars, which makes no assumptions about stress equilibrium. However,
one has to account for the well documented Pochhammer-Chree oscillations and their effect
on the specimen.

1. Introduction

The Split Hopkinson Pressure Bar (SHPB) has been in use for many years,
mainly for metals and also more recently for much softer materials such as
polymer, usually in compression. The experimental technique is well documented
through papers by Kolsky [1] and there is an excellent review paper by Gray
et al. [2]. The SHPB test is regarded as the key validation test for material
models at high strain rate. The main reason for this is that the specimen is
considered to be in uniaxial stress after attaining stress equilibrium and high
strains can be achieved through purely elastic loading in the bars where there
are no shock waves present. Also for metals equilibrium is seen to be obtained
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after three stress wave transits in the specimen based on one-wave versus three-
wave analysis and the onset of plasticity ensuring no volume change in the
specimen. Thus one simply needs to monitor the stress v strain response in
the specimen to compare with the experimental output. For softer non-metallic
materials such as polymers the deformation mechanisms are driven by elastic
behaviour and thus it is not so clear-cut when stress equilibrium is obtained
– if indeed the sample is ever in equilibrium during the test. In simulations
the choice of material model is the prime determinant of whether the specimen
reaches stress equilibrium.
QinetiQ has been involved in the development of physically-based material

models for polymer composites, using basic polymer theory. There is a great
need to have a reliable means of validating the models, particularly at high
strain rates.
This paper aims to highlight the issues with the current techniques in terms

of reliably comparing a simulation with an experiment. The paper then outlines
a method for reliable comparison, which also sheds great insight into the SHPB
test in general. Some recommendations are also made for future studies.

2. Experiments

The Standard SHPB set-up consists of a striker bar hitting an input bar and
an output bar with a specimen between the two bars, as shown in Fig. 1.

Fig. 1. Standard SHPB set-up.

The general technique is to use strain gauges on the input and output bars
which are used to monitor the input, reflected and transmitted pulses. The
standard 1D equations attributable to Kolsky [1] are then applied to derive the
stress and strain in the specimen. However, there are a number of fundamental
assumptions in these equations, in particular related to the stress equilibrium in
the specimen and no volume change in the specimen during the duration of the
test. This analysis is also commonly referred to as a one-wave analysis, since it
relies on the transmitted pulse to calculate the stress and strain in the sample.
A more sophisticated analysis is to use the so-called 3-wave analysis which

uses the relation between the input, reflected and transmitted pulse and it is
therefore a more complete analysis. However, even this assumes equilibrium and
volume conservation in the specimen. To illustrate how complex these analyses
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are a comparison of a 1-wave and a 3-wave analysis for a polymer composite is
shown in Fig. 2.

Fig. 2. Comparison of 1-wave and 3-wave analysis for polymer composite.

The assumption is made that the specimen is in equilibrium when the 1-wave
and 3-wave analyses are similar. From the figure this is only true at rela-
tively high strains above 0.2 and even then the judgment is subjective. The
stress/strain trace is further complicated since there are significant oscillations,
resulting from the Pochhammer-Chree (P-C) oscillations present when an elas-
tic wave propagates down the bar. Therefore, it is very difficult to ascertain the
true stress/strain behaviour in the sample.
The way to overcome this is to simply use the raw gauge data from the

input and output bars for the incident, reflected and transmitted pulses directly.
Thus, there are no implicit assumptions about the stress equilibrium or volume
conservation in the specimen as the gauges only measured waves in elastic bars.
One issue is that for soft materials the transmitted pulse is very small and thus
the gauges have to be sufficiently sensitive to resolve these small stresses. This
requires the use of semi-conductor gauges to ensure that the signal to noise
ratio is sufficiently small. An example of the input, reflected and transmitted
pulses for a polymer composite is shown in Fig. 3, where it is noted that the
“noise” level on the traces is sufficiently low to enable the stress to be mo-
nitored.
The 1-wave and 3-wave analyses are still of value as these are the only means

of comparing with an analytic model for the polymer composite material.
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Fig. 3. Experimental input and output SHPB traces for a polymer composite.



METHODOLOGY FOR COMPARISON OF HYDROCODE MODELLING. . . 255

3. Material model

QinetiQ has recently developed the Porter Gould model for polymer com-
posites which uses properties of the particles, the binder and the particle size
distribution to determine properties of the composite as described by Porter
and Cornish [3, 4]. The model assumes that the material follows Hooke’s Law
but that the secant modulus is a function of the damage in the composite. So
the stress/strain curve for uniaxial tension or compression is generated by:

σ = Ecε.

The composite, designated QRX221, comprises RDX explosive crystals in an
HTPB binder. The particles in the composite range in size from below 1 µm to
above 1 mm so we split the particle size distribution into four mass fractions: of
order 1 µm, of order 10 µm, of order 100 µm and of order 1 mm. The particle
size distribution is known so these mass fractions can be calculated.
The composite modulus, Ec, is calculated by considering each length scale

in turn. It is assumed that, at the 1 µm length scale, the larger particles play
no part in determining modulus. Thus, by denoting the particle modulus as Ep

and binder modulus as Eb we calculate the composite modulus at this level as:
1

Ec,1
=
V1
Ep

+
1− V1
Eb

,

where V1 is the volume fraction of particles at this length scale.
At the 10 µm length scale we assume that the smaller length scale is suffi-

ciently small that it appears as a continuum and so calculate modulus at this
scale as:

1

Ec,10
=
V2
Ep

+
1− V2
Ec,1

.

Similarly at the 100 mm length scale:

1

Ec,100
=
V3
Ep

+
1− V3
Ec,10

.

Finally, the composite modulus for the entire material is:

1

Ec
=
V4
Ep

+
1− V4
Ec,100

.

Damage to the composite material is assumed to occur by a Griffith-type debond-
ing process whereby work done to the material activates cracking in the binder.
This cracking causes a loss of constraint and thereby reduces the modulus of
the binder. We define two binder moduli, Edam and Eundam, where Edam is the
damaged modulus and Eundam is the undamaged modulus. Each small local vol-
ume of binder is equally likely to crack and so we consider each to be a separate
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state. The fraction of failed states – that is the fraction of small local volumes
that have cracked and thereby have Edam rather than Eundam – is denoted f .
The binder modulus is therefore:

Eb = Eundam − f · (Eundam −Edam) .

We now need to know the work done that the binder sees. This is a function of
the compliances. The “binder” at the highest length scale sees a fraction of the
work done on the composite:

Wc,100 =
Ep

Ep + Ec,100
Wc

and so at lower length scales:

Wc,10 =
Ep

Ep +Ec,10
Wc,100,

Wc,1 =
Ep

Ep +Ec,1
Wc,10,

Wb =
Ep

Ep +Eb
Wc,1.

The probability of cracking is an activated process. If W0 is an energy density
characteristic of failure in the binder then the fraction of failed states is:

f =
2 · exp (−W0/Wb)

1 + exp (−W0/Wb)
.

The model presumes that all temperature and strain-rate dependency is in the
binder response as this dominates the mechanical response of the polymer com-
posite. The model therefore uses a single particle shear modulus of 5.0×109 Pa,
and a particle Poisson’s ratio of 0.3 under all conditions. The binder Poisson’s
ratio is taken to be 0.4998. The particle size distribution is assumed to be as
shown in Table 1.

Table 1. Particle size distribution for QRX221 composite.

lengthscale V 1− V

1 0 1

2 0.378 0.622

3 0.469 0.531

4 0 1
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Implementation of the model into numerical schemes needs the full 3D be-
haviour and the shear modulus, G, is more appropriate than Young’s modulus.
The above equations are still used, however, via the relation:

G =
E

2 (1 + ν)
,

where ν is Poisson’s ratio. The constitutive model seeks predictions of G (un-
damaged), G (damaged) and W0 for the binder as a function of strain-rate and
temperature. All units are SI. The strain rate and temperature are first trans-
formed via:

X = C1 − C2 · [T − C3 · ln (ε̇)] ,
where T and ε̇ are temperature and strain rate and C1, C2, C3 are constants as
an attempt to mimic time-temperature superposition. The constants are chosen
so that X increases with increasing rate and decreasing temperature and should
always be positive for any condition likely to be found in reality. In practice, the
data consists of temperature series at two different rates and the constants are
chosen so that the two temperature series at the two rates form a continuous
smooth curve.
The following equations are then used:

Gundamaged = A · exp [C4 + C5 · exp(X)] + S · 9 · 1− 2 · ν
1 + ν

· P,

Gdamaged = A · exp [C6 + C7 · exp(X)] + S · 9 · 1− 2 · ν
1 + ν

· P,

E0 = B · exp [C8 +C9 ·X] .

The fitting constants for the QRX221 compositions are:

Table 2. Constants for Porter-Gould model for QRX221 composition.

constant Value unit

C1 5

C2 0.01 K−1

C3 10 K

C4 13.5

C5 0.14

C6 10.3

C7 0.21

C8 11

C9 0.45
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The constants A and B are not fitting constants but are used to convert
G and E0 to the correct units. For SI units A = 1 Pa and B = 1 Jm−3. S is
a switch constant to turn pressure-dependency off or on and so takes values of
either 0 or 1. P is the pressure and ν is Poisson’s ratio = 0.4998. An example
of the model comparison to SHPB data for the QRX221 is shown in Fig. 4.

Fig. 4. Comparison of stress v strain from Porter-Gould model to SHPB test at room
temperature for QRX221.

4. Simulations

The whole point of the SHPB test is that it is a high strain rate validation
test for constitutive models in hydrocodes. As described above it is problematic
to compare the hydrocode output directly with the stress/strain output from
the experiment. The proposed route forward is to use the hydrocode to compare
directly with the input, reflected and output gauge pulses. However, this implies
that the hydrocode is capable of capturing all the physics in the SHPB in terms
of the input, reflected an output pulses. This is actually quite complicated since
the nature of the P-C oscillations must also be accounted for, since this produces
a load/unload cycle in the specimen.
In terms of the input pulse, a typical comparison of simulation and exper-

iment using the DYNA3D Lagrangian hydrocode is shown in Fig. 5. As can
be seen the comparison is very good even in terms of the general P-C oscil-
lations. This comparison is largely insensitive to artificial viscosity in the hy-
drocode.
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Fig. 5. Comparison of simulation and experiment for input pulses.

It is worth noting that the P-C oscillations can be removed by putting
a curved impact face on the striker bar as shown in Fig. 6. This is useful

Fig. 6. Comparison of input pulses for flat and curved impact face on the striker bar
for SHPB.
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since it means that SHPB tests can be performed where the P-C oscillations
are minimised and so the output can be compared directly with analytic mod-
els. Conversely, the P-C oscillations provide a load/unload cycle on the sample
which is a very stringent test of the material model when implemented into the
hydrocode.
The comparison between the hydrocode model and experiment for the output

pulse is shown in Fig. 7, where there are no implicit assumptions concerning
specimen equilibrium or volume conservation.

Fig. 7. Comparison of model against experiment for output pulse for QRX221.

The level of agreement for the general stress level and pulse length is good,
although it is noted that the model exhibits significantly more oscillation than
the experiment. The main reason for this is that the load/unload capability of
the model is still limited and requires a true physically-based model for the poly-
mer, which is being developed. However, without a robust method of comparing
hydrocode with experiment it would be unclear where the deficiencies in the
model lay. In addition the model does not pick up the very high initial modulus
in the output pulse, which also requires further theoretical analysis. One can
also still perform the 1-wave and 3-wave analyses on the pulses for comparison
with experiment as shown in Fig. 8 for the 1-wave analysis.
To further demonstrate the power of the approach a comparison with an

SHPB test performed at 223 K is shown in Fig. 9.
The level of agreement is very impressive in terms of the stress level. The

length of the pulse is different since the specimen exhibited radial cracks during
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Fig. 8. Comparison of modelling and experiment for 1-wave analysis for QRX221.

Fig. 9. Comparison of model and experiment for QRX221 at 223 K.

the test. Indeed the time of the pulse can be directly correlated to the timescale of
the macroscopic fracture in the specimen. This general level of agreement gives
enhanced confidence that the models are suitable for use in real applications
such as hazard assessment of munitions, gun launch, etc.
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5. Conclusions

1. A methodology for effective comparison of simulations with SHPB exper-
iments has been defined based on comparison of the simulations with the
raw gauge data. The methodology is robust for general “soft” materials over
a range of temperatures.

2. This has been demonstrated for the QRX221 polymer composite and has
highlighted further required developments to the model in the form of a phys-
ically based polymer model and better load/unload functionality.

3. The P-C oscillations are a good test of the material model as they provide
a load/unload cycle in the specimen during the test.

4. The approach gives added confidence that the models can be effectively ap-
plied to real scenarios.
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1) Université Lille Nord de France
F-59000 Lille, France
UVHC, LAMIH

F-59313 Valenciennes, France
CNRS, FRE 3304

F-59313 Valenciennes, France

2) Institut National de Police Scientifique
Laboratoire de Police Scientifique de Lille

7 bd Vauban, 59000 Lille, France

Even though ballistic experiments are widely accepted as the only reliable way to probe
terminal effects, we demonstrate that computer simulation can be a useful alternative. Par-
ticularly, the high energy projectiles are seldom studied in the field of forensic sciences. That
situation being favorable to computer simulation, a 3D finite element model of the worldwide-
used 9 mm Parabellum bullet has been developed with Abaqus explicit software. A Johnson-
Cook constitutive model, fed with the split Hopkinson pressure bar experimental parameters,
accurately describes the materials’ behavior (lead and brass). Experiments were performed
with a handgun and a hard steel plate target in order to discuss the reliability of the model.
Accurate predictions about bullet deformation and failure were obtained without any post-
calculation adjustment of parameters.

Key words: ballistics, FEM, Johnson-Cook.

1. Introduction

Gunshot investigation is a key activity of any forensic science institute. The
shooter’s position is classically estimated from a post impact examination of
a scene (multiple impacts). The line passing by the center of each impact fig-
ure is materialized with a laser beam or a set of metallic rods. It can also be
calculated from an accurate 3D positioning of each impact. A correction of the
bullet’s path deflection (under the influence of its weight) can be considered in
some particular cases (long distance shooting). As a consequence, if a gunshot
involves only a single impact no information about the position of the shooter
can be given. The second limitation is the lack of knowledge about impact
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phenomena (deflection, velocity loss, bullet’s integrity and stability) which are
known qualitatively but not quantitatively. A specific procedure involving target
examination (gunshot residue scattering, smoke or multi-projectile dispersion,
the Griess test) is also applied to estimate the shooting distance (not the angle),
but besides the specific case of shotgun (multi-projectile), the efficiency range
of these methods is typically limited to a few meters.
In that context, it has already been demonstrated that comparing the bullet

deformation with experiments can bring up some information about the shoot-
ing distance, in the case of a hard target (metal, concrete [1]) or a soft target
(human body [2, 3]). The method used to determine the ballistic parameters
is the experimental way, the main reason being the lack of adequate computer
simulation of material deformation in the ballistic domain. The source of this
inadequetness can be found in the complexity of the problem itself, and also in
the low number of applications. The deformation state under ballistic impact
velocities (from 100 to 1000 ms−1) can only be described by rather complex and
multi-parameter laws. Identifying each parameter is a problem, the complexity
of which increases with the impact velocity. The ballistic domain stands between
the Lagrangian (solid) and Eulerian (fluid) formulation. Unifying these formu-
lations is still an issue. On the application side, military requirements (effects
of a given structure of projectile hitting a given structure of target) are quite
easy to investigate with experimental tools. In forensic applications (recovery
of pre-impact information from post impact examination), computer simulation
could be an alternative to experiments when a gunshot cannot be accurately
reproduced (excessive distance, accuracy or cost), but this demand was only
formulated lately.
In the present study, the worldwide- used 9 mm Parabellum FMJ (Full Metal

Jacket) bullet was selected as a representative sample. A 3D finite element model
has been developed with Abaqus explicit software. The constitutive model for
lead and brass is based on the Johnson-Cook relation without failure formula-
tion. The split Hopkinson pressure bar experimental data were used to identify
the missing parameters. The predictions were compared with ballistic experi-
ments performed with a semi-automatic Glock 26 compact pistol and homemade
ammunition with muzzle velocity ranging from 30 to 200 ms−1.

2. Ballistic experiments

The thrower is a Glock 26 semi-automatic pistol. The target is a 30 mm
thick iron plate. The shooting distance is set to 2 m. Different velocities were
obtained by varying the amount of propellant (Vectan Ba 9) in home-made
9 mm Parabellum cartridges. The bullets are 9 mm Parabellum lead core FMJ
weighting 115 gr (grain), i.e., 7.45 g (actually ranging from 7.39 to 7.49 g in our
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experiments). Impact velocities are measured half way between the handgun
and the target with a chronograph (Pro Chrono, Competition Electronics Inc,
USA). Very low velocities (down to 60 ms−1) were repeatedly obtained.
The way we chose to describe both the length reduction and diameter ex-

pansion was to define a deformation criteria C as follow:

(2.1) C =

√√√√1

2
·
[(

∆l

l0

)2

+

(
∆d

d0

)2
]
,

with ∆l = l − l0 and ∆d = d − d0. l0 and d0 are respectively the length and
the diameter of the bullet before impact. The nature of C (single value) is more
suitable for comparison. This criteria can theoretically be higher than 1.
For each experiment, the length (l) and the diameter (d) of the bullet were

measured using a micrometer and finally C was calculated. The behavior of C
versus impact velocity is given in Fig. 1. The blue dots are the experimental
data; the red lines are the least square approximation in the two distinctive
areas. In the second area, the last two dots have not been considered for the
least square approximation as they demonstrate a saturation behavior slightly
below fragmentation.
Figure 1 demonstrates that C follows two rather linear behaviors, with

a velocity threshold triggering jacket fracture in-between. The so-called frac-

Fig. 1. Behavior of C versus impact velocity.
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ture threshold is 130 ms−1 in the experimented case. The slope of the curve is
5.6 ·10−3 sm−1 below the fracture threshold. Beyond the fracture threshold, the
slope of the curve is 6 times higher (3.4 ·10−2 sm−1) before reaching a saturation
behavior and then approaching the fragmentation threshold. A core fragmenta-
tion has been observed with an experimental impact velocity of 176 ms−1. Core
and jacket fragmentation has been observed with an impact velocity slightly
higher (182 ms−1). This area cannot be described with C. With an impact ve-
locity of 203 ms−1, a part of the core remained soldered to the target. Beyond
the fragmentation threshold, the size of the fragments decreases as the velocity
increases. We believe, however, that a very little quantitative prediction can be
gathered from a statistical fragment sizing.
Table 1 exhibits the shape of the deformation and eventually a fracture and

fragmentation of few bullets for impact velocities ranging from 60 to 200 ms−1.

Table 1. Deformation shape, fracture and fragmentation of the projectile
for various impact velocities.

Impact Velocity
[ms−1]

60 80 101 119 141 164 182 203

C (rate) 0.14 0.24 0.35 0.46 1 1.46

The experimental fracture and fragmentation speed thresholds will increase
dramatically when the target cannot withstand ballistic load without deforma-
tion, as in most of the forensic cases. In that situation, any new target, new
material or new target shape actually need a new study, pointing out to the
usefulness of a FEM simulation tool.

3. FEM model

3.1. Materials models

This part describes the determination of the mechanical properties of the
quasi-pure lead extracted from the bullets by heating process (ρ = 11300 kg m−3

and ν = 0.42). The purpose is to determine the true plastic laws from quasi-
static to dynamic loadings under compression loading. Finally, parameters of the
constitutive simplified Johnson-Cook model are calculated without considering
heat transfer, as shown in Eq. (3.1) [4].

(3.1) σ = (σ0 +K · εn)×
(
1 +D · ln

(
ε̇

ε̇0

))
,
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σ0 is the yield stress, K is the hardening parameter, n is the exponent for
the static law and D is the parameter which determine the viscosity effects.
ε̇0 describes the activation of the strain rate effects.
The experimental setup includes the cylindrical samples (∅ = 8 mm, l0 =

7 mm) submitted to the compression loadings from:
• A high-speed hydraulic machine (VHS) with a strain rates ranging from
0.15 to 20 s−1 (Fig. 2a),

• A set of nylon split Hopkinson pressure bars with a strain rate ranging
from 800 to 2000 s−1 (Fig. 2b).

a) b)

Fig. 2. a) VHS setup, b) Hopkinson bars setup.

Figure 3b illustrates the behaviour of the considered materials used for the
determination of the Johnson-Cook parameters. The materials responses are
determined from:

• strain gauges for Hopkinson tests,
• piezoelectric load cells coupled with electro-optical extensometers for VHS
tests.
The raw signals have been recorded using a numerical recorder at adaptive

sampling rates. For the Hopkinson calculations, the visco-elasticity and punching
corrections have been considered [5, 6].
The Johnson-Cook parameters have been determined after keeping plastic

relations at 0.15, 20800 and 1500 s−1 (dotted line in Fig. 3b). A classical calcu-
lation based on least squares interpolation has been used. The results are sum
up in Table 2.
Lead has revealed a visco-elasto-plastic behaviour under compression load-

ings, but the authors have considered only visco-plasticity as a first step.
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a) b)

Fig. 3. a) Initial and final shapes of specimens; b) behaviour laws under compression
loadings from 0.15 to 2000 s−1.

Table 2. Johnson-Cook parameters for lead samples (R2
= 0.9891).

ESTATN EDYN σ0 K n D

0.41 GPa 1.3 GPa 5.15 MPa 35.35 MPa 0.5 0.0628

3.2. Numerical model

The numerical simulation was developed by Abaqus finite element model
software with the explicit numerical algorithm formulation. The projectile and
the target were designed using a 3D axi-symmetric solid model. The impact
has been considered as an axi-symmetric phenomenon by neglecting spinning
effects of the projectile (spinning energy represents only few percent of the total
kinetic energy). Furthermore, bullets didn’t undergo any twisted deformation in
the experiments. The main interest of the axi-symmetric simulation was to save
computation time without decreasing the accuracy.
The bullet was meshed in 4 nodes elements with reduced integration. The

projectile grid is composed of 6000 elements. The mechanical behaviour of the
projectile is the main issue of the simulation as the steel target has been consid-
ered as a pure elastic solid (E = 210000 MPa, ρ = 7800 kg m−3, ν = 0.33). The
shape of the bullet was extracted from of picture of a cut-off bullet by a Matlab
routine. Figure 4 presents the finite element model of the bullet (b) and the
picture of the cut-off bullet (a).
The bullet design includes two materials: a lead core and a brass jacket

(a copper alloy also known as tambac, 90% Cu and 10% Zn). A Johnson-Cook
constitutive model has been used for each component. The parameters of lead are
given in Table 2. The parameters of tambac are extracted from the literature
[7, 8]. The model didn’t include fracture, but the fracture threshold criterion
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a) b)

Fig. 4. Cut-off picture (a) and FEM (b) of the bullet.

proposed by Cockcroft and Latham [9] has been compared to the maximum
load observed at the experimental fracture threshold (130 ms−1). We also made
sure that the plastic work, Wp, level overlaps the critical value proposed by
Børvik et al. [10] for the brass jacket (Wp = 914 MPa).
Contact was considered without friction between the target and the bullet.

Sliding was allowed between the lead core and the brass jacket, according to the
experimental observations presented in Fig. 5.

Fig. 5. Sliding between lead and jacket.

3.3. Correlation with experimental investigation

The model was run with velocities ranging from 60 to 160 ms−1. The displace-
ment and plastic work data were monitored from impact time (t) to t + 3 m/s
(until the bullet reaches its steady post-impact state). Bullet diameter and
length were extracted to calculate C for each simulation. Table 3 and the Fig. 6
show the results.
The numerical model and experimental results show a very good similarity

until an impact velocity ranging from 130 to 140 ms−1 occurs. The experimental
data exhibited fracture triggering at the same velocity. The fracture, allowing
stress relaxation in the jacket, can not be considered in the model (not allowed in
the axi-symetric configuration). Such a structural weakening increases crushing
and the criterion C. The lack of stress relaxation in the model explains the
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Table 3. Experiment and numerical results.

Experiments Numerical

Velocity Diameter Length
C

Velocity Diameter Length
C

WpMax
[ms−1] [mm] [mm] [ms−1] [mm] [mm] [MPa]

60.3 9.46 11.23 0.14 60 9.08 11.67 0.15 478

80.2 10.8 10.10 0.24 80 10 10.18 0.21 484

89.9 11.35 9.73 0.29 100 11.3 8.7 0.32 447

100.9 12.1 9.12 0.35 120 12.36 7.62 0.42 614

113.4 13.05 8.45 0.43 130 12.9 7.08 0.47 687

118.6 13.4 8.08 0.46 140 13.54 6.5 0.52 2380

130.1 14.2 7.47 0.53 160 14.13 6.03 0.57 5586

141.1 20 4.3 1

150.9 23.50 3.22 1.27

Fig. 6. Experiment and numerical behavior of C versus impact velocity.

difference between the experimental and the numerical results beyond 130 ms−1.
As explained above, the plastic work level has been used as an evidence to point
out the emergence of fractures in the model. Figure 7 shows the evolution of
the maximum plastic work of the jacket versus an impact velocity. The Børvik
threshold criterion was overlapped with an impact velocity of 130 ms−1. The
non-linear increase of the plastic work is not realistic because of the enactment
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of element in the model when the fracture phenomena appear. Modifications
of the loading mode were observed in the model between 130 and 140 ms−1.
The jacket, which was in compression until 130 ms−1, changed into a buckling
mode. This change explains the fracture’s triggering and the very important
plastic work increase (according to a plastic strain increase). The agreement
with experimental data is also very satisfactory.

Fig. 7. Numerical results for maximum plastic work versus impact velocity.

Extra simulations (not reported here) demonstrated that a particular care
must be taken about the jacket thickness variations. A maximum thickness is
clearly visible near but off the tip (c.f., Fig. 4a). The approximation of a uniform
thickness or even a slightly wrong shape induces a dramatic discordance with
the experimental results.

4. Conclusions

This paper demonstrates the good correspondence between the FEM model
using explicit formulation and the experiment in the ballistic field. The sine qua
non condition for such a good behavior of the model was to provide accurate
parameters for the Johnson-Cook constitutive model of each component. The
parameters were extracted from the literature for tambac, from the Hopkinson
bar experiments for the lead, and no extra adjustment were made. In that drastic
situation, a very good concordance has been observed as far as the dynamic load
did not exceed the fracture threshold.
For the explored velocity range, it has not been necessary to consider spin and

heat transfer, but the results pointed out that a very good care about the jacket
thickness is necessary to accuratelly reproduce the shape of the experimental
deformations. Ongoing researches will include fracture and heat transfer in order
to minimize the limitation of the Lagrangian formulation in the ballistic domain.
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A proposition of an energy-based hypothesis of material effort for isotropic materials ex-
hibiting strength-differential (SD) effect, pressure-sensitivity and Lode angle dependence is dis-
cussed. It is a special case of a general hypothesis proposed by the authors in [11] for anisotropic
bodies, based on Burzyński’s concept of influence functions [2] and Rychlewski’s concept
of elastic energy decomposition [16]. General condition of the convexity of the yield surface
is introduced, and its derivation is given in the second part of the paper. Limit condition is
specified for Inconel 718 alloy, referring to the experimental results published by Iyer and
Lissenden [7].

1. Introduction

1.1. Motivation

In recent years, the number of new materials (e.g. composites, modern al-
loys) exhibiting certain uncommon properties – such as low elastic symmetry,
pressure sensitivity, Lode angle dependence, strength differential effect – still
increases and they become more and more commonly used. Furthermore, the
precision of the measurement tools and accuracy of mathematical or numerical
models used for the description of industrial processes is still improved, so some
of the mentioned phenomena, which for decades have been considered negli-
gible, now seem to be necessary to be involved in the mechanical analysis of
the considered processes. Classical yield criteria, which are still commonly used
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both in elastic and plastic analysis (as limit conditions or plastic potentials in
case of associated flow rule), cannot deal with those specific features of modern
materials in a satisfactory way.
Many propositions of the yield criteria for anisotropic bodies were already

stated (e.g. Mises [10], Burzyński [2], Hill [4], Hoffman [5], Tsai-Wu [20],
Rychlewski [15], Theocaris [19] etc.), however some of them were poorly
motivated physically being just of purely mathematical nature [5] or having
only empirical character [19, 20]. Such approach enables one-to-one correlation
between the final values of the parameters of the criterion and the limit quan-
tities obtained from the experiment. Despite its great practical meaning, such
an approach makes no contribution to the research on the nature of material
effort. Furthermore, mathematical form of the criterion (arbitrary chosen by
author) often constrains it in such a way that it is not possible to account for
some of the phenomena mentioned above. In case of physically motivated limit
criteria by Burzyński [2] and Rychlewski [15], other problems occur. Strictly
energy-based limit condition by Rychlewski as a quadratic function of stress
cannot account for the strength differential. In case of Burzyński’s hypothesis,
some misstatements in the final formulation of the limit condition for anisotropic
solids were recently found and discussed in [18].

1.2. General proposition of a yield criterion for anisotropic
bodies exhibiting SD effect

In [11] the authors have introduced a new proposition of a limit condition for
anisotropic materials with asymmetric elastic range. It was directly motivated
by ideas of spectral decomposition of compliance tensor C and elastic energy
decompositions introduced by Rychlewski [15, 16] and the idea of stress state
dependent influence functions introduced by Burzyński [2], which enabled him
improvement of the classical Huber–Mises [6] condition so that it accounted
for the SD effect. It is stated that as a measure of material effort one can consider
the following combination:

(1.1) η1Φ(σ1) + ...+ ηχΦ(σχ), χ 6 6

such that:

(1.2)





T 2
sym = H1 ⊕ ...⊕ Hχ

Hα⊥̇Hβ for α 6= β

⇒





σ = σ1 + ...+ σχ, σα ∈ Hα,

σα • σβ = σα · (C · σβ) = 0 for α 6= β,

where ηα is a certain stress-state dependent function. To keep mutual indepen-
dence of the terms of the criterion, it is assumed that it depends only on the
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stress state component corresponding with the proper elastic energy density σα

(the projection of σ onto Hα)

(1.3) ηα = ηα(σα)

and that it is isotropic in its domain (subspace Hα), thus it can be expressed
only in terms of invariants of σα

(1.4) ηα(σα) = ηα (I1(σα); I2(σα); I3(σα)) .

More details can be found in [11].
Among all possible energetically orthogonal decompositions of the space of

symmetric second order tensors T 2
sym = H1 ⊕ . . .⊕ Hχ, the choice of the decom-

position into eigensubspaces of compliance tensor C is the best motivated both
physically (due to clear physical interpretation of those subspaces) and mathe-
matically (since it is the only decomposition of T 2

sym which is both orthogonal
and energetically orthogonal).

2. General limit condition for pressure-sensitive, Lode angle
dependent isotropic bodies exhibiting SD effect

Even in case of the simplest materials, namely those macroscopically homo-
geneous and isotropic, such as modern alloys, many classical yield criteria (i.e.
Huber–Mises [6, 9], Burzyński [2], Drucker–Prager [3] etc.) fail to de-
scribe them correctly either due to lack of pressure-sensitivity or the Lode angle
dependence. The special isotropic case of the yield criterion introduced above is
found suitable for accounting for the influence of both the pressure and Lode’s
angle.
From the spectral decomposition of isotropic compliance tensor we obtain

a one-dimensional subspace of spherical tensors (hydrostatic stresses) and five-
dimensional subspace of deviators (shears). Energy density is decomposed into
energy density of distortion Φf and energy density of volume change Φv. Yield
condition (1.1) can be rewritten in the following form:

(2.1) η̃v(I1(Aσ); I2(Aσ); I3(Aσ))Φv + η̃f (J1, J2, J3)Φf = 1,

where Aσ is the isotropic component of the stress tensor and J1, J2, J3 are
invariants of the stress tensor deviator. It is known that:

(2.2)

I1(Aσ) = 3p, I2(Aσ) = 3p2, I3(Aσ) = p3,

J1 = 0, J2 =
1

2
q2, J3 =

1

3
√
6
q3 cos(3θ),

Φv =
p2

2K
, Φf =

q2

4G
,
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where K is the Helmholtz bulk modulus, G is the Kirchhoff shear modulus, p is
the hydrostatic stress, q deviatoric component of stress and θ is the Lode angle
– they can be expressed in terms of stress state components in any coordinate
system as well as in principal stresses:

(2.3)

p =
1

3
(σ11+σ22+σ33) =

1

3
(σ1+σ2+σ3),

q =

√
1

3

[
(σ22−σ33)2+(σ33−σ11)2+(σ11−σ22)2+6(σ223+σ

2
31+σ

2
12)
]

=

√
1

3
[(σ2−σ3)2+(σ3−σ1)2+(σ1−σ2)2],

θ =
1

3
arccos

[
3
√
3

2

J3
(J2)3/2

]
.

Please note that the second invariants of the spherical and deviatoric part
of the stress tensor are proportional to the volumetric and distortional part of
the elastic energy density respectively. Since all invariants of the hydrostatic
component of the stress state depend on p, it is enough to state that ηv = ηv(p).
It is also clear that it is the third invariant of the stress tensor deviator which
makes the qualitative, not only quantitative, distinction between various modes
of shearing, so it is assumed that the influence function corresponding to the
distortional part of energy density depends only on Lode angle θ. Including
constant parameters (i.e. elastic moduli) in the influence functions, the limit
condition (1.1) can be finally obtained in the following form:

(2.4) ηv(p)p
2 + ηf (θ)q

2 = 1.

2.1. Influence functions

Many authors have been already considering various functions describing
the influence of pressure or Lode’s angle on the material effort. It seems that in
case of pressure influence function, the one proposed by Burzyński is one of the
most general – it enables description of various relations between hydrostatic
and deviatoric stresses – linear, paraboloidal, hyperboloidal and elliptical. It is
a two-parameter rational function of the following form:

(2.5) ηv(p) =

(
ω +

δ

p

)
.

There is a large variety of different functions describing the influence of the
Lode angle – valuable summary of propositions of Lode angle dependences was
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made by Bardet and published in [1]. Some other suggestions of the Lode angle
influence function were also presented in [12]:

• Two-parameter power function (Raniecki, Mróz [14])

ηf (θ) = [1 + α cos(3θ)]β .

• Two-parameter exponential function (Raniecki, Mróz [14])

ηf (θ) = 1 + α
[
1− e−β(1+cos(3θ))

]
.

• One-parameter trigonometric function (Lexcellent [8])

ηf (θ) = cos

[
1

3
arccos [1− α(1 − cos(3θ))]

]
.

• Two-parameter trigonometric function (Podgórski [13])

ηf (θ) =
1

cos(30◦ − β)
cos

[
1

3
arccos (α · cos(3θ))− β

]
.

It is often assumed that the Drucker’s postulates are true – as a consequence
of this assumption, the yield surface should be convex. Convexity condition for
the limit surface determined by yield condition (2.4) for arbitrary chosen form
of influence function was derived and will be published in the second part of the
current paper [17].

3. Limit criterion specification

An attempt to specify the limit condition referring to experimental data
available in the literature was made. A series of experiments performed by Iyer,
Lissenden [7] for Inconel 718 alloy was taken as the reference data. Analysis of
the results obtained by Iyer and Lissenden, both in experiments and numerical
simulation, lead to the choice of Burzyński’s pressure influence function with
ω = 0 (paraboloid yield surface) and slightly modified Podgórski’s Lode angle
influence function with α = 0.8, β = 30◦ – for details see [12]. The Levenberg–
Marquardt algorithm was used to find the values of the rest of parameters of the
criterion by optimal fitting the assumed surface to the twelve points obtained
from the experiments. The final form of the yield criterion was obtained as
follows:

(3.1)
q2

cos(30◦ − β)
cos

[
1

3
arccos [α · cos(3(θ − 90◦))]− β

]

+

(
ω +

δ

p

)
· p2 −H = 0,
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where α = 0.8, β = 30◦, δ = 215.95 MPa, ω = 0, H = 201670.46 MPa2. The plot
of the limit surface and its cross-sections at octahedral plane and Burzyński’s
plane [21] are given in Figs. 1–3. In the latter figure the cross-sections of the yield

Fig. 1. Yield surface given by Eq. (3.1).

Fig. 2. Lode angle dependence – cross-section of the yield surface given by (3.1) at
octahedral plane.
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Fig. 3. Pressure-sensitivity – cross-section of the yield surface given by (3.1) at Burzyński’s
plane. Straight lines denoted C, S and T determine uniaxial compression, shear and uniaxial

tensile stress states respectively.

surface (3.1) at Burzyński’s plane for two values of the Lode angle is presented
– θ = 0◦ + n · 60◦ (n ∈ N), which corresponds with uniaxial stress states, and
θ = 30◦ + n · 60◦ which corresponds with pure shears.

4. Summary

A new proposition of a limit condition for the pressure-sensitive isotropic and
homogeneous bodies exhibiting Lode’s angle dependency and strength differen-
tial effect was presented. The straightforward derivation of the discussed yield
criterion from the general idea of an energy-based limit condition for anisotropic
bodies with asymmetric elastic range introduced by authors in [11] was shown.
Some propositions of the pressure and Lode’s angle influence functions were
given. Condition for convexity of the yield surface corresponding with the dis-
cussed limit condition will be presented in the second part of the paper. Spec-
ification of the limit criterion for assumed influence functions referring to the
experimental data published in [7] was presented.

Acknowledgment

The paper has been prepared within the framework of the research project
N N501 1215 36 of the Ministry of Science and Higher Education of Poland.



280 M. NOWAK et al.

References

1. J. P. Bardet, Lode dependences for isotropic pressure sensitive materials, J. Appl. Mech.,
57, 498–506, 1990.

2. W. Burzyński, Studium nad hipotezami wytężenia, Akademia Nauk Technicznych, Lwów,
1928; see also: Selected passages from Włodzimierz Burzyński’s doctoral dissertation
“Study on material effort hypotheses”, Engng. Trans., 57, 3–4, 185–215, 2009.

3. D.C. Drucker, W. Prager, Soil mechanics and plastic analysis for limit design, Quart.
Appl. Math., 10, 2, 157–165, 1952.

4. R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc.
London, 193, 281–297, 1948.

5. O. Hoffman, The brittle strength of orthotropic materials, J. Comp. Mater., 1, 200–206,
1967.

6. M.T. Huber,Właściwa praca odkształcenia jako miara wytężenia materyału, Czasopismo
Techniczne, 15, Lwów, 1904; see also: Specific work of strain as a measure of material
effort, Arch. Mech., 56, 3, 173–190, 2004.

7. S.K. Iyer, C. J. Lissenden, Multiaxial constitutive model accounting for the strength-
differential in Inconel 718, Int. J. Palst., 19, 2055–2081, 2003.

8. C. Lexcellent, A. Vivet, C. Bouvet, S. Calloch, P. Blanc, Experimental and nu-
merical determinations of the initial surface of phase transformation under biaxial loading
in some polycrystalline shape-memory alloys, J. Mech. Phys. Sol., 50, 2717–2735, 2002.

9. R. von Mises, Mechanik der festen Körper im plastisch deformablen Zustand, Göttin.
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General form of yield condition for isotropic and homogeneous bodies is considered in
the paper. In the space of principal stresses, the limit condition is graphically represented by
a proper regular surface which is assumed here to be at least of C2 class. Due to Drucker’s
Postulate, the yield surface should be convex. General form of convexity condition of the
considered surface is derived using methods of differential geometry. Parametrization of the
yield surface is given, the first and the second derivatives of the position vector with respect
to the chosen parameters are calculated, what enables determination of the tangent and unit
normal vectors at given point, and also determination of the first and the second fundamental
form of the considered surface. Finally the Gaussian and mean curvatures, which are given
by the coefficients of the first and the second fundamental form as the invariants of the shape
operator, are found. Convexity condition of the considered surface expressed in general in terms
of the mean and Gaussian curvatures, is formulated for any form of functions determining the
character of the surface.

Key words: yield surface, convexity condition.

1. Introduction

Let us consider ideally elastic-plastic material. In the range of elastic defor-
mation, linear constitutive law (Hooke’s Law) is considered true:

(1.1)





σ = S · ε
ε = C · σ
C ◦ S = IS

⇔





σij = Sijklεkl

εij = Cijklσkl

SijklCklmn =
1

2
(δimδjn + δinδjm)

i, ..., n = 1, 2, 3,

where σ and ε are the second order symmetric Cauchy stress tensor and infinites-
imal strain tensor (symmetric part of the displacement gradient) respectively,
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S and C are the fourth order symmetric stiffness and compliance tensors respec-
tively and IS is the identity operator in the linear space of symmetric second
order tensors. The range of validity of the Hooke’s Law is defined by a general
limit (yield) condition of form

(1.2) W (σ) < 0.

Plastic flow rule is assumed to be of the following form:

(1.3) ε̇p = λ̇∂σF ⇔ ε̇pij = λ̇
∂F

∂σij
,

where ε̇p is the plastic strain rate tensor, F is the plastic potential.
In 1950’s Drucker has introduced and developed a proposition of the idea

of a stable plastic material [1]. Drucker stated that the material is stable if the
total work performed by the increment of load through the caused displacement
is non-negative. It is always fulfilled in case of elastic deformation. If the final
stress reaches the limit state determined by the yield condition, then plastic
deformation occurs and the Drucker’s postulate can be written in form of the
following inequality

(1.4) dL =
(
σ− σ0

)
· dεp > 0.

In particular, if the stress increment is infinitesimal, one can write simply:

(1.5) dL = dσ · dεp > 0.

Let us consider that the initial stress state is the limit stress-state. All limit
states, which are given by the yield condition of general form W (σ) = 0 are
represented in the space of principal stresses as a three-dimensional surface.
If no hardening is assumed, then any stress increment vector dσ connects two
points, both of which belong to the surface. In case of an infinitesimal increment
of stress at the limit state this is a tangent vector to the yield surface at the
considered point. It can be shown that at current assumptions on the model of
material, validity of Drucker’s postulate requires that the flow rule (1.3) must
be associated with the limit condition (1.2), namely F (σ) = W (σ) – then the
infinitesimal strain increment vector corresponding to the considered stress in-
crement is represented by a vector perpendicular to the yield surface. In this
case, the Drucker’s postulate (1.5) can be interpreted as a requirement of non-
negativeness of the scalar product of tangent and normal vector at any point
of the yield surface. It is equivalent to the statement that whole surface is non-
concave. If the flow rule is not associated with the yield condition, convexity of
the yield surface is often assumed as well.
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The aim of this paper is to show the application of the general convexity
analysis of three-dimensional surfaces in mechanics of solids. In particular, the
convexity of a new yield surface for isotropic homogeneous solids proposed in
the first part of the paper [3] is analyzed. As a result, a general form of con-
vexity condition for arbitrary chosen form of pressure and Lode angle influence
functions appearing in the proposed yield surface formulation is derived. Those
conditions may be applied as an inequality constraints in an optimization prob-
lem of material identification. Material parameters determined in the process of
fitting the results obtained from the simulation using assumed model to those
obtained from experiment with use of the aforementioned condition, guarantee
convexity of the determined yield surface.
General methodology of the differential geometry in the analysis of convexity

of the given surface S in E3 is as follows:
• Surface parametrization

(1.6) x ∈ S → x = x(α, β).

• Finding the tangent vectors (first derivatives of the position vector with
respect to the chosen surface parameters) at any point

(1.7)

xα =
∂

∂α
x(α, β),

xβ =
∂

∂β
x(α, β).

• Finding the second derivatives of the position vector with respect to the
chosen surface parameters at any point

(1.8)

xαα =
∂2

∂α2
x(α, β),

xββ =
∂2

∂β2
x(α, β),

xαβ =
∂2

∂α∂β
x(α, β).

• Finding the external unit normal vector at any point as a scaled cross-
product of the tangent vectors

(1.9) ν = ± xα × xβ

|xα × xβ|
.
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• Determination of the coefficients of the first fundamental form referring to
the tangent vectors

(1.10)

E = xα · xα,

F = xα · xβ,

G = xβ · xβ .

• Determination of the coefficients of the second fundamental form referring
to the normal vectors and second derivatives of the position vector

(1.11)

e = ν · xαα,

f = ν · xαβ ,

g = ν · xββ.

• Determination of the shape operator and its invariants – Gaussian curva-
ture κG and mean curvature κM – in terms of the coefficients of the first
and the second fundamental form

(1.12)

κG =
eg − f2

EG− F 2
,

κM =
eG− 2fF + gE

2(EG− F 2)
.

• Formulation of the convexity condition in terms of Gaussian and mean
curvatures:

(1.13)
κM < 0,

κG > 0.

2. Convexity condition for proposed surface

2.1. Proposition of yield condition for isotropic bodies

Let us recall a general yield condition discussed in Part I of the paper:

(2.1) W : η̃fΦf + η̃vΦv − 1 = 0,

where Φf – density of energy of distortion, Φv – density of energy of volume
change and η̃f and η̃v are certain stress state dependent functions called influence
functions. Certain assumptions made on those functions, discussed in details in
Part I, enable rewriting (2.1) in the following form:

(2.2) W : ηf (θ)q
2 + ηp(p)− 1 = 0,



YIELD CRITERION ACCOUNTING. . . PART II. 287

where p – hydrostatic stress, q – deviatoric stress, θ – Lode angle. Parameters
p, q, θ (Haigh-Westergaard coordinates/Lode parameters) are proportional to
cylindrical coordinates (with the specified axis parallel to the p axis) in the space
of principal stresses. There exists the one-to-one relation between “Cartesian”
coordinates and Lode parameters:

(2.3) σi = σi(p, q, θ) ⇒





σ1 = p+

√
2

3
q cos(θ) ,

σ2 = p+

√
2

3
q cos

(
θ − 2π

3

)
,

σ3 = p+

√
2

3
q cos

(
θ +

2π

3

)
,

i = 1, 2, 3

or equivalently:

(2.4)





p =
1

3
(σ1 + σ2 + σ3), p ∈ (−∞;∞),

q =

√
1

3
[(σ3 − σ2)2 + (σ1 − σ3)2 + (σ1 − σ2)2], q > 0,

θ =
1

3
arccos

√
2 (2σ1 − σ2 − σ3) (2σ2 − σ3 − σ1) (2σ3 − σ1 − σ2)

[(σ3 − σ2)2 + (σ1 − σ3)2 + (σ1 − σ2)2]
3/2

= arc tan

√
3(σ2 − σ3)

2σ1 − σ2 − σ3
, θ ∈ (0; 2π).

The difference between the influence functions denoted with and without
tilde, is only in constant scaling parameters which are proportional to the stiff-
ness moduli – shear modulus for η̃f and bulk modulus for η̃v. Further distinction
between η̃v and ηp is that ηp involves already term p2 which is proportional to Φv

– it has no influence on the derivation of the convexity condition since η̃v is other-
wise only pressure-dependent. This simple substitutions simplify the derivation
in great extent.
A general form of convexity condition for any form of influence functions

will be derived in the paper. The derivation will base on classical methods of
differential geometry, namely – convexity analysis of three-dimensional surfaces.

2.2. Surface parametrization

Typical methods mentioned above require calculating both the tangent and
normal vectors of the surface. Tangent vectors can be obtained through differ-
entiating position vector of a point on the surface. Three-dimensional regular
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surface is in fact a two-dimensional differentiable manifold, thus position of any
point belonging to the surface can be explicitly determined by at most two inde-
pendent parameters. To avoid differentiating in curvilinear coordinate system,
we should express the position vector in “Cartesian” coordinates of principal
stresses, however each component of this vector should be expressed by two pa-
rameters determining the surface. Let us assume that those parameters are p
and θ:

(2.5) σi ∈W → σi = σi(p, θ), i = 1, 2, 3.

Then using condition (2.2) and relations (2.4) and remembering that q as the
norm of the stress tensor deviator has to be positive, we can write:

(2.6) q =

√
1− ηp(p)

ηf (θ)
.

Physical interpretation of ηf should be used now – since distortional strains
and shearing stresses which correspond with q are in the greatest extent respon-
sible for material effort, one should expect that ∀θ ηf (θ) > 0 for any given p –
it agrees with intuition and it is confirmed by experiments.
It should be also assumed that ηp(p) 6 1. Indeed, since ηf is assumed to be

positive then any stress state σ corresponding with arbitrarily chosen value of q
is a limit state (it belongs to the limit surface W ) only when ηp(p) 6 1. If there
exists such value of p equal p0 for which ηp(p0) > 1, then there exists no real q
for which Eq. (2.2) is fulfilled and there is no point on the surface corresponding
with such value of parameter p – only part of infinite domain of p ∈ (−∞;∞) is
used to parametrize the surface. Coordinates of any point belonging to W can
be thus written as follows:

(2.7) W :





σ1(p; θ) = p+

√
2

3

√
1− ηp(p)

ηf (θ)
cos(θ) ,

σ2(p; θ) = p+

√
2

3

√
1− ηp(p)

ηf (θ)
cos

(
θ − 2π

3

)
,

σ3(p; θ) = p+

√
2

3

√
1− ηp(p)

ηf (θ)
cos

(
θ +

2π

3

)
.
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2.3. First and second derivatives of the position vector, tangent
and normal vectors

Since W ∈ C2, having the position vector expressed by surface parameters,
we can calculate now components of vectors tangent to the surface:

∂σi
∂p

= 1− 1√
6ηf [1− ηp]

∂ηp
∂p

cos(θ + αi),(2.8)

∂σi
∂θ

= −
√

2

3
[1− ηp][ηf ]

3/2 ·
[
ηf sin(θ + αi) +

1

2

∂ηf
∂θ

cos(θ + αi)

]
,(2.9)

where i = 1, 2, 3 and α1 = 0, α2 = −2π/3, α3 = 2π/3. Further derivatives of
position vector are equal

∂2σi
∂p2

= − cos(θ + αi)√
6ηf [1− ηp]3/2

[
1

2

(
∂ηp
∂p

)2

+ [1− ηp]
∂2ηp
∂p2

]
,(2.10)

∂2σi
∂θ2

= −
√

2[1− ηp]

3[ηf ]5
·
[
−ηf

∂ηf
∂θ

sin(θ + αi)(2.11)

+
1

4

(
2ηf

∂2ηf
∂θ2

− 3

(
∂ηf
∂θ

)2

+ 4[ηf ]
2

)
cos(θ + αi)

]
,

∂2σi
∂p∂θ

=
1√

6[ηf ]3[1− ηp]
· ∂ηp
∂p

·
[
ηf sin(θ + αi) +

1

2

∂ηf
∂θ

cos(θ + αi)

]
.(2.12)

Normal to the surface at a fixed point is perpendicular to any tangent vector
at this point (see Fig. 1). Since tangent plane is a two-dimensional one, a basis

Fig. 1. Tangent and normal vectors at the given point of the surface.
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in this space consists of two tangent vectors – i.e. those given by Eqs. (2.8) and
(2.9). So the unit normal vector N is parallel to the cross-product of those two:

(2.13) N =
∇W
|∇W | =

σθ × σp

|σθ × σp|
,

where σX denotes partial derivative of σ with respect to parameter X. The
formula (2.13) specified with use of (2.8) and (2.9) leads after trigonometric
simplification to the following final form. Just to make the notation clear, nu-
merator and denominator are written separately. It is convenient to write the
cross-product in the numerator as a sum of two vectors, one of which is parallel
to the p axis:

(2.14) σθ × σp =
∂ηp
∂p

· 1

2
√
3ηf

[1, 1, 1]

+

√
1− ηp
2[ηf ]3

[(
−∂ηf
∂θ

sin(θ) + 2ηf cos(θ)

)
,

{(√
3ηf +

1

2

∂ηf
∂θ

)
sin(θ) +

(
−ηf +

√
3

2

∂ηf
∂θ

)
cos(θ)

}
,

{(
−
√
3ηf +

1

2

∂ηf
∂θ

)
sin(θ)−

(
ηf +

√
3

2

∂ηf
∂θ

)
cos(θ)

}]
,

(2.15) LN = |σθ × σp|

=
1

η
3/2
f

√√√√3(1− ηp)

[
ηf 2 +

1

4

(
∂ηf
∂θ

)2
]
+

1

4

(
∂ηp
∂p

)2

ηf = LN > 0.

Please note that sequence of tangent vectors in the above vector cross-
product influences the orientation of resultant normal vector (cross-product is
bilinear skew-symmetric operation) which has significant role in convexity condi-
tion formulation. Interior of the yield surface (area of safe stress states) should
be determined. The (0, 0, 0) point should always be in the surface’s interior.
Let’s check the orientation of a normal vector given by (2.13). At any point in
the stress space (not only at those belonging to the surface), local orthonormal
basis (holonomic basis respective for (p, q, θ) coordinates – see Fig. 2) can be
determined, namely, these are normalized derivatives of a position vector given
by (2.3) (not to be mistaken with position vector of a point belonging to the
surface given by (2.7)) with respect to the corresponding parameter:
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(2.16)

ep =
1√
3
[1, 1, 1],

eq =

√
2

3

[
cos (θ) , cos

(
θ − 2π

3

)
, cos

(
θ +

2π

3

)]
,

eθ =

√
2

3

[
− sin (θ) , − sin

(
θ − 2π

3

)
, − sin

(
θ +

2π

3

)]
,

eK · eL = δKL, K,L = p, q, θ.

Fig. 2. Local holonomic basis respective for the Lode parameters p, q, θ.

The orientation of those vectors is already given and shown in the Fig. 2 and
it is a consequence of definition (2.3) – ep is oriented along the hydrostatic stress
axis pointing positive values of p – eq is oriented away from (0, 0, 0) – and eθ is
oriented counter-clockwise when looking at any octahedral plane (perpendicular
to p axis) from the side of greater values of p. Due to the same reasons for which
ηf was assumed to be positive valued, we can consider that an external normal
is the one which q-component is oriented the same way as eq – safe stress states
(interior of yield surface) are close to (0, 0, 0) point or – more generally speaking
– the safer is the stress state, the smaller should be its deviatoric component
(q → 0) and the closer should it be placed to the p axis. In such situation
N · eq > 0 should be fulfilled. Indeed:

(2.17) N · eq =
√
3

LN

√
(1− ηp)

ηf
,

which is always positive due to the assumed 1 > ηp and positiveness of LN , ηf ,
so N defined by (2.13) is an external normal.
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2.4. First and second fundamental form, shape operator

Once the components of the normal vector and the tangent ones and their
derivatives are calculated, one can obtain coefficients of the first and the sec-
ond fundamental form and finally the values of curvatures which allow us to
determine the convexity condition – typical methods of differential geometry
shown e.g. in [2] will be used. The first fundamental form I is an inner (scalar)
product of any two tangent vectors at a given point. As it was said before,
tangent plane is a two-dimensional space in which vectors σp and σθ form
a basis (not necessarily an orthogonal or normalized one), so any two tan-
gent vectors can be expressed as a linear combination of the two mentioned:
v1 = v1pσp + v1θσθv2 = v2pσp + v2θσθ. Their scalar product is equal

(2.18) I(v1,v2) = v1 · v2 = v1pv2p(σp · σp) + (v1pv2θ + v1θv2p)(σp · σθ)

+ v1θv2θ(σθ · σθ),

what can be rewritten in such matrix form:

(2.19) I(v1,v2) = v1 · v2 = v1 · I · v2 =

[
v1p
v1θ

]T
·
[
E F
F G

]
·
[
v2p
v2θ

]
.

Symmetric operator I can be considered as a metric tensor in the space of
tangent vectors. Arc length of an infinitesimal section of a curve belonging to
the surface is given as follows:

(2.20) ds2 = Edp2 + 2Fdpdθ +Gdθ2.

Coefficients of the first fundamental form are equal to

(2.21)

E = |σp|2 = σp · σp = 3 +

(
∂ηf
∂p

)2

· 1

3ηf (1− ηp)
,

F = σp · σθ =
1

4(ηf )2
· ∂ηp
∂p

· ∂ηf
∂θ

,

G = |σθ|2 = σθ · σθ = (1− ηp)

[
1

ηf
+

1

4(ηf )3

(
∂ηf
∂θ

)2
]
.

Second fundamental form, just as the first one, is a bilinear form on tangent
vectors at a given point of the surface defined as follows:

(2.22) II(v1,v2) = S(v1) · v2,



YIELD CRITERION ACCOUNTING. . . PART II. 293

where S is shape operator defined as:

(2.23) S =
(
I II−1

)T
=

[
S11 S12
S21 S22

]
: S(v) = −Nv = −∇N · v.

Shape operator (Weingarten map, second fundamental tensor) describes varia-
tion of a unit normal of the surface with the change of direction of the tangent
vector v. Eigenvalues of the shape operator are equal principal (extremal) cur-
vatures of the surface at a given point, while the corresponding eigenvectors
indicate the directions of those curvatures. Invariants of the shape operator –
determinant and half of the trace – are equal Gaussian and mean curvatures
respectively. Second fundamental form II can be written as:

(2.24) II(v1,v2) = (−Nv1) · v2

= −(v1pNp + v1θNθ) · (v2pσp + v2θσθ) = −v1pv2p(Np · σp)

− [v1pv2θ(Np · σθ) + v1θv2p(Nθ · σp)]− v1θv2θ(Nθ · σθ)

or it can rewritten in the following matrix form:

(2.25) II(v1 · v2) = v1 · II · v2 =

[
v1p
v1θ

]T
·
[
e f
f g

]
·
[
v2p
v2θ

]
,

where the coefficients of the second fundamental form are given by following
relations:

(2.26)

e=−Np · σp = N · σpp = −
√
3

2LNηf

[
∂2ηp
∂p2

+
1

2

(
∂ηp
∂p

)2 1

(1− ηp)

]
,

f=−Np · σθ = −Nθ · σp = N · σpθ = N · σθp = 0,

g=−Nθ ·σθ = N·σθθ = −
√
3(1−ηp)

4LN [ηf ]3

[
4(ηf )

2+2ηf
∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2
]
.

Components of S can be expressed in terms of coefficients of the first and
second fundamental form (Weingarten equations):

(2.27)

S11 =
eG− fF

EG− F 2
, S12 =

fG− gF

EG− F 2
,

S21 =
fE − eF

EG− F 2
, S22 =

gE − fF

EG− F 2
.
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2.5. Invariants of S, principal (extremal),
mean and Gaussian curvatures

Since components of S depend on the quantities chosen for parametriza-
tion, they are not as important as invariants of S – its eigenvalues (principal
curvatures – extremal of all possible values of curvature), its trace (which is
proportional to the mean of the principal curvatures – mean curvature κM )
and its determinant (product of principal curvatures – Gaussian curvature κG).
Eigenvalues of S can be found from the characteristic polynomial of S:

(2.28) det(S− κI) = κ2 − I1(S)κ + I2(S) = 0

or

(2.29) κ2 − 2κMκ+ κG = 0,

where

(2.30)

κM =
1

2
I1(S) =

1

2
tr(S) =

1

2
I · (II)−1 =

1

2
(S11 + S22)

=
eG− 2fF + gE

2(EG − F 2)
– mean curvature,

κG = I2(S) = det(S) =
det(I)

det(II)
= S11 · S22

=
eg − f2

EG− F 2
– Gaussian curvature.

Values of mean and Gaussian curvatures:

(2.31) κM = −
√
3

4LNηf

[
3(1− ηp)

((
∂ηf
∂θ

)2

+ 4(ηf )2

)
+ ηf

(
∂ηp
∂p

)2
]

·
[
6(1− ηp)ηf

(
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

)

+ (1− ηp)
∂2ηp
∂p2

((
∂ηf
∂θ

)2

+ 4(ηf )
2

)
+ ηf

(
∂ηp
∂p

)2(∂2ηf
∂θ2

+ 4ηf

)]
,

(2.32) κG =

3

[
2(1− ηp)

∂2ηp
∂p2

+

(
∂ηp
∂p

)2
]
·
[
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

]

4LNηf

[
3(1 − ηp)

((
∂ηf
∂θ

)2

+ 4(ηf )2

)
+

(
∂ηp
∂p

)2

ηf

] .
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When there is a need of calculating extremal (the greatest and the smallest)
values of curvature of all curvatures of any arbitrary chosen curves containing
the given point and belonging to the surface, principal curvatures can be de-
rived from mean and Gaussian curvatures. Since they are roots of characteristic
polynomial, they are equal:

(2.33) κ1/2 = κM ±
√
κ2M + κ2G.

These quantities are rather complex and it seems that writing of the full
expression for principal curvatures for this very general case is to some extent
useless – they can be calculated for certain forms of influence functions. Using
numerical computations makes the problem even easier.

2.6. Convexity condition

If the yield surface is oriented by the aforementioned unit normal N pointing
exterior of the surface, then the surface will be convex (non-concave) if and only
if all possible curvatures of the curves belonging to it are negative (non-positive).
Since principal curvatures κ1, κ2 (as the eigenvalues of S) are extremal (maximal
and minimal), the values of curvature at given point then all curvatures will be
negative if both of the principal ones are negative:

(2.34)
{
κ1 < 0
κ2 < 0

⇒
{
κ1 + κ2 < 0
κ1 · κ2 > 0

⇒
{
κM < 0
κG > 0

.

Finally we obtain:

(2.35)

[
6ηf

(
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

)

+
∂2ηp
∂p2

((
∂ηf
∂θ

)2

+ 4(ηf )
2

)
+

ηf
(1−ηp)

(
∂ηp
∂p

)2(∂2ηf
∂θ2

+ 4ηf

)]
>0,

[
2(1− ηp)

∂2ηp
∂p2

+

(
∂ηp
∂p

)2
]
·
[
2ηf

∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2

]
> 0.

These inequalities are general conditions which have to be fulfilled by the
chosen influence functions, so that yield surface determined by them was convex.
Since the yield condition (2.2) is formulated in a very general way, it allows us
to use above conditions in the most cases of commonly used yield conditions
and also to specify any new surface, since the form of influence functions can
be chosen in an almost arbitrary way. Numerical analysis of positiveness of the
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above expressions with respect to all constant parameters of influence functions,
defines a domain of values of those parameters for which specified yield surface
is convex (see similar analysis performed by Raniecki and Mróz [4]).
As the process of material identification (determining functions and parame-

ters describing properly material’s behavior) is often considered as an optimiza-
tion problem of fitting results of simulation using the assumed model to the data
obtained from experiments (for certain objective function), conditions given by
inequalities (2.35) can be used in the optimization process as the inequality
constraints that have to be fulfilled by resultant optimal solution.

2.7. Pressure insensitive materials

Considering that the condition (2.2) describes pressure insensitive materials
– what means that ηp(p) = const. and all its derivatives are equal 0 – we can
see that κG = 0. Resultant surface is a cylindrical shaped surface with its axis
parallel to p-axis and its cross-section deformed by ηf (θ) influence function.
Convexity condition is equivalent to the statement that mean curvature κM < 0:

(2.36) 2ηf
∂2ηf
∂θ2

−
(
∂ηf
∂θ

)2

+ 4(ηf )
2 > 0.

Specific form of yield condition for pressure insensitive materials was considered
by Raniecki and Mróz in [4], namely qf(y) − 1 = 0 where y = cos(3θ).
We can obtain it by substituting ηf (θ) = [f(cos(3θ))]2 in (2.36). After proper
differentiation we obtain:

(2.37) f ′′(1− y)− f ′y +
f

9
> 0,

which is the form of convexity condition precisely analyzed by Raniecki and
Mróz in case of certain two-parameter power and exponential influence func-
tions ηf .
For pressure insensitive materials it is common that yield condition is defined

only on the octahedral plane thus the surface convexity condition requires only
convexity of a function given on that plane. Since in many cases polar coordi-
nates are convenient in use, sometimes yield condition has the form: q = r(θ),
which can be obtained by substituting ηf (θ) = [r(θ)]−2 into (2.36). After proper
differentiation we obtain:

(2.38) κ =
r2 + 2(r′)2 − rr′′

[(r′)2 + r2]3/2
> 0,

which is exactly the same as the classical expression for curvature of a function
given in polar coordinates.
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3. Summary

Three-dimensional surface given by an equation in Haigh-Westergaard coor-
dinates/Lode parameters (general form of yield condition for isotropic bodies)
was considered. Condition of its convexity (being a consequence of Drucker pos-
tulate) was analyzed. Proper inequalities were formulated for arbitrary forms
of influence functions using classical methods of differential geometry. Various
forms of convexity condition were proposed depending on yield condition for-
mulation and on various assumptions on properties of the influence function.
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The main objective of the present paper is to discuss very efficient procedure of the numer-
ical investigation of localized fracture in inelastic solids generated by impact-loaded adiabatic
processes. Particular attention is focused on the proper description of a ductile mode of fracture
propagating along the shear band for high impact velocities. This procedure of investigation is
based on utilization the finite difference method for regularized thermo-elasto-viscoplastic con-
stitutive model of damaged material. A general constitutive model of thermo-elasto-viscoplastic
damaged polycrystalline solids with a finite set of internal state variables is used. The set of
internal state variables consists of two scalars, namely equivalent inelastic deformation and vol-
ume fraction porosity. The equivalent inelastic deformation can describe the dissipation effects
generated by viscoplastic flow phenomena and the volume fraction porosity takes into account
the microdamage evolution effects. The relaxation time is used as a regularization parameter.
Fracture criterion based on the evolution of microdamage is assumed.
As a numerical example we consider dynamic shear band propagation and localized fracture

in an asymmetrically impact-loaded prenotched thin plate. The impact loading is simulated by
a velocity boundary condition which are the results of dynamic contact problem. The separation
of the projectile from the specimen, resulting from wave reflections within the projectile and
the specimen, occurs in the phenomenon.
A thin shear band region of finite width which undergoes significant deformation and

temperature rise has been determined. Its evolution until occurrence of final fracture has been
simulated. Shear band advance, microdamage and the development of the temperature field
as a function of time have been determined. Qualitative comparison of numerical results with
experimental observation data has been presented. The numerical results obtained have proven
the usefulness of the thermo-elasto-viscoplastic theory in the investigation of dynamic shear
band propagations and localized fracture.

Key words: localized fracture, finite difference method, thermo-elasto-viscoplasticity, micro-
damage.

1. Prologue

In technological processes fracture can occur as a result of an adiabatic shear
band localization generally attributed to a plastic instability generated by in-
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trinsic microdamage mechanisms within a material and thermal softening during
plastic deformation.
Recent experimental observations have shown that the shear band procreates

in a region of a body deformed where the resistance to plastic deformation is
lower and the predisposition for localized shear band formation is higher. In the
explanation of the fracture phenomenon along shear band regions very important
role has the microdamage process which consists of the nucleation, growth and
coalescence of microcracks. It has been found experimentally that in dynamic
processes the shear band regions behave differently than adjacent zones. Within
the shear band region the deformation process is characterized by very large
strains (shear band strains over 100%) and very high strain rates (104–106 s−1).
The strain rate sensitivity of a material becomes very important feature of the
shear band region and the microdamage process is intensified. The mechanism of
final failure is a simple propagation of a macrocrack along the damaged material
within the shear band region.
The main objective of the present paper is to discuss very efficient procedure

of the numerical investigation of localized fracture in inelastic solids generated by
impact-loaded adiabatic processes. Particular attention is focused on the proper
description of a ductile mode of fracture propagating along the shear band for
high impact velocities.
This procedure of investigation is based on utilization the finite difference

method for regularized thermo-elasto-viscoplastic constitutive model of dam-
aged material.
In this paper emphasis is laid on experimental and physical foundations

as well as on mathematical constitutive modelling for the description of poly-
crystalline solids in modern technological processes. Our aim is twofold. First,
particular attention will be focused on the fundamental mathematical analysis
of the initial-boundary value problem (the evolution problem) and its proper nu-
merical solution. We shall discuss the well-posedness of the evolution problem,
its discretization in space and time, its approximated scheme, and its consis-
tency, stability and convergence. Second, very important part of the discussion
will also concern the physical aspects of the dispersion waves in considered nu-
merical example. It will be proved that dispersive waves have a great influence
on the results concerning the evolution of adiabatic shear bands as well as the
propagation of the macrocrack path. It will be shown that cooperative phenom-
ena generated by the interaction of dispersive and dissipative effects influence
the final results concerning localized fracture of the considered specimen.
A general constitutive model of thermo-elasto-viscoplastic damaged poly-

crystalline solids with a finite set of internal state variables is used. The set of
internal state variables consists of two scalars, namely equivalent inelastic defor-
mation and volume fraction porosity. The equivalent inelastic deformation can
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describe the dissipation effects generated by viscoplastic flow phenomena and the
volume fraction porosity takes into account the microdamage evolution effects.
The relaxation time is used as a regularization parameter. Fracture criterion
based on the evolution of microdamage is assumed cf. Perzyna [37–39, 42–44].
The identification procedure for the material functions and constants in-

volved in the constitutive equations is developed basing on the experimen-
tal observations of adiabatic shear bands in an AISI 4340 steel presented by
Chakrabarti and Spretnak [2].
We idealize the initial-boundary value problem investigated experimentally

by Chakrabarti and Spretnak [2] by assuming the velocity driven process
for a thin steel (AISI 4340) plate.
Base on the best curve fitting of the experimental results obtained by Cha-

krabarti and Spretnak [2] for the stress-strain relation the identification
of the material constans has been done. The investigation of the stability and
convergence of the numerical method based on the finite difference discretization
has been presented, cf. Dornowski and Perzyna [11].
As a numerical example let us consider dynamic shear band propagation and

localized fracture in an asymmetrically impact–loaded prenotched thin plate,
cf. Dornowski and Perzyna [13]. The plate is made of an AISI 4340 steel.
A notch (250 µm wide) is further extended by 2 mm and is situated unsym-
metrically on the edge. The constant velocity V0 = 38 m/s is imposed for pro-
jectile. The projectile comes into contact with the specimen over the width
of 50 mm.
The impact loading is simulated by a velocity boundary condition which are

the results of dynamic contact problem. The velocity imposed in specimen in
front of projectile increases during the process. The separation of the projectile
from the specimen, resulting from wave reflections within the projectile and the
specimen, occurs in the phenomenon. All surface areas have traction free bound-
ary conditions except where the velocity boundary condition is applied. We ide-
alize the initial boundary value problem observed experimentally in Guduru,
Rosakis and Ravichandran [21], by assuming the velocity boundary condi-
tion and different material of the specimen. The discretization parameters are
assumed in such a way, to solve the problem of mesomechanics properly. The
dimension of the accepted mesh is of order 20 µm. A thin shear band region
of finite width which undergoes significant deformation and temperature rise
has been determined. Its evolution until occurrence of final fracture has been
simulated.
Shear band advance as a function of time, the evolution of the Mises stress,

equivalent plastic deformation, temperature, the microdamage and the crack
path in the fracture region have been determined. Very important result is ob-
tained for the evolution of temperature. The distribution of temperature along
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shear band is nonuniform, cf. also Glema, Łodygowski and Perzyna [20].
This result is in agreement with the experimental observations presented by
Guduru, Rosakis and Ravichandran [21]. They observed that the tempera-
ture distribution along the shear band is highly nonuniform, with discrete regions
of high temperature, that look like “hot spots”. The evolution of the microdam-
age and the crack path is very irregular and it widens steadily. It seems that
in some places of the crack we can expect the branching effect as it has been
observed by Guduru, Rosakis and Ravichandran [21]. Qualitative compari-
son of numerical results with experimental observation data has been presented.
The numerical results obtained have proven the usefulness of the thermo-elasto-
viscoplastic theory in the numerical investigation of dynamic shear band prop-
agation and localized fracture.

2. Physical and experimental motivation

2.1. Analysis of meso- and micro-mechanical problems

In modern technology we observe recently very important application of
metals, ceramics and polymers at meso- and micro-scales. Micromachines are in
this size range clearly will be of increasing technological significance. Processes
that control the mechanical integrity of microelectronic devices take also place
on this size scale, cf. Needlemen [31] and Hutchinson [24].
It is considerable experimental evidence that plastic flow and particularly lo-

calization of plastic deformation and localized fracture phenomena in crystalline
solids are inherently size dependent over meso- and micro-scales. It is generally
accepted that: “smaller is stronger” or “smaller is harder”.
Plastic behaviour at micro-scale range can not be characterized by conven-

tional plasticity theories because they incorporate no material length scale and
predict no size effect.
In recent years a variety of theoretical frameworks is emerging to describe

inelastic deformation at the meso- and micro-scales. Four such frameworks (con-
stitutive structures), each involving a length scale, are as follows: (i) discrete dis-
location plasticity; (ii) nonlocal plasticity; (iii) the coupling of matter diffusion
and deformation; (iv) elasto-viscoplasticity.
The meso- and micro-mechanical problems pose also numerical challenges.

Computations on smaller size scale require smaller time steps. Since size depen-
dent phenomena come into play when there are gradients of deformation and
stress, hence numerical methods are usually needed to obtain solutions. Finite
strains and rotations have to be taken into consideration.
At the meso- and micro-scale problems the dominant numerical methods are

the finite element and finite difference methods.
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It is noteworthy to add that the meso- and micro-scale continuum mechanics
is in an early stage of development, both in terms of the theoretical framework
as well as the computational methods.
In our consideration we shall use the thermo-elasto-viscoplasticity as a consti-

tutive model of the material and apply the finite difference method in numerical
computations.

2.2. Experimental investigation of the initiation and propagation
of shear bands

Guduru, Rosakis and Ravichandran [21] presented an experimental in-
vestigation of the initiation and propagation characteristics of dynamic shear
band in C300 maraging steel. An elastic discharge machining (EDM) notch
(260 µm wide) was further extended by 2 mm by fatigue loading, cf. Fig. 1.

Fig. 1. Specimen geometry and impact arrangment. The projectile is 127 mm long. All
dimensions shown are in milimeters (after Guduru, Rosakis and Ravichandran [21]).

In experimental investigation of Guduru,Rosakis andRavichandran [21],
two diagnostic techniques were used to observe the crack tip, the propagating
shear band and the temperature field evolution during the initiation and prop-
agation of the shear band. On one side of the specimen, the optical technique
of coherent gradient sensing (CGS) in reflection was used to monitor the evo-
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lution of the stress intensity factors as a function of time. On the other side
of specimen, a newly developed full-field, high-speed infrared (IR) imaging sys-
tem was employed to measure the evoluting, 2-D temperature field, cf. Fig. 2.
They measure the advance of the shear band and its velocity in five different
experiments, cf. Fig. 3 and 4. The shear band velocity can be seen to be highly

Fig. 2. Schematic illustration of the experimental setup. The CGS setup measures the out
plane displacement gradients on the rear side of the specimen. Simeltaneous thermal imaging
is accomplished using the IR camera on the facing side of the specimen (after Guduru,

Rosakis and Ravichandran [21]).

Fig. 3. Shear band advance as a function of time (after Guduru, Rosakis and
Ravichandran [21]).
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Fig. 4. Shear band velocity as a function of time (after Guduru, Rosakis and
Ravichandran [21]).

transient and a function of the impact speed. In all but one experiment, the
band arrests momentarily at about 30 µs, before accelerating to high speeds.
The maximum shear band velocity observed here is about 1100 m/s, cf. also
Zhou et al. [57, 58].

2.3. Fracture phenomena along localized shear bands

Fractured specimens were examined using an optical microscope to study the
features of the shear bands such as its width, trajectory, the fracture surface,
etc. The shear band is revealed as a white stripe. The thickness of the band is
about 40 µm, cf. Fig. 5. A scanning electron microscope (SEM) image of the
specimen surface that failed by shear band propagation, shows elongated voids,
with sheared edges that are characteristic of such a failure mode, cf. Fig. 6. The
presence of voids reveals the development of triaxiality tensile stress state that
led to void growth and eventual fracture.

Fig. 5. An optical micrograph of an arrested shear band (after Guduru, Rosakis and
Ravichandran [21]).
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Fig. 6. An SEM image of the fracture surface that failed by shear banding. Arrow shows the
crack propagation direction (after Guduru, Rosakis and Ravichandran [21]).

2.4. Temperature measurement

Guduru, Rosakis and Ravichandran [21] (cf. also Guduru et al. [22])
performed also broad experimental observations of the temperature field evolu-
tion during the initiation and propagation of the shear band. One of their objec-
tives of imaging the temperature field was to visualize the development of the
plastic zone at the tip of the initial crack and to observe its evolution, through
further localization, into a shear band. The IR camera was focussed at the tip
of the fatigue crack as illustrated on the left-hand side of Fig. 7. The impact

Fig. 7. A sequence of thermal images showing the transition of crack tip plastic zone into
a shear band (after Guduru, Rosakis and Ravichandran [21]).
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speed was 35 m/s. They show a sequence of thermal images revelling the devel-
opment of the temperature field as a function of time. Starting at about 21 µs,
the central hot region extends to the right, as indicated by the contour lines,
signifying the process of shear localization. The measured highest temperature
rise within the plastic zone when this happened was at least 80 K, cf. Fig. 7.
Let us now focus our attention on the temperature field associated with the

tip of a propagating shear band. The gradual nature of temperature rise at the
front end of shear band supports the notion of a very diffuse shear band tip, as
opposed to a crack tip which carries a strong singularity in the field quantities.
As the shear band propagates, the material within the band progressively

accumulates large plastic shear strains within short times and the temperature
can quickly reach very high value. Of special interest in the investigation of
Guduru, Rosakis and Ravichandran [21] has been the temperature distri-
bution along a well-defined shear band. They have been consistently observed,
in all experiments where a propagating shear band was imaged, that the temper-
ature distribution along the band is highly non-uniform, with discrete regions
of high temperature, that look like “hot spots”. These hot spots are also seen
to translate along the length of the band.

2.5. Possible shear band branching

Guduru, Rosakis and Ravichandran [21] discussed also the possibility
of shear band branching. Figure 8 shows their three micrographs that confirm
previous observation about the possibility of shear band branching mode by

Fig. 8. Optical micrographs of possible shear band bifurcation (after Guduru, Rosakis and
Ravichandran [21]).
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Meyers [30]. In the first two, the left edges are the failure paths, caused by
a propagating shear band. The third image is taken from an arrested shear
band. The branching behaviour is clearly seen in all three cases. They added
that currently there is no theoretical framework to explain such a phenomenon
and they stressed that this interesting observation requires further investigation
to understand the conditions under which such a bifurcation can take place.

3. Thermo-elasto-viscoplastic model of a material

3.1. Basic assumptions and definitions

Let us assume that a continuum body is an open bounded set B ⊂ R
3, and

let φ : B → S be a C1 configuration of B in S. The tangent of φ is denoted
F = Tφ and is called the deformation gradient of φ.
Let {XA} and {xa} denote coordinate systems on B and S respectively.

Then we refer to B ⊂ R
3 as the reference configuration of a continuum body

with particles X ∈ B and to S = φ(B) as the current configuration with points
x ∈ S. The matrix F(X, t) = ∂φ(X, t)/∂X with respect to the coordinate bases
EA(X) and ea(x) is given by

(3.1) F a
A(X, t) =

∂φa

∂XA
(X, t),

where a mapping x = φ(X, t) represents a motion of a body B.
We consider the local multiplicative decomposition

(3.2) F = Fe · Fp,

where (Fe)−1 is the deformation gradient that releases elastically the stress on
the neighbourhood φ(N (X)) in the current configuration.
Let us define the total and elastic Finger deformation tensors

(3.3) b = F · FT , be = Fe · FeT ,

respectively, and the Eulerian strain tensors as follows

(3.4) e =
1

2
(g − b−1), ee =

1

2
(g − be−1

),

where g denotes the metric tensor in the current configuration.
By definition1)

(3.5) ep = e− ee =
1

2
(be−1 − b−1)

we introduce the plastic Eulerian strain tensor.

1)For precise definition of the finite elasto-plastic deformation see Perzyna [41].
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To define objective rates for vectors and tensors we use the Lie derivative2).
Let us define the Lie derivative of a spatial tensor field t with respect to the
velocity field υ as

(3.6) Lυt = φ∗
∂

∂t
(φ∗t),

where φ∗ and φ∗ denote the pull-back and push-forward operations, respectively.
The rate of deformation tensor is defined as follows

(3.7) d♭ = Lυe
♭ =

1

2
Lυg =

1

2
(gacυ

c |b +gcbυc |a) ea ⊗ eb,

where the symbol ♭ denotes the index lowering operator and ⊗ the tensor pro-
duct,

(3.8) υa |b=
∂υa

∂xb
+ γabcυ

c,

and γabc denotes the Christoffel symbol for the general coordinate systems {xa}.
The components of the spin ω ω are given by

(3.9) ωab =
1

2
(gacυ

c |b −gcbυc |a) =
1

2

(
∂υa
∂xb

− ∂υb
∂xa

)
.

Similarly

(3.10) de♭ = Lυe
e♭ , dp♭ = Lυe

p♭ ,

and

(3.11) d = de + dp.

Let τ denote the Kirchhoff stress tensor related to the Cauchy stress tensor σ by

(3.12) τ = Jσ =
ρRef
ρ

σ,

where the Jacobian J is the determinant of the linear transformation F(X, t) =
(∂/∂X)φ(X, t), ρRef(X) and ρ(x, t) denote the mass density in the reference and
current configuration, respectively.
The Lie derivative of the Kirchhoff stress tensor τ ∈ T2(S) (elements of

T2(S) are called tensors on S, contravariant of order 2) gives

(3.13) Lυτ = φ∗
∂

∂t
(φ∗τ) =

{
F · ∂

∂t
[F−1 · (τ ◦ φ) · F−1T ] · FT

}
◦ φ−1

= τ̇− (d+ω) · τ− τ · (d+ω)T ,

2)The algebraic and dynamic interpretations of the Lie derivative have been presented by
Abraham et al. [1], cf. also Marsden and Hughes [29].
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where ◦ denotes the composition of mappings. In the coordinate system (3.13)
reads

(3.14) (Lυτ)
ab = F a

A

∂

∂t

(
F−1
c

A
τ cdF−1

d

B
)
F b
B

=
∂τab

∂t
+
∂τab

∂xc
υc − τ cb

∂υa

∂xc
− τac

∂υb

∂xc
.

Equation (3.14) defines the Oldroyd rate of the Kirchhoff stress tensor τ (cf.
Oldroyd [33]).

3.2. Constitutive postulates

Let us assume that: (i) conservation of mass, (ii) balance of momentum,
(iii) balance of moment of momentum, (iv) balance of energy, (v) entropy pro-
duction inequality hold.
We introduce the four fundamental postulates:
(i) Existence of the free energy function. It is assumed that the free energy
function is given by

(3.15) ψ = ψ̂(e,F, ϑ;µ),

where e denotes the Eulerian strain tensor, F is deformation gradient,
ϑ temperature and µ denotes a set of the internal state variables.
To extend the domain of the description of the material properties and

particularly to take into consideration different dissipation effects we have
to introduce the internal state variables represented by the vector µ.

(ii) Axiom of objectivity (spatial covariance). The constitutive structure should
be invariant with respect to any diffeomorphism (any motion) ξ : S → S
(cf. Marsden and Hughes [29]). Assuming that ξ : S → S is a regular,
orientation preserving map transforming x into x′ and Tξ is an isome-
try from TxS to Tx′S, we obtain the axiom of material frame indifference
(cf. Truesdell and Noll [54]).

(iii) The axiom of the entropy production. For any regular motion of a body
B the constitutive functions are assumed to satisfy the reduced dissipation
inequality

(3.16)
1

ρRef
τ : d− (ηϑ̇ + ψ̇)− 1

ρϑ
q · gradϑ ≥ 0,

where ρRef and ρ denote the mass density in the reference and actual con-
figuration, respectively, τ is the Kirchhoff stress tensor, d the rate of defor-
mation, η is the specific (per unit mass) entropy, and q denotes the heat
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flow vector field. Marsden and Hughes [29] proved that the reduced dis-
sipation inequality (3.16) is equivalent to the entropy production inequality
first introduced by Coleman and Noll [5] in the form of the Clausius–
Duhem inequality. In fact the Clausius–Duhem inequality gives a statement
of the second law of thermodynamics within the framework of mechanics
of continuous media, cf. Duszek and Perzyna [14], and Perzyna [42].

(iv) The evolution equation for the internal state variable vector µ is assumed
in the form as follows

(3.17) Lυµ = m̂(e,F, ϑ,µ),

where the evolution function m̂ has to be determined based on careful
physical interpretation of a set of the internal state variables and analysis
of available experimental observations.
The determination of the evolution function m̂ (in practice a finite set

of the evolution functions) appears to be the main problem of the modern
constitutive modelling.
The main objective is to develop the rate type constitutive structure for an

elastic-viscoplastic material in which the effects of the plastic non-normality,
micro-damaged mechanism and thermomechanical coupling are taken into con-
sideration. To do this it is sufficient to assume a finite set of the internal state
variables. For our practical purposes it is sufficient to assume that the internal
state vector µ has the form

(3.18) µ = (ǫp, ξ),

where ǫp is the equivalent viscoplastic deformation, i.e.

(3.19) ǫp =

t∫

0

(
2

3
dp : dp

)1/2

dt,

and ξ is volume fraction porosity and takes account for micro-damaged effects.
Let us introduce the plastic potential function f = f(J1, J2, ϑ,µ), where J1,

J2 denote the first two invariants of the Kirchhoff stress tensor τ.
Let us postulate the evolution equations as follows

(3.20) dp = ΛP, ξ̇ = Ξ,

where for elasto-viscoplastic model of a material we assume (cf. Perzyna [34–
36, 41])

(3.21) Λ =
1

Tm

〈
Φ

(
f

κ
− 1

)〉
,
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Tm denotes the relaxation time for mechanical disturbances, the isotropic work-
hardening-softening function κ is

(3.22) κ = κ̂(ǫp, ϑ, ξ),

Φ is the empirical overstress function, the bracket 〈·〉 defines the ramp function,

(3.23) P =
∂f

∂τ

∣∣∣∣
ξ=const

(∣∣∣∣
∣∣∣∣
∂f

∂τ

∣∣∣∣
∣∣∣∣
)−1

,

Ξ denotes the evolution function which has to be determined.

3.3. Intrinsic micro-damage mechanisms

To take into consideration experimentally observed time dependent effects it
is advantageous to use the proposition of the description of the intrinsic micro-
damage process presented by Perzyna [38, 39] and Duszek–Perzyna and
Perzyna [15].
Let us assume that the intrinsic micro-damage process consists of the nucle-

ation and growth mechanisms3).
Physical considerations (cf. Curran et al. [7] and Perzyna [38, 39]) have

shown that the nucleation of microvoids in dynamic loading processes which
are characterized by very short time duration is governed by the thermally–
activated mechanism. Based on this heuristic suggestion and taking into account
the influence of the stress triaxiality on the nucleation mechanism we postulate
for rate dependent plastic flow4)

(3.24)
(
ξ̇
)
nucl

=
1

Tm
h∗(ξ, ϑ)

[
exp

m∗(ϑ) | In − τn(ξ, ϑ, ǫ
p) |

kϑ
− 1

]
,

where k denotes the Boltzmann constant, h∗(ξ, ϑ) represents a void nucleation
material function which is introduced to take account of the effect of microvoid
interaction, m∗(ϑ) is a temperature dependent coefficient, τn(ξ, ϑ, ǫp) is the
porosity, temperature and equivalent plastic strain dependent threshold stress
for microvoid nucleation,

(3.25) In = a1J1 + a2

√
J ′
2 + a3

(
J ′
3

)1/3

3)Experimental observation results (cf. Shockey et al. [49]) have shown that coalescence
mechanism can be treated as nucleation and growth process on a smaller scale. This conjecture
simplifies very much the description of the intrinsic micro-damage process by taking account
only of the nucleation and growth mechanisms.
4)An analysis of the experimental observations for cycle fatigue damage mechanics at high
temperature of metals performed by Sidey and Coffin [50] suggests that the intrinsic micro-
damage process does very much depend on the strain rate effects, the wave shape effects as
well as on the stress tiaxiality.
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defines the stress intensity invariant for nucleation, ai (i = 1, 2, 3) are the ma-
terial constants, J1 denotes the first invariant of the Kirchhoff stress tensor τ,
J ′
2 and J

′
3 are the second and third invariants of the stress deviator τ

′.
For the growth mechanism we postulate (cf. Johnson [26]; Perzyna [38, 39];

Perzyna and Drabik [45] and Dornowski and Perzyna [10–12]

(3.26)
(
ξ̇
)
grow

=
1

Tm

g∗(ξ, ϑ)

κ0
[Ig − τeq(ξ, ϑ, ǫ

p)] ,

where Tmκ0 denotes the dynamic viscosity of a material, g∗(ξ, ϑ) represents a
void growth material function and takes account for void interaction, τeq(ξ, ϑ, ǫp)
is the porosity, temperature and equivalent plastic strain dependent void growth
threshold stress,

(3.27) Ig = b1J1 + b2

√
J ′
2 + b3

(
J ′
3

)1/3
,

defines the stress intensity invariant for growth and bi (i = 1, 2, 3) are the
material constants.
Finally the evolution equation for the porosity ξ has the form

(3.28) ξ̇ =
h∗(ξ, ϑ)

Tm

[
exp

m∗(ϑ) | In − τn(ξ, ϑ, ǫ
p) |

kϑ
− 1

]

+
g∗(ξ, ϑ)

Tmκ0
[Ig − τeq(ξ, ϑ, ǫ

p)] .

To have consistent theory of elasto-viscoplasticity we can replace the expo-
nential function in the nucleation term and the linear function in the growth
term by the empirical overstress Φ, then the evolution equation for the porosity
ξ takes the form as follows (cf. Perzyna [43])

(3.29) ξ̇ =
1

Tm
h∗(ξ, ϑ)

〈
Φ

[
In

τn(ξ, ϑ, ǫp)
− 1

]〉

+
1

Tm
g∗(ξ, ϑ)

〈
Φ

[
Ig

τeq(ξ, ϑ, ǫp)
− 1

]〉
.

This determines the evolution function Ξ.

3.4. Thermodynamic restrictions and rate type constitutive equations

Suppose the axiom of the entropy production holds. Then the constitutive
assumption (3.15) and the evolution equations (3.20) lead to the results as fol-
lows



314 P. PERZYNA

(3.30)

τ = ρRef
∂ψ̂

∂e
, η = −∂ψ̂

∂ϑ
,

−∂ψ̂
∂µ

· Lυµ− 1

ρϑ
q · grad ϑ ≥ 0.

The rate of internal dissipation is determined by

(3.31) ϑ̂i = −∂ψ̂
∂µ

· Lυµ = −
(
∂ψ̂

∂ǫp

√
2

3

)
Λ− ∂ψ̂

∂ξ
Ξ.

Operating on the stress relation (3.30)1 with the Lie derivative and keep-
ing the internal state vector constant, we obtain (cf. Duszek–Perzyna and
Perzyna [15])

(3.32) Lυτ = Le : d− Lthϑ̇− [(Le + gτ+ τg) : P]
1

Tm

〈
Φ

(
f

κ
− 1

)〉
,

where

(3.33) Le = ρRef
∂2ψ̂

∂e2
, Lth = −ρRef

∂2ψ̂

∂e∂ϑ
.

Substituting ψ̇ into the energy balance equation and taking into account the
results (3.30)3 and (3.31) gives

(3.34) ρϑη̇ = −divq+ ρϑ̂i.

Operating on the entropy relation (3.30)2 with the Lie derivative and sub-
stituting the result into (3.34) we obtain

(3.35) ρcpϑ̇ = −divq+ ϑ
ρ

ρRef

∂τ

∂ϑ
: d+ ρχ∗τ : dp + ρχ∗∗ξ̇,

where the specific heat

(3.36) cp = −ϑ∂
2ψ̂

∂ϑ2

and the irreversibility coefficients χ∗ and χ∗∗ are determined by

(3.37)

χ∗ = −
(
∂ψ̂

∂ǫp
− ϑ

∂2ψ̂

∂ϑ∂ǫp

)√
2

3

1

τ : P
,

χ∗∗ = −
(
∂ψ̂

∂ξ
− ϑ

∂2ψ̂

∂ϑ∂ξ

)
.
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So, a set of the constitutive equations of the rate type has the form as follows

(3.38)

Lυτ = Le : d− Lthϑ̇− [(Le + gτ + τg) : P]
1

Tm

〈
Φ

(
f

κ
− 1

)〉
,

ρcpϑ̇ = −divq+ ϑ
ρ

ρRef

∂τ

∂ϑ
: d+ ρχ∗ 1

Tm

〈
Φ

(
f

κ
− 1

)〉
τ : P+ ρχ∗∗ξ̇,

ξ̇ =
1

Tm
h∗(ξ, ϑ)

〈
Φ

[
In

τn(ξ, ϑ, ǫp)
− 1

]〉

+
1

Tm
g∗(ξ, ϑ)

〈
Φ

[
Ig

τeq(ξ, ϑ, ǫp)
− 1

]〉
.

All the material functions and the material constants should be identified based
on available experimental data.

3.5. Fracture criterion based on the evolution of micro-damage

We base the fracture criterion on the evolution of the porosity internal state
variable ξ. The volume fraction porosity ξ takes account for microdamage effects.
Let us assume that for ξ = ξF catastrophe takes place (cf. Perzyna [37]),

that is

(3.39) κ = κ̂(ǫp, ϑ, ξ)|ξ=ξF = 0.

It means that for ξ = ξF the material loses its carrying capacity. The condition
(3.39) describes the main feature observed experimentally that the load tends
to zero at the fracture point.
It is noteworthy that the isotropic hardening–softening material function κ̂

proposed in Eq. (3.22) should satisfy the fracture criterion (3.39).

3.6. Length-scale sensitivity of the constitutive model

The constitutive equations for a thermo-elastic-viscoplastic model introduce
implicitly a length-scale parameter into the dynamic initial-boundary value
problem, i.e.

(3.40) l = αcTm,

where Tm is the relaxation time for mechanical disturbances, and is directly
related to the viscosity of the material, c denotes the velocity of the propagation
of the elastic waves in the problem under consideration, and the proportionality
factor α depends on the particular initial-boundary value problem and may also
be conditioned on the microscopic properties of the material.
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The relaxation time Tm can be viewed either as a microstructural parameter
to be determined from experimental observations or as a mathematical regular-
ization parameter.

4. Discussion of the evolution problem

4.1. Initial-boundary value problem (evolution problem)

Find ϕ as function of t and x satisfying

(4.1)





(i) ϕ̇ = A(t,ϕ)ϕ+ f(t,ϕ);

(ii) ϕ(0) = ϕ0(x);

(iii) The boundary conditions;

where the unknown ϕ takes values in a Banach space, A(t,ϕ) is a spatial lin-
ear differential operator (in general unbounded) depending on t and ϕ, f is
a nonlinear function, and the dot denotes the material derivative.
The evolution problem (4.1) describes an adiabatic inelastic flow process

provided

(4.2)

ϕ =




υ

ρ
τ

ξ
ϑ



,

f =




0
0

−

〈
Φ

(
f

κ
− 1

)〉

Tm

[(
Le +

χ∗τ

ρRef
Lth + gτ + τg

)
: P

]
− χ∗∗Ξ

ρRef
Lth

Ξ
1

Tm

〈
Φ

(
f

κ
− 1

)〉
χ∗

ρRef
Lthτ : P+

χ∗∗

ρRef
Ξ




,

A =




0 0
τ

ρRefρ
grad

1

ρRef
div 0

0 −ρdiv 0 0 0

0 E : sym
∂

∂x
+ 2sym

(
τ : ∂

∂x

)
0 0 0

0 0 0 0 0

0
ϑ

cpρRef

∂τ

∂ϑ
: sym

∂

∂x
0 0 0




.
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where

(4.3) E = Le − ϑ

cpρRef
Lth ∂τ

∂ϑ

denotes the thermo-elastodynamic matrix for adiabatic process.
It is noteworthy that the spatial operator A has the same form as in thermo-

elastodynamics while all dissipative effects generated by viscoplastic flow phe-
nomena and by microdamage mechanisms influence the adiabatic impact loading
process through the nonlinear function f.
A strict solution of (4.1) with f(t,ϕ) ≡ 0 (i.e. the homogeneous evolution

problem) is defined as a function ϕ(t) ∈ E (a Banach space) such that5)

(4.4)

ϕ(t) ∈ D(A), for all t ∈ [0, tf ],

lim
∆t→0

∥∥∥∥
ϕ(t+∆t)−ϕ(t)

∆t
−Aϕ(t)

∥∥∥∥
E

= 0 for all t ∈ [0, tf ].

The boundary conditions are taken care of by restricting the domain D(A) to
elements of E that satisfy those conditions; they are assumed to be linear and
homogeneous, so that the set S of all ϕ that satisfy them is a linear manifold;
D(A) is assumed to be contained in S.
The choice of the Banach space E, as well as the domain of A, is an essential

part of the formulation of the evolution problem.

4.2. Well-posedness of the evolution problem

The homogeneous evolution problem (i.e. for f ≡ 0) is called well posed (in
the sense of Hadamard) if it has the following properties:
(i) The strict solutions are uniquely determined by their initial elements;
(ii) The set Y of all initial elements of strict solutions is dense in the Banach
space E;

(iii) For any finite interval [0, t0], t0 ∈ [0, tf ] there is a constant K = K(t0) such
that every strict solution satisfies the inequality

(4.5) ‖ϕ(t)‖ ≤ K‖ϕ0‖ for 0 ≤ t ≤ t0.

The inhomogeneous evolution problem (4.1) will be called well posed if it has
a unique solution for all reasonable choices of ϕ0 and f(t,ϕ) and if the solution
depends continuously, in some sense, on those choices.

5)We shall follow here some fundamental results which have been discussed in Richtmyer
and Morton [47], Strang and Fix [52], Richtmyer [46] and Dautray and Lions [8].
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It is evident that any solution is unique, because of the uniqueness of the
solutions of the homogeneous evolution problem. Namely, the difference of two
solutions, for given ϕ0 and given f(·), is a solution of the homogeneous problem
with zero as initial element, hence must be zero for all t.
It is possible to show (cf. Richtmyer [46]) that strict solutions exists for sets

of ϕ0 and f(·) that are dense in E and E1 (a new Banach space), respectively.
Let {F∗

t ; t ≥ 0} be a semi-group generated by the operator A+ f(·) (as it has
been defined in Section 4.1) and {Ft; t ≥ 0} be a semi-group generated by the
operator A.
Then we can write the generalized solution of the nonhomogenous evolution

problem (4.1) in alternative forms

(4.6)

ϕ(t,x) = F
∗(t)ϕ0(x)

= F(t)ϕ0(x) +

t∫

0

F(t− s)f(s,ϕ(s))ds.

The generalized solution of the nonhomogenous evolution problem (4.1) in
the form (4.6)2 is the integral equation.
The successive approximations for (4.6)2 are defined to be the functions

ϕ0,ϕ1, . . . , given by the formulas

(4.7)

ϕ0(t) = ϕ0,

. . . . . . . . .

ϕk+1(t) = F(t)ϕ0 +

t∫

0

F(t− s)f(s,ϕk(s))ds,

k = 0, 1, 2, . . . ; t ∈ [0, tf ].

It is possible to show that these functions actually exist on t ∈ [0, tf ] if
the continuous function f is Lipschitz continuous with respect to the second
argument uniformly with respect to t ∈ [0, tf ], cf. Perzyna [40]. Then (4.6)2
has unique solution (cf. also Ionescu and Sofonea [25]).

4.3. Discretization in space and time

We must approximate (4.1) twice. First, when E is infinite dimensional, we
must replace A by an operator Ah which operates in a finite dimensional space
Vh ⊂ E, where, in general, h > 0 represents a discretisation step in space, such
that dim(Vh) → ∞ as h→ 0. Second, we must discretise in time, that is to say
choose a sequence of moments tn (for example tn = n∆t, where ∆t is time step)
at which we shall calculate the approximate solution.
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Let us introduce the following semi-discretised (discrete in space) problem.

(4.8)





Find ϕh ∈ C0([0, t0];Vh) (C0 denotes the space of functions
continuous on ([0, t0], Vh)) satisfying

dϕh(t)

dt
= Ahϕh(t) + fh(t),

ϕh(0) = ϕ0,h.

The operator Ah for the finite element method can be obtained by a varia-
tional formulation approach. The discrete equations are obtained by the Galerkin
method at particular points in the domain.
Finally, we shall define a method allowing us to calculate ϕn

h ∈ Vh, an ap-
proximation to ϕh(tn) starting from ϕn−1

h (we limit ourselves to a two-level
scheme). Then we can write

(4.9) ϕn+1
h = Ch(∆t)ϕ

n
h +∆tfnh, ϕ0

h = ϕ0,h,

where we introduce the operator Ch(∆t) ∈ L(Vh) (L is the set of continuous
linear mapping of Vh with values in Vh) and where fnh approximates fh(tn).
We shall always assume that the evolution problem (4.1) is well posed and

there exists a projection Rh of E into Vh such that

(4.10) lim
h→0

|Rhϕ−ϕ|E = 0, ∀ϕ ∈ E.

4.4. Convergence, consistency and stability

The first fundamental question is that of the convergence, when h and ∆t
tend to zero, of the sequence {ϕn

h}, the solution (4.9), towards the function ϕ(t),
the solution of (4.1). Let us restrict our consideration, for the moment, to the
case where f(t) ≡ 0.

Definition 1: The scheme defined by (4.9) will be called convergent if the
condition

(4.11) ϕ0,h → ϕ0 as h→ 0

implies that

(4.12) ϕn
h → ϕ(t) as ∆t→ 0, n→ ∞ with n∆t→ t

for all t ∈ ]0, t0[, t0 ∈ [0, tf ], where ϕ
n
h is defined by (4.9) and ϕ(t) is the solution

of (4.1). All this holds for arbitrary ϕ0.
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The study of the convergence of an approximation scheme involves two fun-
damental properties of the scheme, consistency and stability.

Definition 2: The scheme defined by (4.9) is called stable, if there exists
a constant K ≥ 1 independent of h and ∆t such that

(4.13) ‖(Ch(∆t))
nRh‖L(E) ≤ K ∀n,∆t satisfying n∆t ≤ t0.

In the Definition 1 and 2 there occur two parameters h and ∆t. It may
be that the scheme is not stable (or not convergent) unless ∆t and h satisfy
supplementary hypotheses of the type ∆t/hα ≤ constant, α < 0, in which case
we call the scheme conditionally stable. If the scheme is stable for arbitrary
h and ∆t we say that it is unconditionally stable.
These schemes reflect so called explicit and implicit types of the integration

procedure in a particular umerical implementation.

Definition 3: The scheme defined by (4.9) will be called consistent with
equation (4.1) if there exists a subspace Y ⊂ E dense in E, such that for every
ϕ(t) which is a solution of (4.1) with ϕ0 ⊂ Y (and f ≡ 0) we have

(4.14) lim
h→0,∆t→0

∣∣∣∣
Ch(∆t)Rhϕ(t)−ϕ(t)

∆t
−Aϕ(t)

∣∣∣∣
E

= 0.

We see that the two essential preoccupations in the study of approximation
schemes for the solution of evolution equations are on the one hand the deter-
mination of the consistency of the scheme, more precisely the order of precision
and on the other hand its stability.
Determining the order of precision is, in general, easy, we shall therefore

study the stability of the scheme in more detail.

4.5. The Lax-Richtmyer equivalence theorem

We can now state the Lax-Richtmyer equivalence theorem (cf. Richtmyer
andMorton [47], Strang and Fix [52],Dautray and Lions [8] andGustafs-
son, Kreiss and Oliger [23]).

Theorem 1: Suppose that the evolution problem (4.1) is well-posed for
t ∈ [0, t0] and that it is approximated by the scheme (4.9), which we assume
consistent. Then the scheme is convergent if and only if it is stable.

The proof of the Lax-Richtmyer equivalence theorem for the case when the
partial differential operator A in (4.2) is independent of ϕ can be found in
Dautray and Lions [8].

Remark. Let us consider the evolution problem (4.1) with

(4.15) f(t,ϕ) 6= 0
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and ϕ0 = 0, and also the corresponding approximation (4.9). We have

(4.16) ϕn+1
h = ∆t

n∑

j=1

[Ch(∆t)]
n−jfjh.

If A is the ifinitesimal generator of a semigroup {F(t)} we can write

(4.17) ϕ(t) =

t∫

0

F(t− s)f(s)ds.

Under suitable hypotheses on the convergence of fjh to f(j∆t) we can show that
expression (4.16) converges to (4.17) if the scheme is stable and consistent.

4.6. Dispersive analysis

The most important feature is that the propagation of deformation waves in
an elastic-viscoplastic medium has dispersive nature.
The dispersion of a waveform is caused by certain physical and/or geometri-

cal characteristics of the medium in which the wave is generated. Consequently,
instead of dispersive waves, it is perhaps more precise to speak of a dispersive
medium or, where geometrical features alone cause the dispersion, a disper-
sive geometry, cf. Thau [53].
To make our analysis easier let us consider the linear case of the evolution

equation with the interpretation of the functions ϕ and f as well as the spatial
differential operator A given by (4.1) and (4.2) i.e.

(4.18) ϕ̇ = A0(t,x)ϕ+ f0(t,x)ϕ.

The theory of dispersive wave propagation can be introduced by a particu-
lar wave solution of (4.18), namely, by the simple harmonic wavetrains (cf.
Whitham [55, 56] and Thau [53])

(4.19) ϕ = A exp[i(k · x− ωt)],

where k is the wave number, ω is the frequency, and A denotes the amplitude.
Since a set of the equations (4.18) is linear, A factor out and can be arbitrary.

To satisfy a set of the equations (4.18), k and ω have to be related by an equation

(4.20) G(ω,k,x, t) = 0,

which is called the dispersion relation.
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Let us assume that the dispersion relation may be solved in the form of real
roots

(4.21) ω =W (k,x, t).

There will be a number of such solutions, in general, with different functions
W (k,x, t). We refer to these as different modes.
The phase velocity c is given as a function of wavenumber

(4.22) c(k,x, t) =
ω

k
k̂ = k−1W (k,x, t)k̂,

where k̂ is the unit vector in the k direction. For any particular mode ω =
W (k,x, t), the phase velocity c is a function of k.
Another velocity associated with the harmonic wavetrains (4.19) in dispersive

media is the group velocity C defines as

(4.23) C(k,x, t) =
∂W (k,x, t)

∂k
,

which also depends on the wavenumber k.
The derivative of C with respect to k is the symmetric dispersive tensor

(4.24) Wkk =
∂2W

∂k2
.

To have dispersive wave we have to introduce two assertions:

(4.25)

(i) W (k,x, t) is real;

(ii) det

∣∣∣∣
∂2W

∂ki∂kj

∣∣∣∣ 6= 0.

The group velocity C is having a great effect and the condition (4.25)2 ensures
that it is not a constant.
The quantity

(4.26) Θ = k · x− ωt

in the solution (4.19) is the phase. The group velocity is actually the most
important velocity associated with dispersive waves, as it not only is the velocity
of a given group of oscillations or “wavelets” in a wavetrain but also coincides
with the velocity with which the energy in that group propagates. Moreover, in
a dispersive medium any initial disturbance is eventually broken up into a system
of such groups, cf. Thau [53].
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Since the medium under consideration has also dissipation property (cf.
Eq. (4.1) in which the last term on the right hand side is responsible for dis-
sipation effect) hence mathematically, looses due to dissipation are manifested
by the dispersion relation yielding complex or pure imaginary values of W cor-
responding to real values of k. The amplitude of a harmonic wavetrain then
decays exponentially with time.
If the dissipation becomes appreciable, as is in the elastic-viscoplastic medium,

then the general theory of waves in dispersive media would require modification.
The previous consideration does not apply to general nonlinear case (cf.

Eq. (4.1)). To obtain some results we can use the variational method, the per-
turbation theory or the numerical method, cf. Sluys [51].
Dispersion is a relation between the frequency and wave number, cf.Whit-

ham [55]. The ratio of the frequency and wave number is the phase speed
whereas the derivative of the frequency with respect to the wave number is
the group speed. For nondispersive problem, both speeds are equal and on the
other hand for dispersive one the group velocity depends on the frequency and
in general is different from the phase speed. As a matter of fact, the disper-
sion of a waveform is caused by both material (physical law) and geometrical
(boundaries) characteristics of the medium (specimen) in which the wave is
generated.

4.7. Application of finite difference method

Let us consider the evolution problem in the form of (4.1). Let us introduce in
the Euclidean space E3 a regular difference net of nodes (i, j, k) with convective
coordinates χ1

i = i∆χ1, χ2
j = j∆χ2 and χ3

k = k∆χ3, i, j, k ∈ N , where N is a set
of natural numbers, cf. Dornowski [10] and Dornowski and Perzyna [11].
Of course, some of the nodes belong to the edge of the body and are used
to approximate the boundary conditions. Time is approximated by a discrete
sequence of moments tn = n∆t, where ∆t is time step, n ∈ N .
For all functions ϕ = ϕ̂(x, t) of the analysed problem we postulate the

following approximation in the domain ∆E = ∆χ1×∆χ2×∆χ3 of a convective
difference mesh (cf. Fig. 9):

(4.27) ϕ(x, t) ∼= ϕh(x, t) = a1(t) + a2(t)χ
1 + a3(t)χ

2 + a4(t)χ
3

+ a5(t)χ
1χ2 + a6(t)χ

1χ3 + a7(t)χ
2χ3 + a8(t)χ

1χ2χ3,

x ∈ ∆S.

The functions a1(t), . . . ,a8(t) depend only on time, are determined by the value
of the function ϕw(t) = [ϕ1(t), . . . ,ϕ8(t)]

T in the node points of difference
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Fig. 9. Convective finite difference mesh of nodes.

mesh, (cf. Fig. 9). Hence the approximation functions (4.27) can be written in
the form

(4.28) ϕh(x, t) = N(x)ϕw(t), x ∈ ∆S,

where

(4.29)

N1(x) = q(−∆χ1 + 2χ1)(−∆χ2 + 2χ2)(∆χ3 − 2χ3),

N2(x) = q(∆χ1 + 2χ1)(−∆χ2 + 2χ2)(−∆χ3 + 2χ3),

N3(x) = q(−∆χ1 + 2χ1)(∆χ2 + 2χ2)(−∆χ3 + 2χ3),

N4(x) = q(∆χ1 + 2χ1)(∆χ2 + 2χ2)(∆χ3 − 2χ3),

N5(x) = q(−∆χ1 + 2χ1)(−∆χ2 + 2χ2)(∆χ3 + 2χ3),

N6(x) = q(∆χ1 + 2χ1)(∆χ2 − 2χ2)(∆χ3 + 2χ3),

N7(x) = q(∆χ1 − 2χ1)(∆χ2 + 2χ2)(∆χ3 + 2χ3),

N8(x) = q(∆χ1 + 2χ1)(∆χ2 + 2χ2)(∆χ3 + 2χ3),

q =
1

8∆χ1∆χ2∆χ3
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Equations (4.28) allow to determine values of the function ϕh(x, t) in any point

of the difference mesh, x ∈ ∆S. For the central point x = x0,N1 = · · · = N8 =
1

8

and ϕh(t) = [ϕ1(t) + . . .+ϕ8(t)]
1

8
.

By using (4.28) we can determine the matrix of the difference operators which
approximate the first partial derivatives of the function ϕ(x, t) for x ∈ ∆S,

(4.30)
∂

∂x
ϕ(x, t) ∼= ∂

∂x
ϕh(x, t) =

∂

∂x
N(x)ϕw(t) = R(x)ϕw(t).

The matrix of the difference operator R(x) for the central point takes the form

(4.31) R(x = x0) =
∂

∂x
N(x)

∣∣∣∣
x=x0

=




−1

∆χ1

1

∆χ1

−1

∆χ1

1

∆χ1

−1

∆χ1

1

∆χ1

−1

∆χ1

1

∆χ1

−1

∆χ2

−1

∆χ2

1

∆χ2

1

∆χ2

−1

∆χ2

−1

∆χ2

1

∆χ2

1

∆χ2

−1

∆χ3

−1

∆χ3

−1

∆χ3

−1

∆χ3

1

∆χ3

1

∆χ3

1

∆χ3

1

∆χ3




.

In similar way we can find the difference form of the spatial difference operator
A(t,ϕ) of the considered evolution problem (4.1)

(4.32) A(t,ϕ)ϕ ∼= A(t,ϕh)N(x)ϕw(t) = Ah(t,ϕh)ϕw(t),

hence

(4.33) Ah(t,ϕh) = A(t,ϕh)N(x) for x ∈ ∆S.

For the central node, x = x0 the difference operator (4.33) depends only on
time.
As a result of the proposed approximation of the evolution problem (4.1)

with respect to the spatial variables we obtain a set of differential equations
with respect to time and difference equations with respect to spatial variables

(4.34)
dϕh(t)

dt
= Ahϕw(t) + fh(t).

For the approximation of (4.34) with respect to time we use the evident scheme
of the first order in the form

(4.35)
dϕh(t)

dt
∼= ϕn+1

h −ϕn
h

∆t
= Ahϕ

n
w + fnh .
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The solution of (4.35) is reduced to the realization of the recurrence relation

(4.36) ϕn+1
h = Ch(∆t)ϕ

n
w +∆tfnh .

The difference operator

(4.37) Ch(∆t) = ∆tAh +N

couple dependent variables and various points of difference mesh.
For the finite difference approximation it can be proved that the introduced

scheme (4.36) is consistent with equation (4.1).

4.8. Stability criterion

In explicit finite difference scheme for a set of the partial differential equations
(4.1)1 of the hiperbolic type the condition of stability is assumed as the criterion
of Courant–Friedrichs–Lewy, cf. Courant et al. [6]

(4.38)
∆tn,n+1 ≤ min

(
∆Ln

p,q,r∣∣cnp,q,r
∣∣

)
,

p = 1, 2, 3, . . . , P ; q = 1, 2, 3, . . . , Q; r = 1, 2, 3, . . . , R,

where ∆tn,n+1 denotes time step, cnp,q,r denotes the velocity of the propagation
of the disturbances in the vicinity of the central node (p, q, r), ∆Ln

p,q,r is the
minimum distance between the mesh nodes which are in the vicinity of the node
(cf. Fig. 9).
The Courant–Friedrichs–Lewy condition requires that the numerical domain

of dependence of a finite-difference scheme include the domain of dependence of
the associated partial differential equations, cf. Durran [16].
We can now use the Lax–Richtmyer equivalence theorem (cf. Theorem 1 in

Subsec. 4.5).

5. Identification procedure

5.1. Assumption of the material functions for an adiabatic process

To do the proper identification procedure we first make assumption of the
material functions (cf. Dornowski and Perzyna [11]).
The plastic potential function f is assumed in the form (cf. Perzyna [37]

and Shima and Oyane [48])

(5.1) f =
{
J

′

2 + [n1(ϑ) + n2(ϑ)ξ] J
2
1

}1/2
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where

(5.2)
n1(ϑ) = 0,

n2(ϑ) = n = const.

The isotropic work-hardening-softening function κ is postulated as (cf. Perzyna
[38] and Nemes and Eftis [32])

(5.3) κ = κ̂(ǫp, ϑ, ξ)

= {κs(ϑ)− [κs(ϑ)− κ0(ϑ)] exp [−δ(ϑ)ǫp]}
[
1−

(
ξ

ξF

)β(ϑ)
]
,

where

(5.4)

κs(ϑ) = κ∗s(1− ιϑ), κ0(ϑ) = κ∗0(1− ιϑ),

δ(ϑ) = δ∗(1− ιϑ), β(ϑ) = β∗(1− ιϑ), ϑ =
ϑ− ϑ0
ϑ0

.

The overstress function Φ
(
f

κ
− 1

)
is assumed in the form

(5.5) Φ

(
f

κ
− 1

)
=

(
f

κ
− 1

)m

.

The evolution equation for the porosity ξ is postulated as

(5.6) ξ̇ = ξ̇grow =
g∗(ξ, ϑ)

Tmκ0(ϑ)
[Ig − τeq(ξ, ϑ, ǫ

p)]

where (cf. Dornowski [9])

(5.7)

g∗(ξ, ϑ) = c1(ϑ)
ξ

1− ξ
,

Ig = b1J1 + b2
√
J2,

τeq(ξ, ϑ, ǫ
p) = c2(ϑ)(1− ξ) ln

1

ξ
{2κs(ϑ)− [κs(ϑ)− κ0(ϑ)]F (ξ0, ξ, ϑ)} ,

c1(ϑ) = const, c2(ϑ) = const,

F (ξ0, ξ, ϑ) =

(
ξ0

1− ξ0

1− ξ

ξ

) 2
3
δ

+

(
1− ξ

1− ξ0

) 2
3
δ

.
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As in the infinitesimal theory of elasticity we assume linear properties of the
material, i.e.

(5.8) Le = 2µI+ λ(g ⊗ g),

where µ and λ denote the Lamé constants, and the thermal expansion matrix
is postulated as

(5.9) Lth = (2µ+ 3λ)θg,

where θ is the thermal expansion constant (θ = 12 · 10−6 K−1).

5.2. Identification of the material constants

To determine the material constants assumed in Subsec. 5.1 we take advan-
tage of the experimental observations presented by Chakrabarti and Spret-
nak [2]. They investigated the localized fracture mode for tensile steel sheet
specimens simulating both plane stress and plane strain processes. The mate-
rial used in their study was AISI 4340 steel. The principal variable in this flat
specimen test was the width-to-thickness ratio. Variation in specimen geometry
produces significant changes in stress state, directions of shear bands, and duc-
tility. They found that fracture propagated consistently along the shear band
localized region.
Let us now consider the adiabatic dynamic process for a thin steel plate

under condition of plane stress state. In fact we idealize the initial-boundary
value problem investigated by Chakrabarti and Spretnak [2] by assuming
the velocity driven adiabatic process for a thin steel plate. Dimensions of the
plate and the variation in time of the kinematic constraints are presented in
Fig. 10. The problem has been solved by using the finite difference method.
A thin sheet is modelled via N ×M elements, cf. Fig. 10.

Fig. 10. Dimension of the plate and the variation in time of the kinematic constrains
(after Chakrabarti and Spretnak [2]).
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In numerical calculations it is assumed:

V0 = 1.5 m/s,

t0 = 50 µs,

tf = 800 µs.

The material of a plate is AISI 4340 steel.
Based on the best curve fitting of the experimental results obtained by

Chakrabarti and Spretnak [2] for the stress-strain relation (cf. Fig. 11)
the identification of the material constants has been done, cf. Table 1.

Fig. 11. Component SY Y of the second Piola–Kirchhoff stress tensor as a function
of the logarithmic strain εY Y .

Table 1. An AISI 4340 steel (plate).

κ∗

s = 1155 MPa ϑ0 = 293 K c1 = 0.1 ξ0 = 6 · 10
−4 ν = 0.3

κ∗

0 = 808 MPa ι = 0.1 c2 = 0.067 ξF = 0.25 E = 208 GPa

δ∗ = 14 Tm = 1 µs b1 = 0.58 n = 0.25 ρRef = 7850 kg/m3

β∗
= 9 m = 1 b2 = 1.73 χ = 0.9 cp = 455 J/kg K

5.3. Investigation of stability and convergence

Using the same initial-boundary value problem we can investigate the con-
vergence of the numerical method based on the finite difference discretization.
In this analysis we assume that the micro-damage evolution is investigated.
For a thin steel plate five different meshes have been assumed. In Fig. 12 dis-
tributions of the equivalent plastic deformation along the middle cross-section
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Fig. 12. Distributions of the equivalent plastic deformation along the middle cross-section
(X = a0/2) for various meshes.

(X = a0/2) for various meshes are presented. Similar results for temperature
are showed in Fig. 13. All curves are plotted in the initial configuration of the
specimen and for finite time of the process, tf = 800 µs. The deformed meshes
with various densities of nodes are presented in Fig. 14. Both analysed values
shown in Fig. 12 and 13 have strong increase in the middle region of the plate.
This suggests that in that region of the specimen the localization of plastic de-

Fig. 13. Distributions of the temperature along the middle cross-section (X = a0/2) for
various meshes.
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Fig. 14. Deformed meshes with various densities of nodes.

formation takes place. Based on the results for distributions of the equivalent
plastic deformation plotted in Fig. 12 we can observe that the finite width of
the localized region needs appropriate density for the finite difference mesh (in
considered case higher than 864 nodes).
The numerical procedure for the explicit finite difference scheme (4.36) has

been accomplished with various time step ∆t. The value of the time step has
been determined by using the stability criterion (4.38). In Fig. 15 the evolution
of the time step ∆t in the deformation process for the mesh N ×M = 3456
has been shown. For the considered deformation process the time step ∆t is
decreasing function of time.
The stability of the numerical procedure with constant time step can be

keeping in entire interval [0, tf ] provided we assume ∆t = 0.025 µs. Then as
a result for the considered deformation process we have 32 000 time steps. While
the analogical process with various time step ∆t is accomplished for 26 603 time
steps. This decreases very much time of computation. Very intense change of
time step ∆t observed from t = 0.6 ms in Fig. 15 is caused by the formation of
the shear band localization.
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Fig. 15. Evolution of the time step ∆t for a mesh with 3456 nodes.

The results obtained show that the satisfaction of the stability criterion
(4.38) leads to the convergence of the numerical procedure. We can conclude that
the assumed finite difference scheme (4.36) approximates the well posed initial–
boundary value problem (4.1). These results can be treated as the numerical
proof of the Lax–Richtmyer equivalence theorem formulated in Subsec. 4.8.

5.4. Investigation of localization and fracture phenomena

Let us consider again the adiabatic dynamic process for a thin steel plate
under condition of plane stress state which idealized the experimental observa-
tions of the localized fracture mode for tensile steel sheet specimens performed
by Chakrabarti and Spretnak [2], cf. Subsec. 5.2.
In Fig. 16 distributions of the equivalent plastic deformation in a thin plate

for chosen instants of the deformation process are presented.
The development of macrocracks in a thin plate has been shown in Figs. 17

and 18 and the deformed configuration for final fracture of a plate is presented
in Fig. 19.
The results presented permit to draw some conclusions concerning the adia-

batic dynamic deformation process for a thin steel plate considered. We observe
that two cross shear bands are developed in the center of the specimen. With
continued loading process, one of the instability bands becomes more predom-
inant and most of the plastic deformation is confirmed to this particular adia-
batic shear band. Fracture occurs along the boundary of this active instability
band. The symmetry breaking in the deformation process observed is only due



MICROMECHANICS OF LOCALIZED FRACTURE PHENOMENA. . . 333

Fig. 16. Distributions of the equivalent plastic strain in a thin plate for chosen instants
of the deformation process.
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Fig. 17. Distribution of the microdamage for chosen instants of the deformation process.
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Fig. 18. Development of macrocracks in a thin plate.

Fig. 19. Deformed configuration for final fracture of the plate.
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to very small imperfections generated by numerical procedure. The obtained
results are in accord with the experimental observations of Chakrabarti and
Spretnak [2], cf. Fig. 20.

a) b)

c) d) e)

Fig. 20. Initiation and gradual development of instability bands in 0.099 cm thick specimen.
One of the instability bands is getting predominant and much of the plastic deformation gets
confined in this active band, cf. b)–d); failure takes place by shearing through the instability
boundary of active instability band, cf. e) (after Chakrabarti and Spretnak [2]).
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6. Numerical example

6.1. Numerical solution of the initial boundary-value problem

We analyse the impact loaded plate with a pre-notched crack (Fig. 21).
The material of the plate is assumed as a AISI 4340 steel and is modeled as
elasto-viscoplastic with isotropic hardening-softening effects. We assume that
the material softening is caused by intrinsic microdamage mechanism and ther-
momechanical coupling effect. The height of the specimen is equal to 200 mm,
width is 100 mm and length of the initial crack (notch) is equal to 50 mm and
is situated unsymmetrically, i.e., 110 mm from the bottom. The plane stress
state is considered. As it is shown in Fig. 21, this specimen is loaded asym-
metrically to the notch axis. The initial boundary value problem is different
than those considered previously by Dornowski and Perzyna [13] and Li
et al. [27].

Fig. 21. The impact loaded plate with a prenotched crack.

To obtain the solution of the initial-boundary value problem formulated the
finite difference method for regularized elasto-viscoplastic model is used6). The

6)Numerical modelling of localized fracture phenomena in inelastic solids in dynamic load-
ing processes by means of finite element method has been presented by Łodygowski and
Perzyna [28].
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loading condition is modeled by the velocity of nodes lying on the edge section
with length equals to 50 mm, according to the relation

(6.1) V (t) = V0t/t0 for t ≤ t0 and V (t) = V0 for t > t0.

The rise time t0 is fixed at 1.0 µs and the speed impact V0 = 38 m/s. Initial
conditions of the problem are homogeneous. In the discussion of the numerical
results attention is focused mostly on the phenomenon of crack propagation.
The finite difference method with the explicit time integration scheme (con-

ditionally stable) is used. The stress state in a nodal environment is determined
by the iterative procedure of solving the dynamical yield condition with respect
to the norm of the plastic deformation rate tensor. The elaborated algorithm
satisfies the material objectivity principle with respect to diffeomorphism (any
motion). We assume a nonuniform mesh of nodes which contain 180 000 nodes.
The smallest mesh has the dimensions ∆χ1 = ∆χ2 = 40 µm, the time increment
∆t = 0.00356 µs.
Figure 22 shows the Mises stress contour in the failure region following the

impact. It can be clearly observed that the crack follow the path of the greatest
Mises stress (the white band). The crack path changes its direction and has
irregular (ragged) edges.

Fig. 22. Misses stress contours in the failure region.

In Fig. 23 the equivalent plastic strain distribution is displayed. It shows
that there is a strain concentration region right in the front of the pre-notch
tip. Along with the shear band progress the equivalent plastic strain inten-
sity decreases. It confirms that the shear band transforms into an opening
crack.
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Fig. 23. Evolution of the equivalent plastic deformation in the fracture region.

The evolution of temperature is shown in Fig. 24. Zones of increased tem-
perature correspond to the plastic zones. The maximum value of temperature
is ϑmax = 750 K. The effect of such a strong heating of the material results
from its mechanical properties, i.e. the high strength steel, Rm = 2000 MPa.
From Fig. 24 one may see that the computed temperature distribution is very
heterogeneous. The similar effect has been noticed in experimental observations
by Guduru, Rosakis and Ravichandran [21].

Fig. 24. Evolution of temperature in the fracture region.
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In Fig. 25 the evolution of microdamage is presented. It can be clearly ob-
served that the crack path (a black line) is very irregular and it widens steadily.

Fig. 25. Evolution of the microdamage and the crack path in the fracture region.

6.2. Discussion of the numerical results

From Fig. 22 we can observed that the macrocrack follows the path of the

maximum value of the Mises stress τM =

(
2

3
τ′ : τ′

)1/2

. The macrocrack path

changes its direction and has irregular edges. It results from the dispersive stress
wave interaction and reflection of the considered impact adiabatic process as well
as from the fact that the shear band transforms into an opening macrocrack,
cf. Glema, Łodygowski and Perzyna [17–19]. The dissipation effect due to
viscoplastic flow phenomena is observed in Fig. 23 as decay of the equivalent
viscoplastic deformation intensity along with the shear band progress.
From Fig. 24 one may see that the computed temperature distribution along

a propagating shear band is very heterogeneous and nonuniform. A similar
effect has been noticed in experimental observations by Guduru, Rosakis
and Ravichandran [21]. They consistently observed, in all experiments where
a propagating shear band was imaged, that the temperature distribution along
the shear band is highly non-uniform, with discrete regions of high temperature,
that look like “hot spots”. These hot spots are also seen to translate along the
length of the shear band. Figure 26 shows one such image where the hot spots
can be identified easily. This observation raises question about the spatial and
temporal nature of shear deformation inside a shear band. We suggest that the
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reason of this phenomenon is caused by interaction and reflection of dispersive
stress waves during observed impact adiabatic process.

Fig. 26. A thermal image of a shear band showing non-uniform temperature distribution
along the length of the band. After Guduru, Rosakis and Ravichandran [21].

In our recent paper Glema, Łodygowski and Perzyna [20] investigated
this problem numerically by using the finite element method and ABAQUS
system. We used regularized thermo-elasto-viscoplastic constitutive model with
one scalar internal state variable, namely equivalent inelastic deformation. We
considered the initial boundary value problem, cf. Fig. 27, which is idealization
of the process observed experimentally by Guduru, Rosakis and Ravichan-
dran [21], by assuming the velocity boundary condition and different material of
the specimen (HY-100 steel). To identify the material functions and constants we
used the experimental observation results obtained by Cho, Chi and Duffy [4],
cf. also Chi et al. [3]. The contour plots of equivalent inelastic deformation and
temperature obtained for time instants 40, 50, 60 µs are visualized in Fig. 28
for unsymmetric impact. To show better that we obtained non-uniform tem-
perature distribution along the shear band we present the magnification of the
result for the field of temperature at 60 µs in Fig. 29. The function of shear band
length and propagation velocity of it front were also calculated, cf. Fig. 30. The
advances of shear band length in experimental observations and in numerical
computations have similar find values and the functions presenting its evolution
are comparable. The comparison of the shear band propagation velocity reaches
the same conclusion.
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Fig. 27. Specimen geometry.

Fig. 28. Evolution of plastic equivalent deformation and temperature along the shear band
for unsymmetric impact (for 40, 50, 60 µs).

Rather the qualitative agreement is verified, than strict comparison of values.
The common sudden velocity drop, observed in experiment and simulations, is
specially worth to point it out.
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Fig. 29. Magnification of the results for the field of temperature at 60 µs for unsymmetric
impact.

Fig. 30. Propagation velocity of shear band front and shear band length as functions of
time, for unsymmetric impacts.

The remark concerning the temperature distribution goes in the same di-
rection. There is valuable to expose that numerical results show the particular
character of experimental ones, with occurrence of discrete regions of high tem-
perature, that are described as “hot spots”, cf. Fig. 29. Appearance of several
local extremes take place after the mentioned above drop of propagation ve-
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locity of the shear band tip. The evolution of described variables suggests the
step-wise nature of shear band propagation phenomena caused by the reflection
and interaction of dispersive stress waves during impact adiabatic process.
From the results presented in Figs. 22–25 one can easy observe that the lo-

calized fracture is preceded by the propagation of the shear band7). This is also
visible in Fig. 25, where the propagated localized region of critical microdamage
(it means the fracture front for ξ = ξF ) is preceded by the shear band along
which the microdamage is smaller than ξ = ξF . The evolution of the microdam-
age and the macrocrack path in the fracture region shown in Fig. 25 indicates
that the macrocrack path is very irregular and it widens steadily. It seems that
in some places of the macrocrack we can expect the branching effect as it has
been observed by Guduru, Rosakis and Ravichandran [21], cf. Fig. 8.
Of course, we have to take into account that during experimental observa-

tions they investigated real material (C300 steel), which can have some impuri-
ties, which help to generate the shear band bifurcation, while we assumed fully
homogeneous material of the plate for our numerical simulation.
We can conclude that the shear band branching can be generated by reflec-

tion and interaction of dispersive stress waves during adiabatic impact process
and by some real existing impurities of the investigated material.

7. Epilogue

The elaborated numerical algorithm satisfies the material objectivity princi-
ple with respect to diffeomorphism (any motion). The discretization parameters
are assumed in such a way that the problem of mesomechanics is solved properly.
A thin shear band region of finite width which undergoes significant deformation
and temperature rise has been determined. Its evolution until occurrence of final
fracture has been simulated. Shear band advance, as a function of time and the
evolution of the Mises stress, equivalent plastic deformation, temperature and
the macrocrack path in the fracture region have been determined. Qualitative
comparison of numerical results with experimental observation data has been
presented. Based on this comparison we can conclude that our numerical re-
sults are in accord with the experimental observations performed by Guduru,
Rosakis and Ravichandran [21]. Particularly, in our numerical simulation
the temperature evolution along the shear band region is very nonuniform and
the obtained macrocrack path is very irregular and is showing a tendency to
branching phenomenon similarly as have been suggested by experimental ob-
servations. The numerical results obtained have been proven the usefulness of

7)For a thorough discussion of numerical investigation of propagation of shear bands in
inelastic solids please consult Glema, Łodygowski and Perzyna [20].
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the thermo-elasto-viscoplastic theory in the numerical investigation of dynamic
shear band propagation and localized fracture phenomena.
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