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Besides the common failure mechanism based on crack propagation, adiabatic shear failure
results from a collapse mechanism, mainly at high deformation rates. This failure incorporates
locally extreme high shear strains, but due to the small volume involved, it transpires in
a macroscopic brittle manner. This paper deals with the description of the influence of material
properties on adiabatic shear failure. In the literature, much information can be found, which
supports the theory that some material properties influence the occurrence of adiabatic shear
failure behavior in a positive or negative manner. The determination of propensity for the
investigated steels was done through special biaxial dynamic compression-shear-test in a drop
weight tower. The failure achieved in the test is only material-dependent. Furthermore, it
was found, that the theory of Culver with the competing processes of work hardening and
thermal softening is transferable on the tested materials in a qualitative manner. Additionally,
it was determined that few material properties have a strong controlling effect on the adiabatic
shear failure behavior and it is possible to determine a critical value for transition between
sheared and non sheared areas. Moreover, it could define a functional correlation of the failed
materials to certain properties. As a main result, the most important material property is the
dynamic compression behavior at high temperature. The stress level of the material and the
characteristic in dependence of temperature is decisive. Analytical considerations using high
temperature behavior patterns confirm this influence. Additionally, hardness and strength at
room temperature and the pure shear capability (hat-shaped specimen) are also important for
the evaluation of adiabatic failure behavior.

1. Introduction

In addition to the common failure mechanism based on crack propagation ef-
fects, another failure mechanism exists; this additional failure mechanism, which
occurs mainly at high deformation rates, is the adiabatic shear failure. This local-
ized failure yields to a macroscopic brittle rupture and thereby, to a reduction in
the energy consumption. This failure behavior occurs in various technical areas,
such as machining, forging, blanking, ballistics (target and penetrator), crash,
surface friction, and detonative loading. The adiabatic shear failure behavior
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is mainly exhibited in metallic materials, like steel, titanium or aluminium, al-
though it can also appear at plastics, rocks or ceramics.
In the literature much information can be found which supports the theory

that some material properties influence the adiabatic shear failure behavior in
a positive or negative manner. Tresca [1] and Zener and Hollomon [2] have
observed that the strength and the heat capacity, as well as the thermal softening
of the materials, have an important influence on the adiabatic shear behavior.
Nowadays it is known that a lower strain hardening coefficient [3–5], a lower
strain rate dependence [6–7], a lower heat capacity or thermal conductivity
[3–5], a lower grain size [3, 8] or a lower density of the material [7–9], promote
the adiabatic shear failure behavior. Additionally, a high hardness [10–13], a high
strength [3, 4, 14, 15], a high thermal softening [3–5], a high loading velocity
[5, 8, 16], a high pre-deformation [3, 17], and a high specimen size [18], promotes
the adiabatic shear failure behavior too. Furthermore, additional properties ex-
ist, for example initial temperature [19], hydrostatic stress state [20, 21], and
tensile loading [4]. Even considering these factors, they may promote or inhibit
adiabatic shear failure depending on the precise circumstances.
The question then arises: which material properties have the strongest in-

fluence on adiabatic shear failure for the investigated materials in this study?
Observing and measuring the adiabatic shear failure behavior was accomplished
through the performance of materials under different experimental tests, firstly
with compression and compression-shear-loading. Furthermore, there is much
discussion concerning high temperature compressive strength, the Culver-theory
[22], analytical consideration and a description of the correlation between the
material properties and the adiabatic failure behavior of the materials.
The aim of this study is to point out the material properties which have

strong influence on the adiabatic shear failure behavior for high strength low-
alloyed steels. Is it possible to find correlations and associated material proper-
ties? The next issue involves the validity of the Culver-theory on the observed
materials and a discussion of the influence of high temperature behavior on the
adiabatic failure process.

2. Adiabatic shear phenomena

The beginning of the adiabatic shear failure process is initiated by mutual
displacement of material areas. This displacement is shown through the align-
ment of segregation lines in the vicinity of a transformed shear band in a certain
quenched and tempered steel (Fig. 1).
This deformation process undergoes mainly of high deformation velocity and

is locally concentrated. Because of the high strain rate, the generated heat due to
the strain hardening cannot dissipate in the surrounding material; thus, a tem-
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Fig. 1. Transformed shear band with segregation lines after DORMEVAL 1987.

perature rise will develop in the deformed region. Hence, a local temperature rise
and a temperature gradient in the specimen, or in a component of the specimen,
occur and manifest as a localized strength reduction. This process is further am-
plified and more localized, while further inducing a decrease in strength until
the formation of an adiabatic shear band occurs and finally the failure appears.
The difference between the appearance of an adiabatic shear failure and the

appearance of a classical fracture is shown in Fig. 2. In the classical fracture
evaluation there is a differentiation from a brittle fracture compared to a ductile
mixed and a pure ductile shear fracture. This ductile fracture is forced through
shear stresses similar to the behavior under compression-shear-loading (Fig. 2
lower left). At very high loading rates, a local adiabatic deformation occurs and
the rupture concentrates to low volumes, which is leading to brittle kind of
fracture with low global, but high local energy consumption. The final result is
comparable to the classical brittle fracture.

Fig. 2. Comparison of classical fracture modes to the adiabatic shear failure.
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The investigations on adiabatic shear failure began in 1879 with Tresca [1].
He described the phenomenon of forging cross on a Pt-Ir-alloy and observed
that a material’s strength and heat capacity have an important influence on its
adiabatic shear failure. In 1944, Zener and Hollomon [2] originated the theory
of thermal instability due to the intense plastic deformation. Further research
into the effects of strengthening and softening was conducted by Recht [23]
in 1964 and Culver [22] in 1973. In the decades from the 1960s to the 1990s,
investigations concerning the influence of the material behavior to the adiabatic
shear failure were made by Rogers [24], Dormeval [4], Meyers [25], and
Bai and Dodd [20]. In more recent years, studies of mechanical description
have been made by Clifton [26] and Wright [27]. Additionally, studies of
the microstructure of the initiation and development of shear bands have been
performed by Meyers [28] and Xu [5].
Published literature contains a broad range of statements, which properties

have an influence on the initiation of the adiabatic shear failure. These results
can be divided into four groups. One group deals with the stress state (shear
strength, shear strain, shear rate); a second group deals with the loading con-
ditions such as temperature, stress state, energy or velocity. The third group
deals with the microstructure of the material (precipitations, inclusions, voids
etc.) and the fourth group describes the influence of the material properties such
as density, heat capacity, strain hardening coefficient or thermal softening. The
present study will be concentrated on the fourth group, material properties.
There are different assumptions for the critical condition of the beginning

of the adiabatic shear failure. Most authors assume it is necessary to reach
a certain amount of strain (Culver [22], Bai and Dodd [20] or Staker [29]).
Other authors contend that a certain level of strain rate is crucial for the ini-
tiation of adiabatic shear bands (Recht [23] and Klepaczko [30]). Wang
et al. [31] and Xu [5] describe a critical value as a consideration for strain and
strain rate. Furthermore, there are assumptions that a critical energy must exist
(Wang and Rittel [19]) or that a definite fracture toughness value are neces-
sary (Grady [32]). Nowadays there are results that a dynamic recrystallization
(called DRX) is responsible for the initiation condition [45, 46].
A well-known theory for describing of adiabatic shear failure is based on the

principle from the work hardening and thermal softening of the material. These
competing processes are described in a relation that shows the parts separately
(Eq. (2.1)).

(2.1) dσ =

(
∂σ

∂ε

)

ε̇, T

dε+

(
∂σ

∂ε̇

)

ε, T

dε̇+

(
∂σ

dT

)

ε̇, ε

dT.

Adiabatic shear failure can occur, when the thermal softening of the material
overcomes the strengthening due to the strain hardening and the strain rate
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hardening [4, 23, 25, 27]. The first term described the strain hardening, the
second term – the strain rate hardening and the third term the thermal softening
behavior, which acts against the first and second term. With the negligence of
the second part and the differentiation with dε, a criterion can be formulated
for instability (Eq. (2.2); Recht [23], Culver [22], Bai and Dodd [20]):

(2.2)
(
∂σ

∂ε

)

ε̇, T

+

(
∂σ

∂T

)

ε̇, ε

dT

dε
= 0.

The left term describes the influence of the strain hardening and the right
term – the thermal softening behavior. The failure behavior can be imagined as
a form of a convex adiabatic curve. When the equilibrium of both competing
processes is reached, identical with the apex of the curve, an adiabatic shear
failure can occur. From the above displayed softening theory Culver [22] has
evolved a plain relation (Eq. (2.3)) to predict the failure strain of the material.
Culver has made three assumptions. The strain hardening coefficient nT from
the isothermal behavior will substitute through the static one. The thermal
softening behavior of the materials will remain linear and the stress relation
(σT /σD) between dynamic isothermal and the dynamic adiabatic value will be
neglected. Furthermore the density, the heat capacity and the Taylor-Quinney
factor are contained.

(2.3) εi =
nT · ρ · cp

0.9(∂σ/∂T )
· σT
σD

.

One objective of this study is to evaluate whether this theory from Culver is
applicable to the investigated materials. The second objective of the examina-
tion, is to determine if there are additional material properties other than the
thermal softening or hardness, which may influence the adiabatic shear failure
behavior.

3. Test procedure and materials

Many different experimental methods exist to determine the propensity of
a material to fail under adiabatic shear condition. Several test techniques are
based on geometrical discontinuities, such as pure torsion [3, 4, 20, 27], hat-
shaped [5, 27, 33, 40], single or double edge [16, 34], and punch loading [2, 3,
20, 43]. Alternatively, some techniques exist, where the failure is mainly depen-
dent on the material behavior and is not initially influenced by geometry effects,
such as compression [4, 27], compression-shear [35–37] or cylinder expansion test
[5, 10, 20].
The determination of propensity for the investigated materials was done

through a special biaxial dynamic compression-shear test at about 2 m/s in
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a drop weight tower, Fig. 3. The drop weight has a mass of 600 kg and can be
stopped at desired displacement; thus, a visualization of development of adia-
batic shear bands versus applied strains or from dark to white etching charac-
ter is possible. This compression-shear specimen was invented by Meyer and
Staskewitsch [39, 44] so that a wider differentiation of materials is available
to contrast against the plain compression loading. For this reason the usual
compression specimen is inclined a few degrees against the loading axis, with
the effect of an enhanced multiaxial compression/shear loading. Depending on
the desired amount of additional shear stresses, the inclination can be varied
to max 10◦. The specimens used in this study were 6◦ inclined. This little in-
clination will induce a certain biaxial compression-shear state in the specimen.
Already this stress-state with only 10% of additional shear stresses challenges
the material to fail with adiabatic shearing or not.

Fig. 3. Drop weight tower and test specimen.

The advantage of this technique is the absence of the influence of a stress
enhancement like a surface flaw or a notch on the failure strain. The failure
development is only dependent on the material’s properties. As the first result
of this test, it can be determined whether or not there is an occurrence of
adiabatic shear failure. When shear failure occurs, a corresponding axial failure
strain can be determined. Therefore, it is possible to give a qualitative and a
quantitative result for an evaluation of the propensity of materials for adiabatic
shear failure.
Additional tests were used for the determination of the correlations between

material properties and adiabatic shear failure. Conducted were compression
tests at room temperature and at high temperature, in order to measure the
material’s strength for the evaluation of the thermal softening of the materials.
An often used technique is the use of the hat-shaped specimen, which was created
by Hartmann and Meyer [40]. The advantage of the hat-shaped test is that
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it can be used to test very ductile materials in a Compression-Setup such as
SHPB or drop weight tower and a comparison between small and larger failure
strain can be made. Tension tests were used for static and dynamic (1 m/s)
velocities with a rotating wheel to determine values of strength and ductility.
Also hardness tests, Charpy impact and fracture toughness tests were performed.
The materials used were several quenched and tempered steels with a broad

range of hardness between 300 and 600 HB. The microstructure of the materials
is a tempered martensitic structure.

4. Experimental results and discussion

Biaxial compression-shear tests were performed to verify the propensity to
adiabatic shear failure of the materials. The specimens were tested at approxi-
mately 2 m/s with a drop weight device at room temperature. During the test
the force and the displacement were both measured. A representative selection
from all the materials with the axial engineering or technical compressive stress
versus the axial technical strain is shown in Fig. 4 (left). It can be seen that two
different behaviors exist. A few steels, with lower flow stresses, exhibit a more
or less homogenous deformation until the limitation of displacement is reached.
The other group of materials (about half of the investigated materials), shows
sudden stress drop at lower strains. At this point the material failed due to adi-
abatic shearing. This measured amount of reduction for all failed materials was
applied to determine additional correlations. It can be seen that exist different
failure strengths and failure strains for the different steels. An initial considera-
tion of the stress level shows that high strength steels are much more prone to
adiabatic shear failure than the lower strength materials. This correlates to the
hardness of the materials, Fig. 4 (right). With low hardness values, no adiabatic

Fig. 4. Stress-strain behavior of the compression-shear test (ε̇ = 200 s−1) and the correlation
with the hardness.
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shear failure occurred. The grey points are defined at a deformation limit of the
drop weight device. At certain hardness, first times adiabatic shear failure be-
gins. As the material’s hardness increases, the failure strain declines along with
potential function. These results are valid for the materials and for the strain
rate of ε̇ = 200 s−1 investigated in this study. This dependence, already cited in
the literature, is hereby confirmed.
The next examinations involve (pure) compression loading at room tempera-

ture. A selection of true stress-true strain-diagrams of the investigated materials
at a strain rate of ε̇ = 200 s−1 is shown in Fig. 5. The material behavior under
this adiabatic condition begins at the lowest strength level with a pure strain
hardening behavior, for example of a plain carbon steel. In the medium strength
level, for example HSLA-steel, there an equilibrium between strain hardening
and softening is existing. At the highest strength level mainly a softening be-
haviour occurs. These flow stress variations, responding to the hardening or
softening behavior under dynamic compression loading, are arranged after their
amounts in Fig. 5 (right). It can be seen that materials with a strong decline
are prone to fail through adiabatic shearing. On the other hand there is an area
with positive values, i.e. a hardening behavior. These materials most likely do
not fail. In the depicted middle range, no clear dependence between the decline
or softening behavior and the adiabatic shear failure is found. Thus, a conclusion
can be made that the plain decline behavior under adiabatic compression is not
clearly correlated with the adiabatic shear failure, at least not for this particu-
lar quenchend and tempered material group. The strain hardening coefficient,
even at a strain rate of 200 1/s, which shall have an important influence on the
adiabatic failure behavior, as described in the literature, cannot be confirmed
for this material steel group. There might be a tendency, but for most of the
steels a clear relation cannot be drawn.

Fig. 5. True stress- true strain curves at (pure axial) dynamic compression (ε̇ = 200 s−1)
and results of softening determination.

The third investigation was to determine the stress behavior at high tem-
perature under dynamic compression loading. The first result exhibits the dif-
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ferent strength levels of the different steels, Fig. 6 (left). This distinct difference
in flow stress lasts until about 600◦C. With higher flow stress, the propen-
sity to adiabatic shear failure is increased (arrow in Fig. 6). Materials with
a high strength at room and at elevated temperatures are prone to adiabatic
shearing. Furthermore, these materials show a rapid loss of strength with in-
creased temperature. These drops of strength yield a development of a gradi-
ent of temperature-dependent stress resistance. This gradient is considerably
higher for high strength steels. For low strength steels, the gradient is hardly
sensible, and therefore these steels are not prone to adiabatic shearing, for ex-
ample valid for the three curves depicted with no failure in Fig. 6. The re-
sults of the determined values of the linearized decline behavior at the stress-
temperature-curves between temperatures of −100◦C and 750◦C is shown in
Fig. 6 (right). There is a good correlation of the normalized strength decline
value to the occurrence of adiabatic shear failure under compression shear load-
ing. The stronger the decline behaviour, the lower the failure strain under
compression-shear-loading will be. Above a certain value, no more failure oc-
curred.

Fig. 6. Dynamic 2%-flow compression stress vs. starting temperature and determined
declined flow stress values at dynamic strain rate of (ε̇ = 200 s−1) between −100

◦C and
750◦C.

The determined failure strains according to Culver (Eq. (2.3)) show a good
qualitative correlation, Fig. 7. All materials with low calculated failure strain fail
under compression-shear loading too. High values correlate with the materials
with no failure. The depicted transition state is in the limit range of the used
compression-shear loading test configuration. For the failed states, the correla-
tion between the experimental and the calculated failure strain, Fig. 7 (right),
show an absolute insufficient agreement. Thus, according to Culver for the in-
vestigated materials, it is only possible that a qualitative correlation with the
softening theory exists.
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Fig. 7. Qualitative and quantitative evaluation of the materials using Culver-theory.

In addition to the previous examinations, stress-temperature-characteristics
were also considered. Two examples of dynamic flow compression stress versus
temperature are shown in Fig. 8. The left material shows a distinctive drop
in strength; the right material shows at a certain temperature a change in the
decline behavior. These points represent a change in the softening behavior from
a low to high or higher decrease. These points are called “instability points” and
from this, the related temperatures and stress values are obtained.

Fig. 8. Examples for determined instability points from dynamic flow compression stress vs.
temperature (ε̇ = 200 s−1).

The instability temperatures were correlated with the failure strain at com-
pression-shear loading (Fig. 9, left). In the sheared area is a linear agreement
with higher failure strain a higher instability temperature is determined. Above
the instability temperature of 600◦C there is no more failure. The determined
instability temperatures and stresses for all materials were then depicted, Fig. 9
(right). With lower instability temperature and higher instability stress, the
propensity to adiabatic shear failure increases. These results show that the spe-



CORRELATION BETWEEN DYNAMIC MATERIAL BEHAVIOR. . . 77

Fig. 9. Instability points of temperature versus failure strain at compression-shear loading
and correlation of instability temperatures and stresses for all materials.

cific stress-temperature characteristic of the materials, especially the “instability
points”, from this study is a very valuable information and that the use of lin-
earized decrease behavior is not always sufficient.
Previous results prove that the dynamic high temperature behavior of the

materials is important for the evaluation of the propensity of adiabatic shear
failure. The measured compression flow stress behavior at elevated temperatures
was used to study the stress-strain-temperature-field analytically. The assump-
tion (Fig. 10) is that the stress is a function of temperature, the temperature is
a function of strain, and the strain is a function of a local position. Considering
slow shear deformation, there is normally a homogenous distribution of strain
and thus a homogenous distribution of temperature and stress. In the case of

Fig. 10. Approach for the analytical consideration.
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impact loading, an adiabatic deformation occurs. The related deformation field
is inhomogeneous, like a strain distribution across the shear band, Fig. 10, lower
right. This certain distribution yields an inhomogeneous distribution of temper-
ature and stress (or a consequence). The used materials have different strength
levels that evoke a different temperature rise in the specimen for the same de-
formation [41].
This different temperature behavior leads to a different stress resistance be-

havior, according to Feng and Bassim [42], across the shear band, Fig. 11 (left).
Material A shows a considerable loss in stress resistance and thus a development
of a strong gradient. This gradient is caused by the stress-temperature-behavior,
similar to these in Fig. 8. This gradient leads to a local increased deformation
and therefore to a local failure. Material B shows only a small loss of stress
resistance; thus, this material is not susceptible to adiabatic shear failure. For
the evaluation of the propensity to adiabatic shearing, the strength level and
the intensity of the gradient are both important. From the analytically calcu-
lated temperature and stress gradient behaviors for all materials across the shear
band, the minimum of stress resistance and the maximum of temperature (from
the apex) was used to create a correlation between the calculated inner local
temperature and inner stress resistance. These determined points show a linear
dependence that with an increased local temperature, the propensity to adia-
batic shear failure increases, Fig. 11 (right). After analytical consideration, these
results confirm the conclusion that the stress-temperature behavior is important
for the evaluation of the propensity of adiabatic shearing.

Fig. 11. Results of the analytic consideration and correlation to adiabatic shear failure.

Also interesting is the found result, that a correlation between the displace-
ments, leading to failures, in the “hat” test and the inclined compression shear
test, is existing. The failure strains at compression-shear loading correspond to
the shear failure behavior at hat-shaped tests with a linear dependence, Fig. 12.
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Fig. 12. Correlation of shear failure at hat-shape-test to the compression-shear failure.

This behavior is explained through the mutual influence of the mainly shear
stress loading condition on the failure behavior for both test techniques.
For several material properties, a correlation to the adiabatic shear failure

behavior was not found, like compression strain hardening coefficient at elevated
temperatures, fracture strain and energy assumption at tensile loading, fracture
toughness under mode I, and Charpy impact energy. As the reason, different
loading conditions, which are not comparable and will lead to different failure
modes, are assumed to be responsible.
Grady [32] defined a shear fracture energy per unit area (Eq. (4.1)), which is

necessary for initiation of shear band formation; surely, this approach is useable
for the evaluation of materials for the propensity to adiabatic shear failure. In
addition to Culver’s theory, there are other properties involved such as thermal
conductivity, flow shear stress and strain rate.

(4.1) Γ =
ρ · c
α

(
9 · ρ3 · c2 · χ3

τ3y · α2 · ε̇

)1/4

,

where Γ – fracture energy per unit area, ρ – density, c – specific heat, χ –
thermal conductivity, τy – flow shear stress, α – thermal softening, ε̇ – strain
rate.
With determined energy values (Fig. 13 left), a good differentiation to the

tested materials is possible. Materials with a high amount of energy consumption
correspond to the “no failure”-states and all materials with a low energy value
failed under compression shear-loading. The difference between these two areas
is considerable. Furthermore, in contrast to the theory of Culver [22], there
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Fig. 13. Fracture energy acc. to Grady and the correlation to adiabatic compression-shear
failure.

is a possibility of defining a quantitative correlation with the shear fracture
energy of Grady [32]. This fracture energy, according to Grady, corresponds
in a nearly linear agreement to the energy consumption until failure occurs at
dynamic compression shear loading, Fig. 13 (right).
It is possible to summarise the results to an assessment, Fig. 14, because

of the properties that give a correlation to the adiabatic shear failure behavior.

Fig. 14. Sensitive properties of adiabatic shear failure.
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When a qualitative consideration is fulfilled, a quantitative consideration is then
reasonable and an assessment rating is definable. With this assessment rating,
a ranking of propensities to the adiabatic shear failure behavior can be deter-
mined. A threshold value for the transition between the areas of shear failure
and no shear failure can be defined because of the qualitative correlations. When
this correlation is in agreement without an overlapping of data, the correlation
is then usable for an assessment. For the failed materials, it is possible to define
a quantitative correlation. Because of the level of the least square coefficient
R2 of the agreement, it is possible to create a ranking of material properties
according to their significance to the adiabatic shear failure behavior, Fig. 14.
A very good correlation to the occurrence of adiabatic shear failure behav-

ior shows the instability point (determined at stress-temperature-behavior), the
shear strain from hat shaped test, and the area under the stress-temperature-
curve. These are the properties governed by the effect of temperature and shear
deformation. Pertaining to hardness, the failure energy according to Grady, the
dynamic compression flow stress, the dynamic tensile strength and the decline-
behavior of the stress-temperature-curve, are all feasible to directly correlate to
the adiabatic shear behaviour. These properties are based on hardness, energy
consumption, and strength. It is notable that material properties exist, which
exhibit a greater correlation to the adiabatic shear failure behavior than the
material’s hardness. The decline- or softening behavior of the stress-strain-curve
under compression-shear-loading and the uniform elongation under dynamic ten-
sile loading, give an insufficient correlation. The failure criterion according to
Culver shows only a qualitative, but no good quantitative correlation.

5. Conclusion

The aim of this study was to examine the influence of material properties
on the local adiabatic shear failure behavior. The test results of the investigated
quenched and tempered steels allowed an evaluation of the materials concerning
their adiabatic shear failure propensity. The determination of the failure strain
under adiabatic condition was performed with special inclined compression spec-
imens in a so-called compression-shear test. These dynamic tests were carried
out in a drop weight tower with initial strain rates of 200 1/s.
The most important material property for the analysis of the adiabatic failure

behavior is the temperature-softening characteristic of the material. Therefore
the strength level and the stress drop characteristics are crucial. Eventually
the so-called instability point can be defined. This value gives a good agree-
ment to the measured failure strain under biaxial adiabatic shear condition.
Analytical studies with the use of the determined dynamic stress-temperature-
behavior confirmed (by means of development of the stress resistance gradient)
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the strong influence of the temperature softening behavior on the adiabatic shear
failure.
The examined Culver-theory can only be used as a qualitative prediction

for this material group. This theory is based on the linear softening behavior.
The consideration of the shear fracture energy according to Grady gives both
a qualitative as well as a good quantitative correlation to the measured shear
failure behavior.
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37. L.W. Meyer, L. Krüger, Drop-weight compression shear testing, ASM Handbook, Me-
chanical Testing and Evaluation, ASM International, Materials Park, Ohio, 8, 452–454,
2000.

38. X. Sun, W. Liu, W. Chen, D. Templeton, Modeling and characterization of dynamic
failure of borosilicate glass under compression/shear loading, Int. Journal of Impact En-
gineering, 36, 226–234, 2009.

39. L.W. Meyer, E. Staskewitsch, Adiabatic shear failure of the titanium alloy Ti6Al4V
under biaxial dynamic compression/shear loading, Shock Waves and high-strain-rate phe-
nomena in metals, 1939–1946, 1992.

40. K.H. Hartmann, H.D. Kunze, L.W. Meyer, Metallurgical effects on impact loaded
materials, Shock waves and high strain rate phenomena in metals, concepts and applica-
tions, Plenum Press New York, 325–337, 1981.

41. J. R. Klepaczko, B. Rezaig, A numerical study of ASB in mild steel by dislocation
mechanics based constitutive relations, Mechanics of Materials, 24, 125–139, 1996.

42. H. Feng, M.N. Bassim, Finite element modeling of the formation of ASB in AISI 4340
steel, Material Science and Engineering, A266, 255–260, 1999.

43. L.W. Meyer, S. Manwaring, Critical adiabatic shear strength of low alloyed steel under
compressive load, Metallurgical applications of shock-wave and high-strain-rate phenom-
ena, 657–674, 1986.

44. L.W. Meyer, Adiabatic shear failure at biaxial dynamic compression/shear loading, Eu-
romech, 282, 1991.

45. S.N. Medyanik, W.K. Liu, S. Li, On criteria for dynamic adiabatic shear band propa-
gation, Journal of the Mechanics and Physics of Solids, 55, 1439–1461, 2007.

46. L. E. Murr, Applications of extreme deformation, Materials Technology, 22, 4, 193–199,
2007.

Received December 18, 2010; revised version May 31, 2011.



ENGINEERING TRANSACTIONS • Engng. Trans. • 59, 2, 85–100, 2011
Polish Academy of Sciences • Institute of Fundamental Technological Research (IPPT PAN)

National Engineering School of Metz (ENIM)

THE STATIC AND DYNAMIC COMPRESSIVE BEHAVIOUR
OF SELECTED ALUMINIUM ALLOYS

R. W i n z e r, A. G l i n i c k a

Warsaw University of Technology
Faculty of Civil Engineering

Department for Strength of Materials

16 Armii Ludowej Av., 00-637 Warsaw, Poland
e-mail: {r.winzer, a.glinicka}@il.pw.edu.pl

The mechanical properties of structural aluminium alloys EN AW-5083 and EN AW-6082
in the ‘H111’ and ‘T6’ conditions, respectively, subjected to compressive loadings in the quasi-
static and dynamic strain rate regimes, are investigated. Both alloys are used as structural
components not only in car body design or ship building, but also in civil engineering. There-
fore, compression tests at room temperature were conducted using a servohydraulic Instron
machine, in order to determine the materials‘ behaviour at low and intermediate rates of defor-
mation. In addition, to predict the dynamic response of these materials, the Split Hopkinson
Pressure Bar (SHPB) technique was utilized. For alloy 5083-H111, a changeover from negative
to positive strain rate sensitivity at dynamic strain rates is observable, whilst alloy 6082-T6
exhibits a mild trend towards positive strain-rate sensitivity. Furthermore, the coefficients of
the Johnson-Cook model, that are valid under dynamic conditions, are determined. The finite
element simulation of SHPB experiments shows that the constitutive model represents the
materials’ behaviour quite well.

1. Introduction

Aluminium alloys are a flexible and attractive material for use in many ap-
plications. The desire for optimal design of structures with high mechanical
capacity and light-weight properties, does not only play a significant role in
aerospace engineering. In view of shorter becoming supply of resources, the
aspect of minimisation of weight is also crucial in car manufacturing and ship-
building. Therefore, light-weight materials like aluminium alloys are already
applied as structural materials during the design process. Moreover, automotive
crashworthiness plays an important role in the design of passenger cars. In order
to manage the energy of a collision in a reliable manner in the event of a car
accident or ship collision, the energy absorption performance needs to be un-
derstood. Thus, the stress-strain relationship for dynamic strain rates should be
studied.
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Due to its high ratio of load-bearing capacity to weight combined with high
corrosion resistance, what leads to lower maintenance requirements, aluminium
alloys are also used in civil engineering. In addition, thanks to its recycling po-
tential, it is a sustainable solution as a building material. Indeed, a classical
field of aluminiums‘ utilisation in civil engineering is its application as facade
elements [1], but load-bearing aluminium structures can also be found [2], for
example in bridge constructions. It can be determined that aluminium struc-
tures in civil engineering are subjected to loadings caused by wind, earthquake
and impact, for instance. These loadings generate strain rates from 10−4 up to
104 s−1. Therefore, the material properties of two commercial aluminium alloys
EN AW-5083 and EN AW-6082 in the ‘H111’ and ‘T6’ condition, respectively,
at low and high rates of deformation are investigated. As mentioned in [3], the
series 5xxx and 6xxx are most used for structural components in bridge build-
ing. Eurocode 9 [4] states that the first alloy is the strongest structural non-heat
treatable alloy in general commercial use, possessing very good corrosion resis-
tance in the marine environment. Therefore, it is utilised for structural parts
of naval and offshore structures. On the other hand, the second alloy is one of
the most widely used heat treatable high strength alloy with good corrosion
resistance and good weldability.
Alloy composition, strain rate and temperature may have an effect on me-

chanical properties of aluminium alloys [5]. Wagenhofer et al. [6] reported
a reversed strain effect occurring at room temperature in alloy 5086. A negative
strain rate sensitivity changed into a positive one at a strain rate nearly equal
to 1 s−1. Similarly, Clausen et al. [7] revealed that alloy 5083 in ‘H116’ condi-
tion exhibits a negative strain rate sensitivity for strain rates up to 1 s−1, but
positive strain rate sensitivity in the dynamic strain rate regime. A changeover
from negative to mild positive strain rate was also observed by Hadianfard
et al. [8] for 5xxx aluminium alloys. Aforementioned investigations considered
the alloys’ behaviour in tension. On the contrary, Chen et al. [9] carried out
experimental tests over a wide range of strain rates on 6xxx aluminium alloys
in tension, namely on alloys 6060 and 6082 in tempers T6. The tests showed
that both alloys exhibit only slight strain rate sensitivity, even a slight nega-
tive tendency for high strain rates is observable for both alloys, whilst Lee and
Kim [10] disclosed that the flow stress of alloy 6061 in temper T6 exhibits an
increase of 320 and 90% at compression and tension, respectively, for high rates
of deformation. A distinctive sensitivity to the strain rate is visible. Thus, the
objective of underlying work is to investigate the effects of strain rate on the me-
chanical properties of selected 5xxx and 6xxx aluminium alloys in compression.
Hence, compression tests at room temperature were conducted using a servo-
hydraulic Instron machine in order to determine the materials‘ behaviour at
low and intermediate rates of deformation. In addition, to predict the response



THE STATIC AND DYNAMIC COMPRESSIVE BEHAVIOUR. . . 87

caused by impact loading, the Split Hopkinson Pressure Bar (SHPB) technique
was utilised. Moreover, for further FE analysis in future, constitutive material
parameters were determined and validated.

2. Experimental procedure

2.1. The investigated materials

As mentioned above, the aluminium alloys EN AW-5083 and EN AW-6082
in tempers H111 and T6, respectively, were considered in this evaluation. Their
main alloying elements are magnesium, manganese and silicium, magnesium.
The chemical compositions of the materials are presented in Table 1. The alloys
were provided as round bars with 16 or 10 mm diameters.

Table 1. Chemical compositions of the alloys in wt.%.

Alloy Si Fe Cu Mn Mg Cr Zn Ti

EN AW-5083 0.40 0.40 0.10 0.70 4.45 0.25 0.25 0.15

EN AW-6082 0.88 0.29 0.08 0.46 0.73 0.03 0.04 0.02

2.2. Static and quasi-static compression tests

Compression tests were carried out using a servohydraulic Instron machine
(type 8802) at strain rates of 10−4, 10−3, 10−2, 10−1 and 1 s−1, at room tem-
perature. All tests were performed in displacement control with clamp velocity
adapted to the corresponding strain rate. In order to specify a flow curve for
cylindrical shaped metallic specimens, the initial ratio between length and di-
ameter should be between 1 and 2. The samples’ ratio was equal to 1.5 with
an initial diameter of 10 mm in all cases. Three compression tests were at least
conducted for each strain rate and alloy.

2.3. Dynamic compression tests

A variety of experimental techniques, such as Taylor impact or shock loading
by plate impact, can be utilised to obtain high rates of strain. An interesting and
detailed overview of these techniques can be found in [11]. A technique which
enables to measure the response of materials at strain rates between 102–104 s−1,
first introduced by Kolsky [12], is the Split Hopkinson Pressure Bar (SHPB)
apparatus. In general, this apparatus consists of an air gun, a striker bar, two
Hopkinson bars (known as incident and transmitter bars), a velocity measuring
device and recording equipment. The specimen is sandwiched between the two
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bars. The dynamic compression tests were performed in the laboratory of the Di-
vision of Experimental Mechanics at the Institute of Fundamental Technological
Research.
A schematic view of the SHPB apparatus is illustrated in Fig. 1. Both the

incident and transmitter bars are made of spring steel, whose yield strength and
elastic modulus are equal to 1180 MPa and 210 GPa, respectively. Their diam-
eter and length are 20 and 1050 mm, respectively. The striker bar or projectile
has the identical diameter and is made of the same steel. Three striker bars of
varying length were used.

Fig. 1. Schematic view of SHPB apparatus.

First of all, the striker bar is fired by the air gun and impacts the incident bar.
By reason of the impact, a nearly rectangular compressive stress and a strain
pulse with very short rise time is generated, which propagates with the speed of
sound c0 = (E/ρ)1/2 along the incident bar until it hits the specimen, where E
is the elastic modulus and ρ the bar’s density. Propagating into the specimen,
a part is transmitted into the transmitter bar, whilst the other part is reflected
back into the incident bar as a tensile wave. During the test, the bars remain
within their elastic limit. The incident, transmitted and reflected pulses εI , εT ,
and εR, respectively, were measured using strain gauges (HBM LY11-1.5/120)
attached to each bar. The strain gauges were connected with a strain gauge
amplifier. Finally, the output signals of the strain gauges were visualized and
stored in an oscilloscope (Agilent 54624A) at a sampling rate of 0.25 µs. Figure 2
shows typical incident, transmitted and reflected voltage signals that were saved
into the oscilloscope. The time-dependent strain rate can be determined by
means of recorded strains as follows:

(2.1) ε̇s = −2c0
l0

εR,

where l0 is the initial length of the specimen. Thus, the strain as a function of
time can be calculated by integrating the above equation from 0 to t,

(2.2) εs = −2c0
l0

t∫

0

εRdt̃.
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a)

b)

Fig. 2. Typical pulses for (a) 5083-H111 and (b) 6082-T6 aluminium alloy.

Considering force equilibrium at the contact faces of the bars, an average
value for the stress on the specimen can be derived

(2.3) σs = E
Ab

As
εT ,

where Ab is the cross-sectional area of the incident bar and As is the cross-
sectional area of the specimen.
A detailed derivation of Eqs. (2.1)–(2.3) can be found elsewhere [13, 14]. From

the theoretical point of view, they are based on the one-dimensional propagation
of elastic waves in a continuum including some basic assumptions. Namely, there
exists force equilibrium on the interfaces during the process of deformation, i.e.
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a uniform axial stress distribution is assumed, and both the friction and inertia
forces are negligible. In order to reduce frictional effects, the interfaces between
the specimen and the bars were lubricated. As recommended in [14, 15], to min-
imise the errors due to longitudinal and radial inertia forces, all specimens had
an initial diameter and length of 10 and 5 mm, respectively. A special instru-
mentation was used to apply the specimen in the center of the bars. A further
assumption is that the elastic wave travels along the bars without any damp-
ing. This is justified only if the ratio between wavelength and bar diameter is
great enough, otherwise dispersion is clearly visible as shown by Gorham and
Wu [16].

3. Results of static and dynamic compression tests

Henceforth, the nominal (engineering) strain and stress are used to calculate
the true strain ε = ln(1+εnom) and the true stress σ = σnom(1+εnom). Figure 3
illustrates representative flow curves obtained during low and intermediate strain
rate compression tests at room temperature. A considerable different trend is
observed. For alloy 5083-H111, a negative strain rate effect is clearly visible,
i.e. with increasing strain rate, a decreasing flow stress level is observable. For
instance, at a plastic strain of 0.3 the flow stress decreased approximately by
15%. In contrast, a slight trend towards positive strain rate sensitivity for alloy
6082-T6 is shown, but this effect is not so distinctive as in the case of the
previous alloy. Only an increase of nearly 3.5% could be found.

a) b)

Fig. 3. Static flow curves of (a) 5083-H111 and (b) 6082-T6 aluminium alloy.

Furthermore, several tests have been conducted for each alloy by means of
the SHPB apparatus. In Fig. 4, the obtained dynamic flow curves are illustrated.
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For the sake of clarity, only hardening curves corresponding to low, intermediate
and high impact velocities are shown. The maximum strain did not exceed the
value of 0.4, whereas strain rates from 500 up to 5500 s−1 have been achieved.
Figure 4a clearly reveals that the flow stress level of aluminium alloy 5083-H111
increases with increasing strain rate. A change in the strain rate sensitivity
can be recognized. The flow stress level of alloy 6082-T6 also increases with
increasing strain rate, but very slightly. For a more precise analysis, the flow
stress level at 0.05 true plastic strain is plotted as a function of strain rate in
Fig. 5. A reduction of flow stress for alloy 5083-H111 can be clearly observed

a) b)

Fig. 4. Dynamic flow curves of (a) 5083-H111 and (b) 6082-T6 aluminium alloy.

Fig. 5. True flow stress at 0.05 true plastic strain as a function of strain rate; comparison
of numerical results.
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for strain rates between 10−4 and 1 s−1. A decrease of approximately 10% could
be found out. However, under dynamic conditions, the flow stress increases by
about 25%. In contrast, aluminium alloy 6082-T6 is almost rate-insensitive,
a decrease of nearly 3% at quasi-static strain rates is observed. A mild trend
towards positive strain rate sensitivity can be noticed. The flow stress increased
by about 8% under dynamic conditions.
Furthermore, the diameter of each specimen was measured prior and after

the experiment in two or three radial directions. It was found out that the sur-
face had a circular shape, i.e. not elliptical. This indicates that the alloys behave
as isotropic. Therefore, the use of an isotropic yield criterion for numerical pur-
poses is justified. Typical specimens are shown in Fig. 6. For samples B and C,
strain rates of 950 and 3000 s−1 were calculated, their corresponding dynamic
hardening curves are plotted in Fig. 4. Their initial and final lengths were 4.94,
4.98 and 3.48, 4.58 mm, respectively, what leads to a maximum strains of 0.35
and 0.08, respectively.

Fig. 6. Examples of typical specimens used for dynamic investigations, prior to experiment
(A), and aluminium alloy 5083-H111 (B) and 6082-T6 (C) samples after compression.

4. Numerical simulations

In order to verify the constitutive model, a finite element simulation of the
Hopkinson bar test was performed. Since stress wave propagation is a typi-
cal application for an explicit finite element code, the commercial software
ABAQUS/Explicit, well-suited for high-speed dynamic events [17], was used.

4.1. Basic formulations, constitutive equation and parameter identification

When the elastic strains are small (negligible compared to unity) in a large
deformation analysis, the additive decomposition of the rate-of-deformation ten-
sor into elastic and plastic parts is assumed (see, e.g. Belytschko et al. [18])

(4.1) D = De +Dp,

where D is defined as the symmetric part of the velocity gradient as follows:

(4.2) D = symL = sym
∂v

∂x
.
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Henceforth, a hypoelastic-viscoplastic isotropic material is considered. Then,
ABAQUS computes the plastic part of the rate-of-deformation tensor by means
of the associated flow rule:

(4.3) Dp = λ
∂f

∂σ
=

3

2

εp

σ
s.

In this equation s is the deviatoric part of the stress tensor, whilst εp is the
equivalent plastic strain. To characterise the yield behaviour of metals, what
means incompressible behaviour beyond the elastic limit, a yield function of von
Mises type is considered

(4.4) f =

√
3

2
||s|| − σ.

To ensure objectivity, the finite element programme uses a linear hypoelastic
relation based on the Green-Naghdi stress rate tensor

(4.5) σ
∇G = σ̇−Ω · σ+ σ ·Ω = C : De,

where Ω and C are the angular velocity tensor and the fourth-order elastic
stiffness tensor, respectively. Moreover, the plastic behaviour of the specimen as
a function of strain, strain rate and temperature can be specified by the Johnson-
Cook constitutive equation [19]. In particular, this constitutive relation reads

(4.6) σ = (A+B(εp)n)

(
1 + C ln

(
ε̇
p

ε̇0

))
(1− T̂m).

The term in the last parenthesis accounts for thermal softening of the material.
In the case of Tr and Tm being the room and melting temperature, respectively,
then T̂ is defined as

(4.7) T̂ =
T − Tr

Tm − Tr
.

As mentioned in [9], investigations by Clausen et al. [7] and Børvik
et al. [20] revealed that a temperature rise up to 100◦C does not affect the
mechanical behaviour in a critical manner. An estimation of the temperature
rise in this work is found to be 38◦C. Due to the latter and the fact that all tests
were carried out at room temperature, T̂ was set a priori equal to zero. In order
to determine the other coefficients, a reference stress-strain curve with a refer-
ence strain rate needs to be chosen. Thus, the parameter ε̇0 is determined. The
reference strain rate for alloys 5083-H111 and 6082-T6 were chosen to be 1450
and 1000 s−1, respectively. Afterwards, the coefficients in the first parenthesis
can be determined, whereas the value of A can be identified as the yield stress.
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In the next step, B and n can be calculated by means of the least square method.
Aforementioned procedure was repeated for each test, so all stress-strain curves
have analytical forms. Finally, the parameter C can be specified by rearranging
Eq. (4.6) with respect to parameter C. The parameters for the alloys are listed in
Table 2, but one should note the following: namely, since C must have a positive
value due to the fact that selected model requires a positive strain rate the use of
the model is only justified for situations where dynamic strain rates emerge. So,
negative strain rate sensitivity of alloy 5083-H111 in the static and quasi-static
dynamic strain rate regime cannot be modelled via the determined coefficients.
Moreover, it is possible to ascertain additional Johnson-Cook parameters for
alloy 6082-T6 that are valid for low and intermediate rates of deformation, but
within this strain rate regime the alloy can also be modelled as rate-insensitive.
The experimental results show that this alloy exhibits only a slight sensitivity
to the strain rate (cf. Fig. 4b); therefore, the coefficient has only a slight value.

Table 2. Parameters in the Johnson-Cook constitutive equation.

Alloy A [MPa] B [MPa] n [–] C [–]

EN AW- 5083 147.0 349.2 0.396 0.104

EN AW- 6082 307.8 145.7 0.288 0.02519

4.2. Finite element model and numerical results

In general, the model consists of two elastic bars with a Young’s modulus of
210 GPa and Poisson’s ratio equal to 0.3, and a specimen which is sandwiched
between these two bars. A third bar (striker bar) hits the free end of the incident
bar. This experimental setup was modelled taking the double symmetry into
account (cf. Fig. 7). Eight-node hexahedron elements with reduced integration
were used to model all parts. A surface to surface contact was considered between
the respective interfaces.

Fig. 7. Finite element mesh of SHPB setup.
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The initial compressive stress wave can be simulated via the impact of the
striker bar at the free end of the incident bar. Another possibility is to subject
the free end of the bar to a blast load. Both possibilities have been performed
leading to the same results. Moreover, the analytical solution of one-dimensional
wave equation assumes that the specimen is subjected to a Heaviside step load
of an infinite duration. Indeed, this zero rise time assumption is not realistic.
In practice, however, the pulse shape is trapezoidal and is distorted as a result
of wave dispersion. As shown in Fig. 8b, in the time domain, dispersion is ob-
servable as oscillations. Thus, using finite element simulation, the pulse shape
caused by the impact or rather the blast load should be trapezoidal. Raḿırez
and Rubio–Gonzalez [21] demonstrated that the higher, is the rise time, the
lower will be the dispersion effects. This is important, since wave dispersion is
able to limit the accuracy of the obtained results, especially for lower impact
velocities, where the rise time during the experiment takes a longer period. The
pulse shape effect on wave dispersion is presented in Fig. 8, a longer rise time
leads to reduced dispersion effects. A trapezoidal blast load fits better to exper-
imental data and is, therefore, more realistic (cf. Fig. 8b). Earlier observations
in [21] are in good agreement with experimental and numerical results of this
work.

a) b)

Fig. 8. (a) Trapezoidal and Heaviside step load, (b) comparison between experimental and
simulated incident pulses.

All tests for each alloy have been simulated. In general, the numerical results
represent the experimental findings with adequate accuracy. In Fig. 9 a com-
parison between numerical and experimental results for both alloys is presented,
their stress-strain relations were already presented in Fig. 4. All strain pulses are
simulated reasonably well, as shown in Fig. 9a-c. The aforementioned pulses are
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a) b)

c)

d)

[Fig. 9a-d]
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e)

Fig. 9. Comparison between (red line) experimental and (blue line) numerical results;
representative (a) incident, (b) reflected, (c) transmitted strain pulse, (d) stress-strain and
strain rate-strain curve for alloy 5083-H111 and (e) stress-strain and strain rate-strain curve

for alloy 6082-T6.

related to Fig. 9d, whilst in Fig. 9e only the dynamic hardening curve with the
corresponding strain rate-strain relation for alloy 6082-T6 is presented. In case
of alloy 5083-H111, the obtained maximum strains in the finite element simula-
tions are slightly shorter compared to the experimental strains, whilst in case of
the other alloy, both strains agree much better. Nevertheless, it can be observed
that the Johnson-Cook model represents the flow stress level of both alloys quite
well. All this can be confirmed when Fig. 5 is considered. The flow stress ob-
tained by the experiments and simulations at 0.05 true plastic strain, can be
compared with each other at a wide range of strain rates. A good agreement
with the experimental data is observable.

5. Conclusions

Compression tests on two structural aluminium alloys over a wide range
of strains and strain rates were performed. To obtain quasi-static strain rates,
a servohydraulic Instron machine was utilised, whilst a Split Hopkinson Pressure
Bar was applied in order to obtain high strain rates.
The experimental findings reveal that the alloy 5083 in temper H111 exhibits

a negative strain rate sensitivity in the quasi-static strain rate regime, whilst
a positive strain rate sensitivity is observable in the dynamic strain rate regime.
Alloy 6082 in temper T6 is almost rate-insensitive for strain rates up to 1 s−1.
Above this strain rate, a slight positive strain rate sensitivity can be noticed.
Unfortunately, an exact value of the turning point in case of alloy 5083-H111



98 R. WINZER, A. GLINICKA

could not be determined due to lack of experimental data in the range of 10–
500 s−1. A logarithmic interpolation through the data points in Fig. 5 would
lead to a value of approximately 600 s−1. To achieve this intermediate or “sub-
Hopkinson” strain rates, a servohydraulic machine must be used which enables
higher clamp velocities. However, as mentioned by other authors [6, 8], the
two test devices, namely the servohydraulic machine in conjunction with the
SHPB apparatus, can be applied in order to obtain consistent experimental data.
Despite the lack of experimental data it is visible to the naked eye (cf. Fig. 5)
that intermediate strain rate data points fit well with data points in the dynamic
strain rate regime. No sudden change in the flow stress level indicating a source
of error is visible.
Moreover, the parameters in the Johnson-Cook constitutive equation were

calibrated (cf. Table 2). Since it is not possible to simulate negative strain rate
sensitivity by means of this model, the calculated parameters are only valid
under dynamic conditions, i.e. for strain rates above ca. 500 s−1. In case of alloy
6082-T6, the parameters are also valid under dynamic conditions, this means for
strain rates exceeding the value of ca. 100 s−1. For strain rates below 100 s−1 this
alloy can be modelled as rate-insensitive. In order to validate the constitutive
model, a finite element simulation of the Split Hopkinson Pressure Bar test
was performed. Both the strain hardening and strain rate hardening could be
represented via this model adequately. It can be determined that the numerical
results fit very well to the experimental data.
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In this paper, the preliminary results of the mechanical characterization in a wide range of
strain rate of the 30MnB4 steel, usually adopted for fasteners, are described. In this study the
different issues required to implement the dynamic test results in numerical code have been
analyzed. Different experimental techniques have been used for different strain rates: univer-
sal machine, Hydro-Pneumatic Machine, JRC-Modified Hopkinson Bar and Split Hopkinson
Pressure Bar. The failure at high strain rate has been examined by means of fast digital image
recording systems. The material shows enhanced mechanical properties increasing the strain
rate: this fact can be taken into consideration to improve the product design and the manu-
facturing process. The experimental research has been developed in the DynaMat laboratory
of the University of Applied Sciences of Southern Switzerland and in the Laboratory of Dy-
namic Investigation of Materials in Nizhny Novgorod, in the frame of the Swiss – Russian Joint
Research Program.

1. Introduction

The fastening technology is of capital importance in the transport fields
(aeronautic, automotive, etc.). Thanks to the development of advanced model-
ing tools, as FE codes, it is now possible to study the manufacturing process
of fasteners, which are, for some aspects, similar to impacts (forming loads are
applied in fraction of seconds). Such advanced modeling tools require informa-
tion about the strain rates behavior of materials in terms of constitutive laws
in a large range of strain rates. The experimental research developed by the
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DynaMat laboratory of the University of Applied Sciences of Southern Switzer-
land in collaboration with Agrati Group, is inserted in this frame. The paper
describes experimental techniques used to carry out dynamic tensile tests on
steels used in fastening. The high strain rate tests have been performed using
a JRC-Modified Hopkinson Bar (JRC-MHB) and a Split Hopkinson Pressure
Bar (SHPB), while the medium strain rate tests have been performed by means
of a Hydro-Pneumatic Machine (HPM). The tests have been carried out loading
the specimens with tensile stress at different strain rates, from 5 to 2500 1/s.
The analysis of the material has been carried out studying both the exper-

imental results in terms of engineering and true stress versus strain curves and
fracture. The characteristics of fracture, the reduction of area of the specimen
cross-section after failure in the necking zone, as well as the fracture strain, have
been obtained by means of acquisition of two images, before and after the failure
of the specimen. The tests have been also filmed utilizing a high speed camera
in order to obtain information about the progression of the necking phase.
The higher strain rate tests have been carried out in the Laboratory of

Dynamic Investigation of Materials in Nizhny Novgorod, in the frame of the
Swiss – Russian Joint Research Program.

1.1. Manufacturing process

The production of a bolt for fastening is a quite complex process including
wire/rod preparation, cold, warm or hot forming and thread rolling. A typical
rod preparation cycle consists in: annealing of steel coils (spheroidizing); pickling
in H2SO4; phosphating; cold drawing; storage before cold forming.
Fasteners are usually produced in multi-station forming machines, by cut-

ting, heading and extrusion of the material, and thread rolling. The speed of
these operations are rather high, in fact a multi-station forming machine is nor-
mally able to produce 60 to 200 pieces by minute, according to the fastener
dimension and complexity.
After the forming process, the cycle usually includes heat treatment to give

the defined mechanical properties, and the application of coating/lubrication on
fasteners, to ensure performances in terms of corrosion resistance and friction
coefficient. The result of a finite element analysis of the cold forming cycle is
shown in Fig. 1. In this example, the total equivalent plastic strain is the selected
parameter.
All four cold forming steps are shown in Fig. 2. The last but one is the result

of thread rolling; and the last one in the picture is the bolt after heat treatment
and after non-electrolytically applied zinc flake coating. Thread is obtained by
plastic deformation of the shank, without any removal of the material.
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Fig. 1. FEM results of the cold forming cycle.

Fig. 2. Sequence of cold forming of fastener.

2. Material

The analyzed material is the 30MnB4 steel, according to EN 10263-4 [1].
The chemical composition of this steel is shown in Table 1.

Table 1. Chemical composition.

C Si Mn P S Cr Mo Cu B
Standard
Require-
ments

0.27÷0.32 ≤ 0.30 0.80÷1.10 ≤ 0.025 ≤ 0.025 ≤ 0.30 – ≤ 0.25 0.0008÷0.005

Specimens 0.28 0.12 0.83 0.01 0.004 0.17 – 0.13 0.0027

The steel was supplied by the steelmaker in hot-rolled condition, with rod di-
ameter of 7.50 mm. The material is normally characterized by a tensile strength
Rm = 632 ÷ 640 MPa and the percentage reduction of area after fracture
Z = 62 ÷ 50%.
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In this case, after the preparation cycle, the rod for specimens has got the
following characteristics:

• diameter = 6.15 mm (reduction of area during cold drawing ≈ 33%);
• tensile strength Rm = 695 ÷ 720 MPa;
• percentage reduction of area after fracture Z = 55÷ 59%;
• core hardness ≈ 238 HV0.3.
The micro-hardness scanning (Fig. 3) shows superimposed effects of hot

rolling, annealing and cold drawing processes of the rod.

Fig. 3. Hardness distribution on the depth.

To discuss micro-hardness profiles it is important to take into consideration
the residual stresses distribution, whose effects are to be added to the grain
dimensions.
In Fig. 4a and Fig. 4b the transversal and the longitudinal section in the core

are shown (500×). In the first picture it is possible to observe the not completely

a) b) c)

Fig. 4. Ferritic-pearlitic micro-structure.
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lamellar pearlite and in the second picture – the longitudinal “pancaked” grain.
Finally, in Fig. 4c, the longitudinal section at the surface (500×) is shown, where
the grain refinement compared to the core micro-structure is evident.

3. Experimental program

The experimental techniques for high-strain-rate measurements are described
in literature [2–7]. The dynamic tests were conducted on round specimens de-
picted in Fig. 5.

Fig. 5. Specimen geometry.

These specimens were tested in different conditions: using stroke-controlled
static procedures and with HPM, JRC-MHB and SHPB dynamic experimental
techniques. The Universal Machine used for quasi-static tests and the HPM used
for medium strain rates are shown in Fig. 6.

a) b)

Fig. 6. a) Universal Machine; b) Hydro-Pneumatic Machine.

The JRC-MHB has been used for high strain-rate tests and consists of two
cylindrical high strength steel bars, having a diameter of 10 mm, with length
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of respectively 9 and 6 m for the input and output bar. The steel specimen is
assembled between the two bars, as shown in Fig. 7 [8–9].

Fig. 7. JRC-MHB scheme.

The test with the MHB is performed as follows:
1) an hydraulic actuator, with maximum loading capacity of 600 kN, applies
a tensile load on a part of the input bar (pre-stressed bar, with a length
of 6 m and diameter of 10 mm); a blocking device permits to store elastic
energy pulling the pre-tension bar;

2) breaking of the brittle bolt in the blocking device gives rise to a tensile
mechanical pulse, which propagates along the input and output bars and
brings the specimen to fracture. The pulse has a duration of 2.4 ms, with
linear loading rate rise time of 30 µs.
The input and output bars are instrumented with strain gauges which mea-

sure the incident, reflected and transmitted pulses acting on the cross-section
of the specimen. A part of the input bar is used as a pre-stressed bar. On the
basis of the incident (εI), reflected (εR) and transmitted (εT ) records, of the
consideration of the basic constitutive equation of the input and output elastic
bar material, of the one-dimensional wave propagation theory, it is possible to
calculate the stress, strain and strain-rate curves with the following equations
[10–12]:

(3.1) σE(t) = E0
A0

A
εT (t), εE(t) = −2C0

L

t∫

0

εR(t)dt, ε̇(t) = −2C0

L
εR(t),

where E0 is the elastic modulus of the bars; A0 is their cross-section area; A is
the specimen cross-section area; L is the specimen gauge length; C0 is the sound
velocity of the bar material.
Similar tests have been carried out using a traditional SHPB (Fig. 8) placed

in the Nizhny Novgorod State University [13]. Pulse loads in a SHPB are gener-
ated using compact 10-mm gas guns. Tensile tests are conducted following the
modified Nicholas scheme [14]. For testing high-strength steel, pressure bars of
12 mm diameter were used. The first pressure bar is 1.5 m long and the second
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Fig. 8. SHPB for dynamic tests.

bar that has a free rear end is 0.75 m long. Tensile pulse in the Nicholas’ scheme
is formed due to the presence of a split ring surrounding the specimen (Fig. 9)
and reflection of the transmitted pulse from the free rear end of the second bar.

Fig. 9. Phases of the assembly of the specimen to the testing device.

4. Results and discussion

The results of the preliminary tests are collected in Table 2. In Fig. 10 the
engineering and true stress versus strain are depicted.
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a)

b)

Fig. 10. a) engineering stress vs. engineering strain curves; b) true stress vs. true strain
curves.
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Table 2. Experimental results.

Strain rate
[s−1]

Rm

[MPa]
Uniform elongation

εu

Total elongation
εt

Reduction
of area Z [%]

10
−3 770 1.2% 13.1 % 52.3

5 815 1.7% 13.2% 52.4

150 856 1.7% 14.6% 50.6

600 899 1.4% 15.5% 54.5

800 926 1.0% 16.9% 55.7

1000 990 0.9% 19.7% 55.7

In order to analyze the failure behavior of 30MnB4 steel, some tests have been
recorded by a Specialized Imaging Duplex Ultra Fast Framing Camera (with
a speed up to 200 Mfps, see Fig. 11b), able to record up to 16 images without
compromising on shading, or parallaxing. In Fig. 11a is shown the engineering
stress versus strain curves, with the indication of the photo made by the fast
camera.
The photos of the failure (Fig. 11c-h) reveal the ability of the camera to

capture the necking process.
The true stress vs. true strain curve is regarded as significant until the ulti-

mate tensile stress (where the necking begins) is reached. After this point, stress
localization and fracture propagation governs the flow curve, which is no more
representative for homogeneous mechanical properties of the materials. In this
case, beyond the point of ultimate strength in the engineering stress-strain curve,
the one-dimensional true stress-strain curve should be reconstructed, by calcu-
lating the true stress and the true strain using the Bridgman formulae, [15] which
introduces the correction for the triaxial stress state. At fracture the Bridgman
formulae can be written as follows:

(4.1) σtrue,fracture =
σeng.,fracture

(1 + 2R/a) · ln(1 + a/2R)
,

where a – minimum radius at fracture cross-section, R – meridional profile radius
at fracture neck (see Fig. 13a), σtrue,fracture = Pfracture/πa

2 – the average true
stress at fracture and Pfracture the fracture force.

(4.2) εtrue,fracture = 2 · ln a0
2 · a,

where a0 is the initial diameter of the gauge length cross-section.
For the complete construction of the true stress-strain curve during the neck-

ing deformation phase, a straight line is drawn between the ultimate tensile
strength (uniform strain) point and the fracture point, the latter being deter-
mined by application of Eqs. (4.1) and (4.2).
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a) b)

c) d) e)

f) g) h)

Fig. 11. High speed digital camera.

A more refined determination of the true stress vs. true strain curve between
the point of ultimate tensile strength (uniform strain) and the point of fracture,
has been performed, using the following method:

• fast recording of the test,
• repetition, at defined increasing deformation levels, of the optical measure-
ments of the meridional radius at neck (R) and of the minimum radius at
neck cross-section (a),

• calculation, with the Eqs. (4.1) and (4.2), of the true stress and true strain
values, for the defined deformation levels.
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In Fig. 12b the results of the described measurement are shown. It is pos-
sible to observe how well the linear trend describes the necking process in the
true stress vs. true strain diagram. Subsequently we have demonstrated a good
approximation of the procedure which only exploits the Bridgman formulae and
the information given by the engineering curve, and by the measurement of the
fracture geometry.

a)

b)

Fig. 12. a) parameter for Bridgman formulae; b) points measured by fast camera.
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4.1. Comparison between JRC-MHB and SHPB

The SHPB is not able to generate enough energy to break the specimen for
strain rates less than 1000 1/s because of the short length of the striker bar.
The comparison of two tests performed with SHPB and JRC-MHB is shown in
Fig. 13a; in the first case, the specimen is only deformed to the necking phase
(see Fig. 13b) while in the JRC-MHB all the plastic fields are detected, till
failure. At the moment, the JRC-MHB set up does not reach the same velocities
of the SHPB. To obtain those values, the JRC-MHB should be realized in very
high strength material (for instance a thermally aged, maraging steel), instead
of the high strength steel actually utilized. In order to obtain low strain rate
with the SHPB, longer striker bar should be adopted.

a) b)

Fig. 13. a) Comparison of the two test set-ups; b) Necking in the specimen.

During the testing activities, the influence of the rise time of the load pro-
cess on the materials behavior, in the elastic range, has been noted. This phe-
nomenon, observed for HSS steels, is evidenced as an instability of the curves,
which shows a high first peak. The rise time of the SHPB set-up is about 150 µs,
while the JRC-MHB set-up reaches up to 30 µs.
For the tensile tests in particular, the JRC-MHB set-up permits to obtain

a perfect direct loading of the specimen, while in the SHPB set-up this is ob-
tained by inversion of the waves at the free end of the bar. The comparison
between the records observed within the two solutions is shown in Fig. 14.
Specimens at high strain rates, over 1000 1/s, have been tested with the

SHPB apparatus.
Three true stress curves versus true strain curves are depicted in Fig. 15a.

The increase of the ultimate tensile strength in function of the logarithm of the
strain rate is shown in Fig. 15b. Up to 1000 1/s, the Dynamic Increase Factor
is less than 1.2; for higher true strain values the DIF could be more than 1.8.
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a) b)

Fig. 14. Signals from: a) SHPB; b) JRC-MHB.

a) b)

Fig. 15. a) high strain rate tests with SHPB; b) Dynamic Increase Factor (DIF) versus
strain rate.

5. Example of a material constitutive law calibration

Advanced modeling tools require information about the strain rate behavior
of materials in terms of constitutive laws in a large range of strain rates. Also in
the case of fasteners this topic cannot be avoided. In this paragraph the plastic
behavior of the 30MnB4 steel by the Johnson-Cook constitutive model [16] is
explained. This model is intensively used to describe the material strength in the
numerical simulations of dynamic events and provides satisfactory results, when
strain rates are lower than 103 s−1. This model assumes that the dependence
of the stress on the strain, strain rate and temperature can be multiplicatively
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decomposed into three separate functions. Then, this model gives the following
relation for the flow stress σ0:

(5.1) σ0 = [A+B · (ǫp)n] ·
[
1 + C · ln

(
ǫ̇p
ǫ̇0

)]
· [1− T ∗m],

where ǫp is the equivalent plastic strain, ǫ̇p is the considered test strain rate, ǫ̇0 is
a reference strain rate (usually equal to 1 s−1), A, B, C, n andm are five material
constants that have to be determined. The parameter n takes into account the
strain hardening effect, the parameter m models the thermal softening, and C
represents the strain rate sensitivity. Finally T ∗ is:

(5.2) T ∗ =





0 for T ≤ Tr,

T − Tr

Tm − Tr
for Tr < T ≤ Tm,

1 for T > Tm,

where T is the current temperature, Tm is the melting temperature (assumed
1507◦C for the 30MnB4 steel), and Tr is a reference temperature.

5.1. Determination of A, B and n in the JC model

The experimental quasi-static data can be used to plot the plastic curve
characteristic of the material at room temperature (20◦C): σtrue versus ǫp. This
curve is best fitted by:

(5.3) σ0 = A+B · ǫnp ,

where A = 625 MPa is the stress yield point of the static curve, while B and n
are determined using a regression-analysis procedure. The obtained parameters
are B = 628.9 MPa and n = 0.4097 (with R2 = 0.7672).

5.2. Determination of C in the JC model

Firstly, it is assumed that the reference strain rate is ǫ̇0 = 1 s−1. It is further
assumed that the specimen remains at room temperature, thus neglecting the
thermo-plastic effects (T 8 = 0). Assuming that the strain rate is constant during
the experiment, the parameter C is evaluated for three different strain rates (ǫ̇p):
5 s−1, 135 s−1 and 611 s−1.
Under these assumptions the experimental stress versus plastic strain curves

were fitted with the following formula:

(5.4) σ0 = [625 + 628.9 · (ǫp)0.4097] ·
[
1 + C · ln

(
ǫ̇p
ǫ̇0

)]
.
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5.3. Determination of in the JC model

In order to determine the parameter m, experimental results at both the
room temperature and higher temperature are needed. Experimental results at
high strain rates at 20◦C and 450◦C have been used.
The ratio R between the stresses at a specific plastic strain can be calculated

if experiments at the same strain rate are carried out. In particular, m can be
evaluated as:

(5.5) m =
log(1−R)

log(T ∗)
.

Considering the true stresses at the temperature 450◦C divided by the true
stresses at room temperature (20◦C), in the flow true stress versus plastic strain
curve, it results an average value of R = 0.6031. Substituting this value into
Eq. (5.5), m = 0.7448 is obtained.
The results of the calculated parameters are reported by the following table.

Figure 16 shows the goodness of the Johnson-Cook fit up to 10 1/s. For higher
values of strain rates it seems that this relationship does not appropriately
describe the real behavior of the material; for this reason, our attention will
be focused to the development of future new constitutive laws.

Fig. 16. Experimental data vs. JC FIT for 30MnB4 at 5 s−1.

6. Concluding remarks

The 30MnB4 steel tested in this preliminary phase resulted to be rate sensi-
tive. This steel is usually adopted for fasteners. The manufactory process induces
into the material a very complicated history of strain, provoked by cold form-
ing and thread rolling. The production procedure is often carried out at a high
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velocity, then a mechanical characterization in a wide range of strain rates is
needed.
In this preliminary phase a series of tests by means of different experimental

techniques have been performed, in order to show the capability of describing
the actual material behavior.
It has been demonstrated how the fast recording of the failure process is well

described by a linear function between the ultimate tensile strength/uniform
strain, the failure point obtained by the Bridgman formulae and the geometric
information by the high speed digital camera.
The high strain rate behavior has been studied by means of two types of

set-ups. The traditional SHPB and the JRC-MHB have been compared. From
this comparison, some comments can be summarized. First of all, the capacity of
the JRC-MHB to follow the full plastic field in the range of strain rates between
100 and 1000 1/s, in the case of traditional SHPB, this is not possible without
the use of longer striker bar. The JRC-MHB performs direct tensile test; the
same cannot be affirmed for the SHPB. In fact, it uses the reflected wave from
the free end but the presence of spurious reflection, due to the split ring, causes
overlapping waves what is often difficult to analyze. The SHPB should be used
in compression; to obtain direct tensile test, the pulse should be directly applied.
An example of calibration of the Johnson-Cook model has been carried out,

in order to integrate the results in numerical codes and to reproduce plastic
deformation occurring in dynamic regime for 30MnB4 steel.
These results indicate the advantage of using a dynamic characterization of

steel, in order to improve the quality of the fastener products and enhance the
production capacity.

Acknowledgements

The Authors are grateful to Mr. Wai Chan and Mr. Peter Berkenberg from
“Specialised Imaging” for their precious collaboration in the execution of high
speed measurements. A special acknowledgement goes to the Scientific & Tech-
nological Cooperation Programme Switzerland-Russia for the financial support
of the Utilization of Specific Infrastructure Projects called “Dynamic behaviour
of materials for industrial applications”. Russian part of investigations was par-
tially financed by RFBR (grant 10-01-00585).

References

1. EN 10263-4: 2003. “Steel rod, bars and wire for cold heading and cold extrusion. Part 4:
technical delivery conditions for steels for quenching and tempering”.

2. M.A. Meyers, Dynamic Behavior of Materials, Wiley Interscience, New York, 1994.



MECHANICAL CHARACTERIZATION OF STEEL FOR FASTENING. . . 117

3. J. E. Field, Review of experimental techniques for high rate deformation and shock stud-
ies, Int. J. Imp. Eng., 30, 725–775, 2004.

4. G.T. Gray III, Classic Split-Hopkinson pressure bar testing, [in:] ASM Handbook, Vol. 8,
H. Kuhn, D. Medlin [Eds.], ASM Int., Materials Park Ohio 2000, pp. 462–476.

5. K.A. Hartley, J. Duffy, R.H. Hawley, The torsional Kolsky (Split-Hopkinson) bar,
[in:] ASM Handbook, Vol. 8, H. Kuhn, D. Medlin [Eds.], ASM Int., Materials Park Ohio
1985, pp. 218–228.

6. S. Vaynman, M.E. Fine, S. Leeb, H.D. Espinosa, Effect of strain rate and temperature
on mechanical properties and fracture mode of high strength precipitation hardened ferritic
steels, Scripta Materialia, 55, 351–354, 2006.

7. T. Nicholas, A.M. Rajendran,Material characterization at high strain-rates, [in:] High
Velocity Impact Dynamics, J.A. Zukas [Ed.], Wiley, New York 1990, pp. 127–296.

8. C. Albertini, M. Montagnani, Testing techniques based on the split Hopkinson bar,
Institute of Physics Conference series No. 21, pp. 22–32, London, 1974.

9. C. Albertini, M. Montagnani, Waves propagation effects on dynamic loading, Journal
NED 37, pp. 115–124, North Holland Publishing Company, 1976.

10. R.M. Davis, A critical study of the Hopkinson bar, Cambridge University Press, 240,
375–457, 1948.

11. H. Kolsky, An investigation of the mechanical properties of materials at very high rates
of loading, Proc. Phys. Soc. Sect. B62, 676–700, 1949.

12. U. S. Lindholm, High strain rate tests, Techniques of metal research, J. Wiley [Ed.], 5,
1, 1971.

13. A.M. Bragov, P.V. Demenko, A.K. Lomunov, I. V. Sergeichev, L. Kruszka, In-
vestigation of behaviour of materials of different physical nature using the Kolsky method
and its modifications, New Experimental Methods in Material Dynamics and Impact,
Trends in Mechanics of Materials, W.K. Nowacki, J.R. Klepaczko [Eds.], Warsaw,
2001, pp. 337–348.

14. T. Nicholas, Tensile testing of materials at high rates of strain, Exp. Mech., 21, 5,
177–195, 1981.

15. P.W. Bridgman, Studies in large plastic flow and fracture, Mc Graw-Hill, 1952.

16. G. J. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large
strains, high strain rates and high temperatures, Proceedings of the Seventh International
Symposium on Ballistics, The Hague, 1983, pp. 541–547.

Received January 11, 2011; revised version June 4, 2011.





ENGINEERING TRANSACTIONS • Engng. Trans. • 59, 2, 119–136, 2011
Polish Academy of Sciences • Institute of Fundamental Technological Research (IPPT PAN)

National Engineering School of Metz (ENIM)

SOME REMARKS ON BURZYŃSKI’S FAILURE CRITERION
FOR ANISOTROPIC MATERIALS

P. S z e p t y ń s k i

AGH University of Science and Technology
Faculty of Mechanical Engineering and Robotics

Department of the Strength and Fatigue of Materials and Structures

Kraków, Poland
e-mail: pszept@agh.edu.pl

Some misstatements appearing in the final form of the failure criterion formulation, de-
rived from Burzyński’s hypothesis of material effort for anisotropic bodies, which haven’t been
noticed in the literature as yet, are pointed out and discussed. Alternative interpretations of
the results obtained by Burzyński are presented. Propositions of different formulation of the
failure criterion, basing on original ideas of Burzyński, are given.
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1. Introduction

Among many propositions of the hypotheses of material effort for isotropic
bodies, the one proposed by Burzyński in his doctoral dissertation (1928 [1]),
surprises by its clear energy-based interpretation, variety of classes of materi-
als it can be applied to and simplicity in formulation of the failure criterion,
which can be determined only in terms of limit stresses under simple loads: uni-
axial tension, compression and pure shear. Accounting for pressure sensitivity,
Burzyński developed former ideas of his teacher, M.T. Huber [2], and antici-
pated later propositions of Drucker and Prager [3]. From the late twenties
of the 20th century until now it remains one of the most general and practical
propositions stated. However, it seems to be still underestimated, almost forgot-
ten, especially abroad Poland. Extension of the given hypothesis accounting for
anisotropy is even less known despite the fact that it was something completely
new at that time – it could be compared only with some ideas introduced in
the same year by Mises [4]. Both papers were published a few decades before
other similar propositions by Hill (1948 [5]) or Hoffman (1967 [6]). Small
popularity of the anisotropic version of Burzyński’s condition is the reason for
which it was not discussed as yet. In the current paper, some misstatements
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in the formulation given by Burzyński, which were not noticed and discussed
in the literature, are pointed out. It is also the aim of the author to suggest
alternative interpretation of the results obtained by Burzyński and to propose
a formulation of the final limit condition, derived from Burzyński’s hypothesis
of material effort different from the original one.

2. Burzyński’s hypothesis of material effort

for anisotropic bodies

Burzyński considered an energy-based failure criterion, in which elastic en-
ergy density is expressed assuming linear dependence between the stress and
strain states:

(2.1)
Cσ = ε ⇒ Cijklσkl = εij ,

Sε = σ ⇒ Sijklεkl = σij ,

where C and S are fourth order symmetric compliance and stiffness tensor re-
spectively, σ is the stress tensor and ε is an infinitesimal strain tensor. Assump-
tion that Hooke’s law is still valid even just before reaching the limit state, indi-
cates that the limit state considered by Burzyński is in fact the limit of Hooke’s
law validity range – linear elasticity. All the limit stress quantities appearing in
this formulation should be considered as the proportionality limit.

2.1. Hypothesis statement

Burzyński proposed to consider as a measure of material effort, the combi-
nation of distortional strain energy density and a part of volume change energy
density, determined by function η, namely:

(2.2) Φf + η · Φv = K,

where K – limit value of energy density,

Φv =
1

2
Aσ ·Aε =

1

2

(
1

3
tr(σ)1

)
·
(
1

3
tr(ε)1

)
,

Φf =
1

2
Dσ ·Dε =

1

2

(
σ− 1

3
tr(σ)1

)
·
(
ε− 1

3
tr(ε)1

)
,

η = η(p, δ, ω) =

(
ω +

δ

3p

)
.

Aσ, Aε andDσ,Dε are spherical parts and deviators of stress and strain tensors
respectively, 1 is an isotropic second rank symmetric tensor (identity tensor),
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p denotes hydrostatic stress, and δ and ω are constant material parameters. The
form of the function η was assumed by Burzyński.
Decomposition of the strain energy density into distortional and volumetric

strain energy density is possible in general only for isotropic bodies or those
of cubic symmetry. However, Burzyński stated that: ‘Practically there are no
physical reasons for which strain energy could not be decomposed into sum of

two other energies, namely volumetric strain energy and distortional strain en-

ergy’ [1]. He considered a special class of materials of arbitrary symmetry, which
the considered decomposition is always possible or equivalently – speaking in
terms of tensor algebra – for which hydrostatic stress and dilatation are eigen-
states of compliance and stiffness tensor respectively [7]:

(2.3) C1 = Θ1 ⇒ Cijklδkl = Θδij ⇒ Cijkk = Θδij,

where Θ is the proportionality coefficient (eigenvalue of C). This assumption
leads to the following constraints on the components of compliance/stiffness
tensor:

(2.4)

(3 independent relations)





C1123 + C2223 + C3323 = 0,
C1131 + C2231 + C3331 = 0,
C1112 + C2212 + C3312 = 0,

(2 independent relations)





C1111 − C2222 = C2233 − C1133,
C2222 − C3333 = C3311 − C2211,
C3333 − C1111 = C1122 − C3322.

These equations are called the Burzyński’s conditions. If components of com-
pliance or stiffness tensor of a given material satisfy the Burzyński’s conditions
(2.4), it is called the volumetrically isotropic material or simply the Burzyński’s
material. Total number of independent components of stiffness or compliance
tensor, in case of volumetric isotropy, is reduced from 21 to 16.

2.2. Limit conditions

In case of isotropy, after substituting:

(2.5)

1− 2µ

1 + µ
ω =

1− 2ν

1 + ν
,

1− 2µ

1 + µ
δ =

3(kc − kr)

1 + ν
,

12GK =
3kckr
1 + ν

, ν =
kckr
2k2s

− 1,

where G – Kirchhoff’s modulus, µ – Poisson’s ratio, kc, kr, ks – limit values of
stress at compression, tension and shearing tests, the general formulation of the
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Burzyński hypothesis (2.2) can be expressed in terms of limit quantities, which
are relatively easy to be measured:

(2.6) σ2
11 + σ2

22 + σ2
33 + 2

(
1− kckr

2k2s

)
(σ22σ33 + σ33σ11 + σ11σ22)

+

(
kckr
k2s

)
(σ2

23 + σ2
31 + σ2

12) + (kc − kr)(σ11 + σ22 + σ33)− kckr = 0.

As it was said before, Burzyński also made an attempt to account for aniso-
tropy in his hypothesis knowing that in fact, there are no ideally isotropic ma-
terials. He has considered a fully anisotropic material (except of its volumetric
isotropy), yet for simplification of the criterion formulation he reduced the num-
ber of independent parameters. He used the so-called ‘basic’ (or ‘fundamental’)
coordinate system, in which in expression of elastic energy density, the mixed
terms involving shearing and normal stresses (or equivalently, linear and dis-
tortional strains) vanish. After certain rotation – which is ’only mathematically
possible’ [1] for volumetrically isotropic bodies – of a given coordinate system to
the position, in which it can be considered as the ’basic’ one, even in case of very
low symmetries (total anisotropy, monoclinic symmetry, trigonal symmetry), the
expression of the elastic energy density has the mathematical form at least as
simple as in case of orthotropy. Such situation occurs when the Burzyński’s
conditions (2.4) are fulfilled and additionally, the following relations are true:

(2.7)

C2223σ23 − C1131σ31 = 0,

C3331σ31 − C2212σ12 = 0,

C1112σ12 − C3323σ23 = 0.

One can note that those conditions are fulfilled in case of a coordinate system
with axes which are parallel to the directions of principal stresses, in which off-
diagonal components of the stress tensor are always equal to 0. This is a very
specific case – in fact there exist other basic coordinate systems, independent of
the stress state. For example, in case of any material which is at least orthotropic
(orthotropic, tetragonal, cylindrical, cubic), a coordinate system built on the
axes of symmetry of such a material satisfies those conditions. In the basic
coordinate system, elastic energy density can be expressed as follows:

(2.8) Φ =
1

2
B(σ11 + σ22 + σ33)

2

︸ ︷︷ ︸
Φv

+
1

3

[
L(σ22−σ33)

2+M(σ33−σ11)
2+N(σ11−σ22)

2
]
+2Pσ2

23+2Qσ2
31+2Rσ2

12
︸ ︷︷ ︸

Φf

,
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where

(2.9)

B =
1

3
(Ckk11 + Ckk22 + Ckk33)

=
1

3
(C11kk + C22kk + C33kk), k = 1, 2, 3 (no summation),

L =
3

2
(B − C2233),

M =
3

2
(B − C3311),

N =
3

2
(B − C1122),

P =
1

4

(
C2323 + 2C2331

C2223

C1131

)
,

Q =
1

4

(
C3131 + 2C3112

C3331

C2212

)
,

R =
1

4

(
C1212 + 2C1223

C1112

C3323

)
,

B – bulk modulus, L, M , N , P , Q, R – generalized moduli of distortion.
Using the above formula in criterion (2.2) would give us the limit condition

depending on 8 parameters, what makes it rather complex in analysis. In order
to simplify it, Burzyński considered the strain energy density expressed only
in terms of principal stresses – yet, he based on the assumption that σ1 ≥
σ2 ≥ σ3 (or a set of inverted inequalities), what in simple load cases (uniaxial
tests, pure shears) always guarantees that σ2 = 0. In such a case, after further
substitutions:

(2.10)

1− 2ν̃

1 + ν̃
=

3BM

2LN
ω,

3(kc − kr)

1 + ν̃
=

3BM

2LN
δ,

3kckr
1 + ν̃

=
3KM

LN
, λ =

M2

2LN
,

M

L
=

M

N
= 2(1− λ), ϕ =

√
2(1 + λ)

3
,

ν̃ =
1

ϕ2

kckr
2k2s

− 1, δ̃ =
1 + ν̃

3
(1− 2λ),
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hypothesis (2.2) for anisotropic bodies can be written as a 4-parameter limit
criterion, i.e. as:

(2.11) σ2
1 +

(
(1− 2λ)kckr
2(λ+ 1)k2s

+ 1

)
σ2
2 + σ2

3 + (kc − kr)(σ1 + σ2 + σ3)

+ 2

(
1−kckr(2−λ)

2(λ+1)k2s

)[
σ2σ3+

(kckr−2k2s)(λ+1)

kckr(2−λ)−2(λ+1)k2s
σ3σ1+σ1σ2

]
−kckr=0.

Please note that while the limit condition proposed by Burzyński for isotropic
bodies [1] is a scalar function of the first invariant of stress tensor and the
second invariant of its deviator, function (2.11) can be no longer expressed in
terms of only those two quantities. Proposition (2.11) can be considered as
an extension of the limit condition for isotropic bodies, so that it accounted
for the influence of the third stress tensor invariant; in this case, Lode angle
dependence would be a result of distinct influence of the intermediate stress on
the material effort. The influence of the Lode angle which is proportional to the
third invariant of the stress deviator, can be easily observed on the plots of limit
surfaces (in the space of principal stresses) which are no longer axi-symmetric
surfaces.

2.3. Matrix form of the Burzyński limit condition for anisotropic bodies

The above limit condition (2.11) can be rewritten in such a matrix form:

(2.12)



σ1
σ2
σ3



T 


1 β γ
α β

sym 1





σ1
σ2
σ3


+



(kc − kr)
(kc − kr)
(kc − kr)



T 

σ1
σ2
σ3


− kckr = 0,

where

α = 1 +
(1− 2λ)kckr
2(λ+ 1)k2s

, β = 1− (2− λ)kckr
2(λ+ 1)k2s

, γ = 1− kckr
2k2s

.

Spectral decomposition of a linear matrix operator (which could be considered
as a kind of a limit state tensor in the space of principal stresses), gives us an
interesting result:

• One-dimensional subspace of hydrostatic stresses:
Eigenvalue: χ1 = 3− 3kckr

2k2s(λ+ 1)
, eigenstate: h1 =

1√
3
[1; 1; 1], |σ1| = p.

• One-dimensional subspace of pure shears:
Eigenvalue: χ2 =

kckr
2k2s
, eigenstate: h2 =

1√
2
[1; 0;−1], |σ2| = τmax.
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• One-dimensional subspace of deviators:
Eigenvalue: χ3 =

3kckr(1− λ)

2k2s(1 + λ)
, eigenstate: h3 =

1√
6
[1;−2; 1], |σ3| = τ45.

Contribution of certain stress states can be analyzed now. The first eigenstate
h1 corresponds to the hydrostatic stress. Since inequality σ1 ≥ σ2 ≥ σ3 is
assumed, one can see that the second eigenstate h2 corresponds to maximum
shear stress – please note that the contribution of this stress state to the total
measure of material effort is independent of the anisotropy coefficient λ. The
third eigenstate h3 is a composition of two non-orthogonal pure shears (we are
considering classical scalar product defined as A ·B = AijBij); however, it is not
a pure shear itself. Eigenstate h3 is orthogonal to the maximum shear state h2,
but none of its pure shear components is orthogonal to h2. Please note that the
inequalities σ1 ≥ σ2 ≥ σ3 refer to the stress state σ itself, not to the projections
of σ on chosen states, so it does not matter that those inequalities are not
fulfilled in case of h3. Decomposition of the general stress state in the basis of
eigenstates of the limit state operator, can be illustrated as shown in Fig. 1.

Fig. 1. Stress state decomposition in the basis of eigenstates of the limit state operator.

3. Critical review of the Burzyński criterion

In spite of its generality and clear physical interpretation in the sense of
elastic energy, accompanied by mathematical simplicity, one has to note that
Burzyński’s limit criterion for anisotropic solids is not stated correctly in all of
its aspects. General idea of an energy-based criterion with additional function
defining contribution of volumetric strain in material effort, is of greatest im-
portance and it emerges to be a simple and effective way to account for i.e. the
strength-differential effect in other energy-based hypotheses (see R.B. Pęch-
erski et al. [8], J. Ostrowska–Maciejewska et al. [9]). However, there are
few misstatements that were not pointed out and discussed in the literature; the
main issues which have to be discussed are:

• Principal stress formulation.
• Lack of invariance of the parameters of the criterion.
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• Basic coordinate system.
• Anisotropy coefficient λ.
• Isotropy of strength properties.
• Non-unique relation between elastic and strength parameters.

3.1. Principal stress formulation

Burzyński’s criterion simplicity is in fact mainly due to its formulation in
terms of principal stresses. Practical application of the limit condition (2.11)
given by Burzyński (e.g. in numerical computations) enforces the use of the
principal stresses directions coordinate system. One should notice that if the
parameters of the criterion are to be constant (as it seems to be assumed by
Burzyński), one has to assume that (due to anisotropy of the material and espe-
cially due to arbitrary orientation of the principal stresses) the whole formulation
of the criterion should be invariant with respect to rotations and reflections; it
would be isotropic then, what would be an obvious inconsistency. Otherwise,
the value of those parameters must change depending on the chosen coordinate
system – it is so in case of Burzyński’s condition, however this problem was even
not mentioned in [1]. It will be discussed in details in the next subsection.
Coordinate system built upon principal stresses directions is not holonomic

– local coordinate system at a given point cannot be obtained through differ-
entiation of a position vector along certain curves in the space at that point
(especially when inequalities σ1 > σ2 > σ3 have to be fulfilled), since the stress
state distribution changes both in time and space and it may contain singulari-
ties or discontinuities.
Stress state determination requires exactly six parameters – six stress state

components in any coordinate system or equivalently three stress tensor invari-
ants or principal stresses, and three quantities describing the orientation of the
principal stresses directions in the given coordinate system, i.e. three Euler an-
gles or components of the versors indicating directions of principal stresses (nine
components with six constraints – three orthogonality conditions and three nor-
malization conditions). Referring only to three parameters, the principal values
of the stress tensor does not give us full information about the stress state, which
is especially important in case of anisotropic bodies. Simple example should
make the problem clear – it is rather obvious that a certain stress state (set of
eigenvalues) with its maximal component parallel to the wood fibers, cause much
lower material effort than the same set of stresses applied in such a way that
the maximal one is perpendicular to the fibers. In case of anisotropic materials,
the values of the principal stresses alone are not a sufficient information for the
description of the material effort, unless directions of the stresses are fixed. This
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is also the reason for which any plot of the limit surface for anisotropic bodies in
the space of principal stresses, refer in general only to a single, fixed orientation
or principal stresses.

3.2. Lack of invariance of stiffness moduli

Stiffness parameters of an anisotropic body (used in criterion) depend strictly
on the orientation of a sample referring to the given coordinate system, thus pa-
rameters of the criterion must change their values as a result of rotation of the
coordinate system, since the directions of principal stresses (which are in fact
arbitrary oriented) change – unless these parameters are invariants. It seems
that Burzyński might tacitly assume that the parameters of his criterion are
constant, which in his energy-based formulation could be possible only if they
were invariants. Bulk modulus B as a quantity proportional to a Kelvin modu-
lus of any volumetrically isotropic material is indeed an invariant. Yet all other
stiffness moduli used in the criterion, namely L, M , N , which are defined (see
relations (2.9)) as a difference between an invariant and a single component of C
(which is not invariant due to anisotropy of C), will in general change their val-
ues as the orientation of the coordinate system changes – thus even the name of
‘generalized moduli of distortion’ is in fact not strictly correct. Because of lack
of invariance of those parameters, whole formulation of the criterion given by
Burzyński depends strongly on the choice of coordinate system, which always has
to be the principal stresses directions coordinate system. Change of orientation
of principal stresses may even cause not only quantitative but also qualitative
modification of a yield surface at the given point – i.e. ellipsoidal (brittle ma-
terials, closed surface) into paraboloidal (hydrostatic pressure as a safe stress
state).
The only solution which seems possible is to consider only the special class

of stress states of fixed orientation of principal stresses directions. Yet such
constraint is still not sufficient – even in case of coordinate system adapted
to the directions of principal stresses and even if the orientation of stresses is
fixed (due to e.g. specific use of the element made of the considered material
or due to specific way of loading), the coordinate system should be chosen in
such way that inequalities σ1 > σ2 > σ3 will be satisfied. If the values of prin-
cipal stresses change so that the discussed inequalities in the given coordinate
system are no longer true, the coordinate system must be rotated by 90 de-
grees – in general such rotation is not an element of the symmetry group of
arbitrarily chosen anisotropic material, even when volumetrical isotropy is as-
sumed. Burzyński has written clearly that ‘current and continued mathematical
argument is in present conditions valid only with the assumption of inequality

σ1 > σ2 > σ3, [1] – it can be easily shown that (using Burzyński’s assump-
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tions) the criterion is not fulfilled in case of uniaxial limit state when one takes:
(σ1 = 0; σ2 = kr; σ3 = 0). This was the way which (with assumption of equal-

ities
M

L
=

M

N
= 2(1 − λ) which will be discussed below) allowed Burzyński

to formulate the condition in such a way that it is indeed fulfilled in case of
the limit uniaxial state, what (without those assumptions) is generally not true.
Thus the coordinate system (and consistently parameters of the criterion which
define the type of a yield surface) change as both orientation or value of principal
stresses change.
Rejecting the necessity of fulfilling the system of inequalities σ1 > σ2 > σ3 (or

the inverse one) leads to conclusion that the limit stress in the direction of σ2 is
different than in the directions of two other principal stresses – Eq. (2.11) could
be interpreted as a limit condition for the material with anisotropic strength
properties for a set of stress states, with fixed principal stresses directions (i.e.
parallel to the material symmetry axes). Assuming that kri and kci denote tensile
and compression strength along the i-th axis respectively (i = 1, 2, 3), one can
find that neglecting inequalities σ1 > σ2 > σ3, the limit condition (2.11) gives us:

(3.1)

kr1 = kr3 = kr, kc1 = kc3 = kc, ks2 = ±ks,

kc/r2 =
−k2s(λ+ 1)(kc − kr)

2(λ+ 1)k2s + (1− 2λ)kckr

± ks
√

(λ2 + 2λ+ 1)(kc + kr)2k2s − 2(2λ2 + λ− 1)k2ck
2
r

2(λ+ 1)k2s + (1− 2λ)kckr
,

ks1 = ks3 = ±
√

2(λ+ 1)

5− 4λ
ks,

what would be suitable for cylindrical or tetragonal symmetry – similar limit
criterion for cylindrical symmetry formulated in terms of principal stresses, as-
suming that their directions are fixed, was analyzed by Theocaris [10]. The
above purely mathematical considerations require the expressions under root to
be positive. From the expression for ks1 = ks3 we obtain λ ∈ (−1; 1.25) – this is
an interval of possible values of λ for which the above considerations have sense.
Furthermore, we require that the term under the root in the formula expressing
kc/r2 is positive, what leads to the following inequality:

(3.2)
(λ2 + 2λ+ 1)

(2λ2 + λ− 1)
>

2k2ck
2
r

(kc + kr)2k2s
.

Physical interpretation of the obtained solutions requires also that the values of
tensile and compression strength along x2 must have different signs, kc2 ·kr2 < 0.
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Here is a slight inconsistency in the notation in this case, since Burzyński has
always considered both kc and kr to be positive. However, it does not influence
the solution – using well-known Viète’s formulas for the product of the roots of
the polynomial, we obtain:

(3.3)
(2λ− 1)

(λ+ 1)
<

2k2s
kckr

.

However, it has to be emphasized that in the general case, distinguishing
of the intermediate stress in Burzyński’s formulation must not be mistaken
with distinguishing of a certain direction in the material (i.e. as in transver-
sal isotropy), as sometimes it is understood. If a symmetry of the material is
described in a given coordinate system (e1, e2, e3) and directions of the prin-
cipal stresses are determined by a set of versors (e′1, e

′
2, e

′
3) which in general

do not correspond with the given coordinate system, then special meaning of
intermediate stress is the distinction of e′2 ⊗ e′2 (or at most e′2) having nothing
to do with independent of the stress state (thus constant at all points) direction
in physical space given by e2.

3.3. Basic coordinate system

Another inconsistency which has to be discussed is the existence of the basic
coordinate system given by a set of equalities (2.7). Its physical interpretation
is not quite clear. It is obvious that the coordinate system of principal stresses
directions (as well as the one of principal directions of the strain state which in
case of anisotropy is not always coaxial with stress state – furthermore, Rych-
lewski has shown that there exists no such an anisotropic linear elastic material
which preserves the coaxiality of stress and strain tensors [11]) is such basic
coordinate system – yet it depends on the stress or strain state and thus it is
different at each point, what makes it rather impractical in use. Also in case
of orthotropy and any other higher symmetry, such basic coordinate system
actually exists – axes of such system are parallel to the axes of symmetry of
the considered material. Both such systems can be set using simple rotation in
physical space, so it is not ‘only mathematically possible’.
However, it is not quite clear if the basic coordinate system really exists in

case of lower symmetries (total anisotropy, monoclinic symmetry, trigonal sym-
metry) independently of the form of stress state – or, speaking in other way,
whether there exists such orientation of a coordinate system in physical space,
being characteristic for the material (not only for the stress state as in case
of principal stresses), which makes it the basic one. There are ‘mathematically
possible’ rotations in six-dimensional space of symmetric second-order tensors
which do not refer to any rotation in physical space, thus there might be no such
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a real rotation which would satisfy conditions (2.7) for any values of the stress
state components. If so, then referring to the compliance tensor components
in the relations (2.7) is unnecessary, since the basic coordinate system would
be only a stress state-dependent. Actually, even defining such specific coordi-
nate system with the relations (2.7) would be senseless since one always has to
take a local coordinate system built upon directions of the principal stresses.
Furthermore, if there exists no such a rotation in physical space which would
give us the basic coordinate system, then the coordinate system transforma-
tion given by (2.7) changes the physical meaning of the components of both the
compliance and stress tensor – e.g. components of the stress tensor (appearing
in energy density formulation) may emerge to be of an abstract nature - they
could not be interpreted as normal or shear stresses. The simplification of the
elastic energy density formulation presented by Burzyński might emerge not as
general as it first seemed to be and it should be constrained either to the systems
of principal stresses direction or one should consider only orthotropy or higher
symmetry.
Finding the solution of the problem of existence of the basic coordinate

system is equivalent to answering the question if there exists such a basis in
physical space in which any compliance tensor C of a volumetrically isotropic
material takes the following form:

(3.4) C ∼=




C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

C2323 C2331 C2312

sym C3131 C3112

C1212




.

For this very general analysis it is enough to notice that the number of inde-
pendent components of the compliance tensor of arbitrary symmetry is further
decreased from 16 to 10 (please note that the Burzyński’s conditions (2.4) still
have to be fulfilled) – this indicates that there exist volumetrically isotropic
compliance tensors for which there is no such orientation in the physical space,
which makes the coordinate system the basic one.

3.4. Anisotropy coefficient λ

As it was shown above in Eq. (2.11), the anisotropy of elastic properties
of the considered material was represented by a single parameter λ. It was

defined as λ =
M2

2LN
. It was also assumed by Burzyński that

M

L
=

M

N
=
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2(1 − λ), which is an additional constraint for possible values of parameter λ.
It is a consequence of a specific form of the criterion formulation – it can be
shown that only if these equalities are true, the criterion is fulfilled in limit
uniaxial stress states. Burzyński did not discuss these constraints and stated
only that ‘it seems reasonable to expect that the interval within which λ varies

is quite modest, and so that it ranges e.g. from 0 to 1’ [1]. Putting x =
M

L
=

M

N

we obtain λ =
M2

2LN
=

1

2
x2 and finally, substituting both relations in

M

L
=

M

N
= 2(1− λ), we obtain the following equation:

(3.5) x2 + x− 2 = 0.

There are two roots of the above equation x1 = −2 and x2 = 1. The first one
has to be rejected because x was defined as a fraction of two ‘stiffness moduli’,
which are assumed to be positive. Thus the only result is x = 1 which gives

us λ =
1

2
, the value of λ for which the criterion is identical as the criterion for

isotropic bodies.
It has to be mentioned that before giving the simplified form of the proposed

limit condition (2.11), Burzyński wrote: “[parameters M/N ,M/L,M2/LN ] are
not treated [now] as representations of the ratio of elasticity constants, but as
coefficients particularly connected with the experimental essence of material ef-

fort” [1]. It is not clear how to interpret these words – assuming that in this short
sentence Burzyński rejected all previous assumptions on λ (see relations (2.10)),
makes all further derivations deprived of theoretical foundation and physical,

energy-based interpretation as long as λ 6= 1

2
. One should remember also that

the limit criterion introduced by Burzyński, depends on 4 independent param-
eters and simple strength tests give us only three values of which the criterion
parameters are dependent. Some parameters (e.g anisotropy coefficient λ) must
also take into consideration any information about the elastic structure of the
material, so they cannot be “connected” o n l y “with the experimental essence
of material effort” – unless there exists a one-to-one correlation between elastic
and strength properties of the considered body. This problem is discussed in
Subsec. 3.6.

3.5. Isotropy of strength properties

Finally one should also notice that in the whole paper by Burzyński [1]
there is no such thing mentioned as anisotropy of strength properties. Limit
stresses kc, kr and ks are assumed to be independent of the direction of loading.
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This makes the criterion to some extent useless since it assumes that each (ten-
sile, compression, shearing) limit stress is the same in any direction, despite the
anisotropy of elastic properties of the body.

3.6. Non-unique relation between elastic and strength parameters

Widely known failure criteria formulated by Hill [5] and Hoffman [6]
are influenced by their parameters in a linear way. In any such criterion un-
der certain conditions, those parameters can be uniquely expressed in terms of
limit stresses. Yield surface can be determined basing only on simple strength
tests: uniaxial tension and compression and pure shears in three perpendicu-
lar directions. However, the parameters of both mentioned criteria were not
interpreted in a strictly physical way. In the contrary to them, most of pa-
rameters of Burzyński’s criterion (except ω, δ and K) have precise physical
meaning and their values can be either directly measured or, at least, esti-
mated through performance of a series of tests and analysis of the obtained
elastic constants. They influence the criterion in a linear way, so there might
exist one-to-one correlation between them and limit values of stresses. If such
relation existed, those parameters could be determined in two ways – by di-
rect measurements of the elastic properties of the body or in a series of simple
strength tests. This would indicate that elastic properties of the material deter-
mine uniquely its strength properties. Authenticity of such statement should be
verified experimentally, however it seems that there might exist two materials
of different internal structure, which exhibit macroscopically the same elastic
properties but different strength properties (e.g. due to different mechanisms of
yielding).
Let us return to the basic form of the failure condition, rejecting later substi-

tutions made by Burzyński. For further simplification, let us assume the we are
not considering the cases of symmetries lower than ortothropy, so there exists
a fixed coordinate system, independent of the stress state, in which at every
point the elastic energy density can be expressed in the form given by Eq. (2.8).
Simply substituting (2.8) into (2.2), we obtain:

(3.6)
1

2
Bω(σ11 + σ22 + σ33)

2 +
1

2
Bδ(σ11 + σ22 + σ33)

+
1

3

[
L(σ22 − σ33)

2 +M(σ33 − σ11)
2 +N(σ11 − σ22)

2
]

+ 2Pσ2
23 + 2Qσ2

31 + 2Rσ2
12 −K = 0,

where Bω = Bω, Bδ = Bδ. One can note that if the condition (3.6) is fulfilled
for certain values of its parameters, it is also fulfilled if all of them are mul-
tiplied by the same constant – this indicates that the relation between those
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parameters and limit stresses obtained from strength tests cannot be unique.
Let us divide (3.6) by K so that we obtain the limit conditions depending on
five parameters:

(3.7)
1

2
B̃ω(σ11 + σ22 + σ33)

2 +
1

2
B̃δ(σ11 + σ22 + σ33)

+
1

3

[
L̃(σ22 − σ33)

2 + M̃(σ33 − σ11)
2 + Ñ(σ11 − σ22)

2
]

+ 2P̃ σ2
23 + 2Q̃σ2

31 + 2R̃σ2
12 = −1,

where the parameters with tilde denote the corresponding parameters from (3.6)
divided by K.
Assuming pure shear tests, one can easily find

P̃ =
1

2k2s1
, Q̃ =

1

2k2s2
, R̃ =

1

2k2s3
.

Let us assume that strength properties of the considered body are anisotropic
and also that in every direction it exhibits the strength-differential effect. In
such case, condition (3.6) has to be fulfilled in six uniaxial states which gives
us following overdetermined system of six equations for five parameters of the
criterion (contrary to the notation used by Burzyński we assume kr > 0, kc < 0):

(3.8)
1

3




0 k2r1 k2r1
3

2
kr1

3

2
k2r1

k2r2 0 k2r2
3

2
kr2

3

2
k2r2

k2r3 k2r3 0
3

2
kr3

3

2
k2r3

0 k2c1 k2c1
3

2
kc1

3

2
k2c1

k2c2 0 k2c2
3

2
kc2

3

2
k2c2

k2c3 k2c3 0
3

2
kc3

3

2
k2c3







L̃

M̃

Ñ

B̃δ

B̃ω




=




1

1

1

1

1

1




.

One can observe that the fifth column of the matrix of coefficients, the one
corresponding to the B̃ω parameter (quadratic pressure influence), can be ex-
pressed as a linear combination of the first three columns corresponding to shear
moduli L̃, M̃ , Ñ – both of two possible 5 × 5 minors must be then equal to 0
what indicates that the rank of the matrix of coefficients is equal at most to 4.
The rank of the augmented matrix is equal to 5, thus it is an inconsistent system
of equations and no solution can be found.
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4. Proposition of different formulation of the limit criterion

It seems to the author that the final form of the limit condition should
depend on Burzyński’s stiffness moduli in their unchanged form (their values
can be well estimated) and only the parameters K, δ, ω should be determined
in a numerical way so that the obtained limit surface fitted the experimental
data well. This would give us only three independent parameters which could be
used to fit the model to nine independent strength tests. Despite the fact that
K, δ, ω are independent of the elastic constants, it is clear that elastic properties
would influence the measure of material effort very strongly. Good correlation
between the determined model and the experimental results would verify the
correctness of Burzyński’s hypothesis, in particular the form of the influence
function assumed by him. Having determined the limit condition for a sufficiently
large set of materials of similar class, may enable finding empirical formulas for
the unknown parameters, e.g. K = K(B,L,M,N, . . . , kr1, kr2, . . . , ks3). In the
further analysis, the found formulas for different classes of materials could be
compared.
Yet, assuming that parameters K, ω, δ are known as well as the elastic

moduli B, L, M , N , P , Q, R, limit stresses can be easily found from the system
of Eq. (3.8).

(4.1)

kc/r1 =
−3B̃δ ±

√
16(Ñ + M̃) + 24B̃ω + 9B̃2

δ

4(Ñ + M̃) + 6B̃ω

,

kc/r2 =
−3B̃δ ±

√
16(Ñ + L̃) + 24B̃ω + 9B̃2

δ

4(Ñ + L̃) + 6B̃ω

,

kc/r3 =
−3B̃δ ±

√
16(M̃ + L̃) + 24B̃ω + 9B̃2

δ

4(M̃ + L̃) + 6B̃ω

,

ks1 =

√
K

2P
,

ks2 =

√
K

2Q
,

ks3 =

√
K

2R
.
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The set of acceptable values of parameters K, ω, δ is determined by the
following system of inequalities, which are required for the existence of two real
solutions kci, kri of different signs:

(4.2)

16(N +M) + 24Bω + 9(Bδ)2 > 0,

16(N + L) + 24Bω + 9(Bδ)2 > 0,

16(L+M) + 24Bω + 9(Bδ)2 > 0,

N +M +
3

2
Bω > 0,

N + L+
3

2
Bω > 0,

L+M +
3

2
Bω > 0.

First three inequalities guarantee positiveness of the expressions under the
roots what leads to kci, kri ∈ R and kci 6= kri and last three inequalities are
derived using Viète’s formulas from the condition kci · kri < 0 (i = 1, 2, 3).
Please note that further constraints for the range of acceptable values of the
parameters K, ω, δ can be assumed – e.g. condition of convexity of the limit
surface.

5. Summary

It has been shown that failure condition formulation given by Burzyński
based on his hypothesis of material effort is not stated correctly in various as-
pects. However, his original proposition of a hypothesis is of greatest scientific
value. It is only the final condition that has to be reformulated. As a conclud-
ing remark, it is worth noting that hypothesis of Burzyński distinguishes itself
among other similar propositions with certain advantages – it is stated in terms
of quantities of clear physical meaning and it enables using large variety of limit
surfaces for the description of the limit states for different classes of materials.
Great effort made by Burzyński to express the limit condition using possibly
small number of parameters, was to make the hypothesis easily applicable in
computation; unfortunately it led him to a series of misstatements. However,
those inconsistencies do not diminish great importance of the general idea of
Burzyński – measure of material effort considered as a combination of indepen-
dent energy densities, which contribution is determined by a proper stress state
– dependent function.
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