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Due to the signed agreement between the director of the Institute of Fun-
damental Technological Research of the Polish Academy of Sciences in Warsaw,
Professor ANDRZEJ NOWICKI, and the director of the National Engineering
School of Metz – ENIM – Professor PIERRE PADILLA, about the joint pub-
lishing since 2011 of the Quarterly Journal ENGINEERING TRANSACTIONS
(ROZPRAWY INŻYNIERSKIE – TRAITE d’INGENIERIE), our Quarterly
founded in 1952 by WITOLD NOWACKI, WACŁAW OLSZAK and WITOLD
WIERZBICKI has been set on a new path of its development. We consider
this to be a milestone strengthening of the international position of the journal
and aiming at the publishing market of the European Research Area. This goal
will be accomplished by the newly formed Editorial Committee and the Inter-
national Committee. This joint undertaking is in accordance with the thought
of MARIA SKŁODOWSKA–CURIE: After all, science is essentially interna-
tional, and it is only through lack of the historical sense that national qualities
have been attributed to it. (Memorandum of the International Committee on In-
tellectual Co-operation: Sub-committee of Experts for the . . . Aims of the League
of Nations. (Recommendations. Preamble): Issues 9–13, 1926).

It seems to be a good sign that we start our editorial French–Polish cooper-
ation in the year 2011, which has been declared by France and Poland the Year
of MARIA SKŁODOWSKA–CURIE (1867–1934) – the most famous woman
scientist and twice the winner of the Nobel Prize, born in Warsaw. She was the
first female professor in the history of the Sorbonne, and the French government
decorated her with the Legion of Honour. She is the only woman and the only
person not born in France, who has been buried in the Paris Panthéon. She re-
ceived her first Nobel Prize in physics in 1903 (together with her husband Pierre
Curie and Henri Becquerel), and the second one alone in 1911 (in chemistry).
The life of Maria Skłodowska–Curie was closely connected with Warsaw and
Paris. From her studies at the Sorbonne until the end of her life she lived in
France, but she visited Warsaw very often and there are many places in this
city, which are reminiscent of her.

Editorial Committee
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DAMAGE REDUCTION OF EXPLOSIVELY DRIVEN SPALLATION
BY MACHINING V-NOTCH ROWS ON THE SURFACES

OF 304 STAINLESS STEEL PLATES

T. H i r o e 1), K. F u j i w a r a 1), H. H a t a 1),

K. N a t a s a t o 2), K. M i z o k a m i 2)

1) Department of Mechanical System Engineering, Kumamoto University
Kumamoto, 860-8555, Japan
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2) Graduate School of Science and technology, Kumamoto University
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Plane detonation waves generated in the explosive PETN with use of wire-row explosion
technique for initiation have been applied to study on spall behaviour for circular plates of 304
stainless steel, and the slanting surface effects on the damage phenomena for conic frustums
and circular cones. In this paper, V-notch rows are produced on the free surface of the square
plate specimens of the same material and plane shock waves are similarly transferred from the
other surface. The cross-sectional observation of tested and recovered specimens shows that
remarkable effects on the reduction of spall damages have been achieved in case of appropriate
V-notch configurations. The effect seems to come obviously from weakened interaction of release
waves due to the dispersion of directions for reflection waves, and a hydro-code. Autodyn
2D/3D has successfully reproduced the experimental results numerically, suggesting a notch
parameter chart for spall damage evaluation.

1. Introduction

Spallation driven by direct explosive loadings [1] occurs due to tensile stresses
generated by the interaction of expansion waves emerged due to the reflection of
strong shock waves at the free surfaces of the structural components and other
strong expansion waves coming from behind the detonation waves. Previously,
the authors [2] had developed explosive loading devices producing planar det-
onation waves in powder pentaerythritoltetranitrate (PETN) with the use of
exploding copper wire rows for initiation, showing some applications to spall
tests for circular plane plates of various metallic materials, where the spalling
phenomena were monitored by VISAR signals. In the following study [3, 4], spal-
lation driven by direct explosive loads was similarly investigated for additional
two types of specimens: conical frustums and circular cones of aluminum alloys
and a stainless steel with variations of specimen configurations and explosive
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heights, and the experimental results revealed that slanting side surfaces change
the spall damage phenomena showing a possibility to reduce spall failure by
applying such effects. Typical related test data are shown in Fig. 1. In this pa-
per, V-notch rows are newly produced on the free surfaces of the stainless steel
plate specimens and the explosive loading tests are performed investing appro-
priate V-notch configurations for spall damage reduction by means of numerical
simulations.
a) circular plate b) conical frustum

c) VISAR signal

Fig. 1. Previous spall test data [2–4] of a stainless steel (SUS304) with PETN height H of
20 mm: cross-sectional photos of recovered: a) circular plate (φ: 50 mm, t: 20 mm), b) conical

frustum (φ1/φ2: 12 mm/50 mm, sloping 43.5 deg.), and c) a typical VISAR signal.

2. Experimental and numerical procedure

Experiments are performed using the explosion test facilities at the Shock
Wave and Condensed Matter Research Center, Kumamoto University. Schematic
experimental assembly for direct-explosive impact tests is shown, with the con-
figuration parameters of tested specimens, in Fig. 2. Slab-like installed powder
PETN (0.90–0.95 g/cc) is initiated by the simultaneous explosion of parallel
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Fig. 2. Schematics of experimental assembly and the configuration parameters of tested
specimens in this study.

copper wire rows (diameter: 175 µm, the ratio of PETN thickness H of wire
interval B, H/B≥1.3–1.5 for planarity [2]), placed over the entire outer surface
using an impulsive discharge current from a capacitor bank of 40 µF, 20 kV,
producing a planar detonation front in the PETN layer immediately after the
initial explosion and transferring a one-dimensional triangular pressure pulse
directly to the specimen plate. The PETN is installed constantly in the shape
of 50×50×20 mm and the wire intervals are 7–8 mm in the experiments. The
specimens of 18Cr-8Ni stainless steel, JIS SUS304 are machined to the smooth
quadratic plates of 50×50×20 mm from the rolled plate of thickness of 25 mm
as a basic specimen and in this study, V-notch rows were newly produced par-
allel to the side lines by electro-discharge machining on the free surfaces of the
specimens with notch variation of height or depth h of 2, 5, 8 mm and gradient
angles α of 15, 30, 45 degrees respectively. Numerical simulations are performed
for all the experiments and additional conditions using a hydro-code: Autodyn
2D/3D based on the finite difference method, and Euler coordinates, material
data or 304 stainless steel [5], PETN and plastics built in the code, and two-
dimensional analysis with mesh division of 0.2×0.2 mm, are basically employed
here. Stress criterion of SUS304: σsp = 3.5 GPa previously obtained [2] shown
in Fig. 1c for spall damage has been also adopted.

3. Experimental results

In all the explosion tests, experimental assembly shown in Fig. 2 was in-
stalled inside a cushion-filled chamber set in the pit and the tested specimens
were successfully recovered without secondary damage. The recovered speci-
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mens were separated halves by a fine-cutter machine perpendicularly to V-notch
rows and the emerged cross-sectional surfaces were lapped. Spall damages of
the specimens were observed in the cross-sections for all the cases. Figure 3
shows cross-sectional photos of tested specimens for all the notched specimens,
and macroscopic observation indicates three types of damage phenomena in the
cross-sections. In the first type, spall damages extended parallel to the plate sur-
faces or perpendicular to stress wave propagation. It is the ordinary spallation
caused by the interaction of the expansion wave reflected at the free surfaces of
the plate specimen and other expansion wave coming from behind the detona-
tion. Here it is called “horizontal spall”, as shown in the figure. In the second
type called “vertical spall”, spall damages extended along the central line of each
ridge of the V-notch rows. This type of damages are obviously caused by the
interaction of expansion waves reflected at a pair of slanting surfaces on every
V-notch row, and then in this case, ordinary spallation does not appear because
of reduction of the reflected expansion waves. Finally, in the third type called
“no spall”, only the case of α = 15◦, h = 8 mm, spall damage is remarkably re-
duced almost to zero under the macroscopic observation, where around 0.4 mm
cracking is critical. Additionally, a mixed type of horizontal and vertical spall
exists consequently what is seen in the case of α = 30◦, h = 5 mm.

Fig. 3. Cross-sectional photos of tested, recovered and half-cut specimens for all the notched
specimens.
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4. Numerical results

In preliminary investigation, numerical overall spall damage phenomena in
the cross-sections generated 3D analysis of Autodyn do not make essential dif-
ference from those by 2D analysis, and actually in this study, 2D numerical
simulation successfully reproduced experimental cross-sectional spall damages
for all the cases. Figure 4 shows typical three types of numerical damage distri-
butions in the cross-sections based on stress criterion, where lowermost density
elements are represented as voids. They correspond practically well to experi-
mental results shown in Fig. 3 including no spall type, where separation of two
meshes is defined as numerical minimum damage coinciding with experimental
macroscopic observation. Next in order to verify the emerged damage phenom-
ena on the stress criterion base, stresses in the specimens were examined for all
the test cases. Figure 5 shows typical numerical time-histories of spatial distri-

Fig. 4. Typical three types of numerical simulation results for the cross-sections of
explosively loaded, notched specimens with use of Autodyn 2D. Solid lines show 10 mm.

a) α = 30◦, h = 2 mm b) α = 45◦, h = 8 mm c) α = 15◦, h = 8 mm

Fig. 5. Typical numerical time- histories of spatial distributions of stress σx(∼= σy) in the
specimens shown in Fig. 4.
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butions of stress σx(∼= σy), along the central line from the bottom of the plate
to the peak of the V-notch ridge in the same specimens in Fig. 4, where x and y
are the directions of thickness and width of the plate perpendicular to the notch
rows, and plus stress denotes a compressive one, and failure criterion is not used
here. It is seen that in cases (a) and (b), reflected tensile stresses soon go much
over the stress criterion value σsp of 3.5 GPa, and in case (c) the stresses barely
reach the value in a short period after some time period from the reflection at the
restricted narrow area. The damages in the specimens with lowest notch height
of 2 mm in the case (a) resemble that of plane smooth plate without slant surface
effect, and it follows from small stress growth and interaction after reflection.
Such stress distributions explain well all the spall phenomena in this study.

5. Discussion

Experimental and numerical results suggest that there exists a notch para-
meter chart for spall damage evaluation. In the numerical simulation for building
the chart, 2D analysis for the model including only one ridge of V-notch assum-
ing wide plate with large number of notch rows, was adopted for simplicity as the
damage evaluation model of central part in the specimen, which is confirmed
appropriately as a practical use by preliminary examination. Figure 6 repre-
sents a spall damage evaluation chart derived from the experimental results and
numerical simulation, where simplified 2D models were analysed changing the
parameters of notch height h and a half wavelength of notch rows y with the
intervals of 1 mm and 0.2 mm respectively. The area where the values of y are
under numerical critical points for every notch height h represents the notch
configuration, where spall failure does not occur. The effect of such slant sur-

a) b)

Fig. 6. a) A spall damage evaluation chart of explosively loaded V-notched plates with the
height of 20 mm for explosives and plates based on the results of this study, and b) – the

related configuration parameters of V-notch.
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faces comes obviously from weakened interaction of released waves due to the
dispersion of directions for reflection waves, but in the area where y is above
numerical critical value, the spall failure is inevitable. Especially in the area
where y is over the value of 3.4 in the figure, vertical or inner notch ridge spall
occurs because release waves reflected at the slant surfaces grow enough to spal-
lation. Distance L in (b) is also related with the inner notch ridge failure. On
the contrary, in the spall failure area where y is under the value and furthermore
notch height h is small, interaction effect of slant surfaces of V-notch rows is
diminished and horizontal or ordinary spall occurs.

6. Conclusion

Reduction of spall failure for plates loaded directly by plane detonation wave
generator was investigated machining V-notch rows at the free surfaces. Exper-
imental and numerical results revealed remarkable effect of the slant surfaces
V-notches, and a notch parameter chart for spall damage evaluation was sug-
gested successfully. The damage reduction method introduced in this study can
be applied to explosively loaded plates with other dimensions, in cooperation
with numerical simulation. In the future study, more simplified system will be
required for the practical use.
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We have proposed a sophisticated novel method of the SHPB experiment to measure
the local strain-rate distributions on a surface of the specimen by using mechanoluminescent
materials combined with a high-speed camera and an image intensifier. The feasibility study
was made for the aluminum specimens pasted by a typical mechanoluminescent material -Eu
doped SrAl2O4 film, in order to obtain the fundamental data for the method. Our results
showed that SrAl2O4: Eu emitted lights as a response to the stress. Increase of the light
intensity was swift enough to follow the strain change due to SHPB impact. The luminescence
intensity was experimentally verified and expressed as a product of strain and strain rate.
Accordingly, it can be said that this method gives a good tool for measuring time variation of
local strain distributions.

1. Introduction

The Split Hopkinson Pressure Bar (SHPB) technique is widely used to mea-
sure a stress-strain relation of materials with a well-controlled impact loading
of a specimen. Recently some new SHPB test methods were developed together
with analysis by numerical simulations [1, 2] because deformation of the spec-
imen extends the range of elasticity due to very high strain-rate, or specimen
of soft materials such as nylon. For new materials of limited quantities, multi-
section striker method was developed by combining numerical simulation to
save an amount of material to be tested [3]. Various SHPB experiments were
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reported for composite materials characterized by non-uniform media [4–6]. Ex-
periments for particle reinforced metal matrix composite (such as SiCp/2024Al
composite) showed that composite’s strength was weakened by adiabatic heat
and cumulative damage under high strain rate compression [4]. Characteriza-
tion of carbon-fiber reinforced 3D waves was made by tensile loading and shear
loading in the SHPB experiments, providing the data for failure and damage be-
havior [5]. Unidirectional carbon/epoxy laminated composites were investigated
to obtain a compressive stress-strain curves up to failure [6].

In the conventional SHPB experiment, strain and strain-rate of a specimen
can be calculated from pulse data measured by strain gages mounted on the
input and output bars with an assumption of homogeneous deformation of the
specimen. Thus, the calculated strain and strain-rate are those of the specimen
as a whole. In the case followed by failure and damage, anisotropic 3D and
especially local strain, seems to play an important role in crack initiation. Ac-
cordingly, in order to analyze the mechanism to the failure and damage due to
impact, it will be necessary to measure such local strains. A novel method of pho-
tography measuring 3D deformation of the specimen in the SHPB experiments
was developed by M.R. Arthington [7], using a high-speed camera and mir-
rors. Trial experiment was made on Ti-6Al-4V specimen assuming that material
strength was dependent on the rolling direction [8]. The cylindrical specimen
was deformed to elliptic with SHPB loading, and major and minor radii of an
ellipse were measured by detecting the edge of the image taken by the camera
as a function of the axial position and time. The data were compared with the
results of a finite element analysis. Spall test of glass-fibre reinforced polymers
was also made using a Hopkinson bar configuration together with a high-speed
camera [9].

Even in these novel techniques, the local strain can be hardly measured, be-
cause it is very difficult for experimentalists to distinguish, with a high accuracy,
local deformations from an image caught by the high-speed camera. Addition-
ally, the method to measure the strain-rate has not been reported as yet. The
research group of Chao-Nan Xu, one of the authors, has developed a smart ma-
terial with a property to emit lights the intensity of which is proportional to
stresses given to the material, that is called a mechanoluminescence material
[10–12]. If we paste a proper mechanoluminescent material on the specimen of
the SPHB experiment, it will emit lights corresponding to the strain and strain-
rate of the specimen. Accordingly, we will be able to directly obtain the data for
strain and strain-rate distributions on the surface of the specimen from the light
image, which will be taken by a high-speed camera. In the present work, we have
investigated the applicability of the method, by selecting a typical mechanolu-
minescence material, Eu doped SrAl2O4 as a sensor of the SPH experiments, to
give the time-dependent strain distributions.
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2. Experiments

A plane-strain wave incident experiment was carried out using a modified
split Hopkinson bar impact technique for aluminum specimens with surfaces
pasted by a SrAl2O4:Eu film, as shown in Table 1. The cylindrical specimen
16 mm high and 8 mm in diameter was placed between the stainless-steel input
and output bars of 16 mm in diameter and 1.5 meter in length, as shown in
Fig. 1.

Table 1. List of the method of pasting SrAl2O4:Eu on the aluminum specimen.

Identification Method

AL-2-F-2 To paste inconel sheet with sputtered SrAl2O4:Eu

AL-3-G To paste aluminum film with sprayed SrAl2O4:Eu

AL-4-3 To spray SrAl2O4:Eu directly on aluminum specimen

AL-1-3 To paste aluminum film with screen-printed SrAl2O4:Eu

Fig. 1. Schematic of a modified SHPB apparatus.

In a conventional SHPB, an assumption is made that a uniaxial homogeneous
stress distribution is produced along the axial direction of the specimen and the
forces imposed on both ends of the bars are equal. Then the average nominal
strain ε(t), strain rate ε̇(t) and stress σ(t) in the specimen are obtained from the
reflected strain εr(t) and transmitted strain εt(t), measured in the Hopkinson
bars as follows:

ε(t) =
−2c0

ls

t∫

0

εr(t′)dt′,(2.1)

ε̇(t) =
−2c0

ls
εr(t),(2.2)

σ(t) =
EA

As
εt(t),(2.3)

where A is the cross-sectional area, c0 the longitudinal elastic wave velocity of
the Hopkinson bars, E the Young modulus of the bars, and As and ls are the
cross-sectional area and the gage length of the specimen.
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Picture of luminescence from SrAl2O4:Eu after the SHPB impact was taken
by a high-speed camera NAC MEMRECAMfx RX-6 with a condition of 20 000
frames per second during 40 µs exposure, by multiplying light intensity with
image intensifier NAC UVi.

3. Experimental results and discussions

Initially, impact tests were performed for the same AL-4-3 specimen, char-
acterized by direct spaying, under a condition of loading velocity of the striking
bar from 2.66 m/s, 4.10 m/s and 5.32 m/s, by controlling the air pressure in
a chamber. Light emission was observed at the loading velocities of 4.10 m/s and
5.32 m/s, while not observed at 2.66 m/s. Accordingly, other specimens were
tested at the loading velocity of about 4 m/s and light emission was observed
for AL-3-G and AL-1-3. The specimen with inconel film did not shine because
of smaller strain due to high modulus of the inconel. Figure 2 shows the pictures
at a time when luminescence intensity became the highest. It is found that the
luminescence has broad two-dimensional distributions the peak of which appears
at the output-bar side from the center of the specimen, except for the case of
AL-3-G-002. The case of AL-4-3-003, which had a weak remaining luminescence
due to the previous impact test for AL-4-3-002, shows a slightly weaker lumines-
cence in the figure. Dark region in the lower part of a left-hand side (output-bar
side) was due to grease fixing the specimen to the experimental apparatus.

Fig. 2. Picture of peak luminescence.
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Figure 3 compares time variation of mean intensity of luminescence among
4 cases. All cases show a quite swift rise-up and decay within 0.5 ms. After
that, slow decaying follows over 10 ms. From the figure, it can be said that the
method of direct spraying a mechanoluminescence material on the specimen is
better than other, because mean intensity of the AL-4-3 specimens are higher
than the other specimens.

Fig. 3. Time variation of mean intensity of luminescence.

Figure 4 shows the AL-4-3-002 luminescence distribution change with time
after the SHPB impact along the central horizontal lines, where the light inten-
sity became the highest. Horizontal distribution is moving, according to move-
ment of the specimen location, towards the output bar. The growing area also
changes by getting narrow. These luminescence distribution change will be useful
to understand the deformation behaviour of the specimen.

Fig. 4. Luminescence distribution along the central horizontal line.

Figure 5 shows the strain data of εi, εr and εt measured by the strain gages
at the input and output bars after the SHPB impact. According to Eq. (2.1),
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Fig. 5. Measured strain data.

the strain values of the specimen were calculated as a function of time after the
impact. Calculated results compared with luminescence intensity are shown in
Fig. 6. In this figure, the relation between the strain and intensity is not obvious
in individual cases, even such as made with similar impact loading. The differ-
ence must result from different method of pasting SrAl2O4:Eu on the specimen.
Accordingly, it seems to difficult to be derive any quantitative rule between them.

Fig. 6. Comparison of the strain and luminescence as a function of time.

On the other hand, for cases using the same specimen AL-4-3 it is noted
that the latter case AL-4-3-003, even with a larger impact, showed a smaller
strain and weaker luminescence than the former case AL-4-3-002. The latter case
may be influenced by plastic deformation due to an over-loading beyond elastic
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deformation region after the test of the AL-4-3-002. Thus, luminescence may
suggest more clearly the type of deformation of the specimen than the strain.

Chao-Nan Xu [11] has derived the following relation between the lumines-
cence intensity and strains:

(3.1) SML = C0ε
dε

dt
,

where, C0 is the normalization factor.
We applied the above equation, together with Eqs. (2.1) and (2.2), to the

case of AL-4-3-002. The calculated luminescence intensity is compared with the
experimental one in Fig. 7. Quite good similarity is observed up to the peak
at 0.2 ms after the SHPB impact in the figure. This result indicates that the
Eq. (3.1) is applicable even to the present swift deformation phenomena.

Fig. 7. Comparison of the calculated luminescent intensity with the experimental data.

At a time after the peak, experimental luminescence shows a slow decay. Such
decay components are the appearance of an inherent property of the mechano-
luminescence materials, and it will be possible to remove the contamination of
the remaining luminescence in the pixel-wise from the picture by assuming a
decay mode, which can be evaluated at a time properly elapsed from the peak
time.

Thus, it can be said that the mechanoluminescence gives us information on
the strain phenomena exactly composed of a product of strain and strain rate,
and has a possibility to measure a time-dependent local strain distributions.
On the other hand, K. Anderson [14] has reported the grating technique to
measure three-dimensional strain using stereo cameras. The technique is used to
determine the three-dimensional deformation and the tangential strain of sheet
metal. A grating is fixed on the surface and taken by stereo-cameras in different
deformation states. By suitable line-following software, the grating coordinates
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in the images are determined with subpixel accuracy. Using photogrammetric
methods, the three-dimensional coordinates are calculated from the image coor-
dinates. The strain is usually determined by means of a deformation gradient,
which is calculated from every deformed triangle. Thus, we will be able to eval-
uate the strain-rate by subtracting the effect of the strain data measured with
high-speed stereo-cameras from the measured luminescence distributions.

4. Conclusion

We have proposed a sophisticated novel method of the SHPB experiments to
measure the local strain-rate distributions by using a mechanoluminescence ma-
terials, combined with a high-speed camera and image intensifier. The feasibility
study was made for the aluminum specimens with a typical mechanolumines-
cence material, Eu doped SrAl2O4 film, in order to obtain the fundamental data
for the method. Results showed that SrAl2O4:Eu emitted lights with response
to the strain on the sample surface. The rise of the light intensity was swift
enough to follow the strain due to the SHPB impact. It was also verified that
the luminescence intensity was expressed as a product of strain and strain-rate,
even in the swift deformation such as the SHPB experiments.

Accordingly, the present method can be said to give a good tool to measure
local strain-rate distributions by applying a technique to measure the strain dis-
placements with high-speed stereo cameras. Further experiments will be needed
to confirm the reliability and to improve the method by selecting a better
mechanoluminescence materials, as well as developing a data-acquisition and
-processing system, obtaining a local strain distributions in the SHPB experi-
ment. If we manage to develop a more sensitive sensor, swifter phenomena with
in microsecond will be also observable by using a suitable high-speed camera
and image-intensifier. Wider application will be also possible in the field of me-
chanical dynamics experiments [13]. The results will clarify the reliability of the
fundamental Eqs. (2.1) to (3.1) in the SH’B experiments and the phenomena
leading cracks.
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Poly(lactic acid) (PLA) is a biodegradable biomass polymer. Polymer blends or polymer al-
loys have been used to overcome its brittleness. Because poly(butylene/adipate/terephthalate)
(PBAT) is a ductile and biodegradable polymer, PLA/PBAT polymer alloys can potentially
exhibit high impact strengths. Different mixing ratios of PLA/PBAT (80:20, 70:30 and 60:40)
and the addition of dialkylperoxide as compatibilizing agent for each mixing ratio have been
examined. The stress-strain curves of the PLA/PBAT specimens (observed using a scanning
electron microscope) were measured using a split Hopkinson pressure bar (Kolsky bar) and
a universal testing machine. The PBAT ratios and addition of dialkylperoxide affected the
stress-strain curves. Yield stress decreased with increasing PBAT ratios. Addition of dialkylper-
oxide did not change the yield stress of specimens when PLA:PBAT = 80:20. At high strain
rates, the addition of dialkylperoxide clearly reduced yield stress and Young’s modulus when
PLA: PBAT = 70:30 and 60:40.

1. Introduction

The increasing use of plastic products worldwide is causing considerable
damage to the environment; therefore, biodegradable plastics (plastics that can
decompose in the natural environment) and biomass plastics (plant-derived or
recyclable-resource-based plastics) are being extensively investigated, and new
biodegradable and biomass plastics are continuously being developed. Poly(lactic
acid) (PLA) is a typical biodegradable biomass polymer (plant-derived poly-
mer). In Japan, PLA is already being used to manufacture many industrial prod-
ucts such as the interior parts of cars, parts of computer cases, and cell-phone
cases. Many studies have been conducted to determine other industrial products
that can be manufactured using PLA. However, such applications are limited
to machine parts that are subjected to low loading. Polymer blends/alloys or
natural fiber reinforcing have been used to overcome the brittleness of PLA
[1–4]. Because poly(butylene adipate / terephthalate) (PBAT) is a ductile and
biodegradable polymer, PLA/PBAT polymer blends and alloys can potentially



24 M. NISHIDA, H. ICHIHARA, N. FUKUDA

exhibit high impact strengths [5, 6]. In most cases, the impact resistances of
biodegradable plastics and biomass plastics are based only on the experimental
results of Izod/Charpy impact strength tests and Dynatup impact tests. How-
ever, the basic mechanical properties of such plastics with respect to the impact
resistances remain unknown.

In the present study, the stress-strain curves of PLA/PBAT polymer alloys
were measured using a universal testing machine and a split Hopkinson pressure
bar (Kolsky bar) system. The effects of the mixing ratios of PLA/PBAT and the
addition of dialkylperoxide as a compatibilizing agent on the Young’s modulus
and flow stress were also examined.

2. Experimental methods

2.1. Materials

We used PLA/PBAT alloys prepared by means of PLA from Toyota Motor
Corporation (Toyota Eco-Plastic S-17) and PBAT from BASF (Ecoflex). In
order to examine the effect of a compatibilizing agent, we used dialkylperoxide
(NOF Corporation, PERHEXA 25B). The mixing ratios of PLA and PBAT
were 80:20, 70:30, and 60:40. The mixing ratios of PLA:PBAT:dialkylperoxide
were 80:20:1, 70:30:1, and 60:40:1. We prepared the polymer alloys using a twin-
screw extruder (TECHNOVEL CORPORATION) at 180◦C, a screw speed of
400 rpm, and a feed rate of 100 g/min. After melt mixing, the strands prepared
by the twin-screw extruder were cooled rapidly, pelletized, and then dried. Next,

60:40 70:30 80:20

60:40:1 70:30:1 80:20:1

Fig. 1. Photographs of cryo-fractured surfaces (observed using a scanning electron
microscope).
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5-mm-thick plates were prepared using a conventional hot press at 190◦C and
5 MPa for 30 min. Figure 1 shows photographs of the cryo-fractured surfaces of
specimens captured using a scanning electron microscope.

In the case of the PLA/PBAT specimens, we can see a sea-island structure
consisting of the PLA matrix and PBAT particles of the same size (domain).
When we used the compatibilizing agent, we could not observe PBAT particles
and phase separation clearly.

2.2. Izod impact tests

Izod impact test specimens were prepared using a milling machine. The
specimens had an A-type notch and 63.5 × 12.7 × 5 mm dimensions. An Izod
impact testing machine (Toyo Seiki Seisaku-sho, Ltd.) was used.

2.3. Compressive tests

Compressive test specimens were produced using a lathe, and their end faces
were polished and parallelized. We used dynamic compressive test specimens
with a diameter of approximately 15 mm in order to accurately measure the
stress-strain curves using our equipment. The specimen thickness was 5 mm.
The photograph of a compressive test specimen is shown in Fig. 2. In the quasi-
static tests based on ASTM D695-02a, we used specimens with a diameter and
thickness of 6 mm and 9 mm, respectively.

Fig. 2. Photograph of a dynamic compressive test specimen.

The quasi-static compressive tests were conducted with strain rates ranging
from 10−4 to 10−2 s−1, using a universal testing machine (A&D Company, Ltd.,
RTM-500). At high strain rates of 102 to 103 s−1, compressive properties of
the specimens were examined using the split Hopkinson pressure bar method
(Kolsky bar), as shown in Fig. 3. The input and output bars were made of
an aluminum alloy (A2024-T4), and their diameters and lengths were 28 mm
and 1900 mm/1300 mm, respectively. Strain gages were applied to both sides
of the input and output bars at distances of 950 mm and 300 mm from the
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Fig. 3. Experimental setup for split Hopkinson pressure bar method (Kolsky bar).

specimen, respectively. As the stress histories were almost equal on both sides
of the specimens, the strain and stress of the specimens were calculated from the
strain on the bars using Eqs. (2.1) and (2.2), which are given below; in addition,
the strain on the bars was measured using the strain gages [7]:

ε(t) =
2c3

L

t∫

0

[εI(t)− εT (t)] dt,(2.1)

σ(t) =
AE

AS
εT (t).(2.2)

Here εI and εT are the axial strains induced in the input bar by the incident
wave, and in the output bar by the transmitted wave, respectively. E and c3

are Young’s modulus and elastic wave velocity, respectively, of the both the
input and the output bars. L is the specimen thickness. A and AS are the cross-
sectional areas of the input/output bars and specimens, respectively. Material
constants of the aluminum alloy (A2024-T4) bars used in the calculations are
listed in Table 1. We used brass strikers with a diameter of 20 mm and a length
of 220 to 390 mm. During the experiments, the humidity in the laboratory was
15% to 50%. Specimens were maintained at a temperature between 23◦C and
25◦C using silicone rubber heaters.

Table 1. Material constants of input and output bars used in calculations.

Density Elastic wave velocity in the bar, c3 Young’s modulus E

2.77 × 103 kg/m3 5150 m/s 73.6 GPa

3. Results and discussion

3.1. Results of Izod impact tests

The results of the Izod impact test are shown in Fig. 4. The figure shows the
standard deviation of the results and their statistically significant difference. The
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Fig. 4. Impact resistance of different PLA/PBAT alloys.

addition of dialkylperoxide increased Izod impact strength for each PBAT ratio,
corroborating the results published by Fukuda et al. [5]. In particular, when
the mixing ratio of PLA:PBAT:dialkylperoxide was 60:40:1, the Izod impact
strength was 60 kJ/m2, comparable to polycarbonate (PC).

3.2. Results of compressive tests

The dynamic properties for PLA/PBAT alloy specimens were examined us-
ing the split Hopkinson pressure bar method. Figure 5 shows the stress-strain
curves for PLA/PBAT alloy specimens, obtained from the strain history and
stress history using Eqs. (2.1)–(2.2). Because the strain rate changed slightly
during compression, it was determined using the averaged value of the strain
rate-strain curve [8]. When PLA:PBAT = 80:20, the stress-strain curve for the
specimen peaked near the elastic limit and then, the stress decreased gradually

Fig. 5. Effect of PBAT content on stress–strain curves at strain rates of 960–1050 s−1.
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with increasing strain (softening). As the PBAT ratio increased, the peak of the
stress-strain curve became smaller, and the yield stress and Young’s modulus
decreased. When PLA:PBAT = 70:30, the flow stress remained almost constant.
When PLA:PBAT = 60:40, the flow stress increased slightly (work hardening).

Next, in order to examine the effect of dialkylperoxide addition, the stress-
strain curve for PLA:PBAT = 60:40 and PLA:PBAT:dialkylperoxide = 60:40:1
was plotted, as shown in Fig. 6; the curve for PLA:PBAT = 70:30 and PLA:PBAT:
dialkylperoxide = 70:30:1 was plotted, as shown in Fig. 7. The addition of di-
alkylperoxide reduced the yield stress and Young’s modulus of the specimens
and increased the work hardening.

a) 1050–1090 s−1 b) 560–650 s−1

Fig. 6. Effect of dialkylperoxide addition on the stress-strain curve for PLA:PBAT = 60:40
and PLA:PBAT:dialkylperoxide = 60:40:1.

a) 990–1020 s−1 b) 750–790 s−1

Fig. 7. Effect of dialkylperoxide addition on stress-strain curve for PLA:PBAT = 70:30 and
PLA:PBAT:dialkylperoxide = 70:30:1.

Finally, Fig. 8 shows the effect of the strain rate on the yield stress. For each
polymer alloy, the yield stress increased with the strain rate, what is commonly
seen in most engineering plastics such as poly(methyl methacrylate) (PMMA)
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Fig. 8. Effect of strain rate on maximum stress.

and PC. As the PBAT ratio increased, the yield stress decreased at high and low
strain rates. At low strain rates, we can see only a few effects of dialkylperoxide
addition on the yield stress for each PBAT ratio. At high strain rates, the
addition of dialkylperoxide clearly reduced the yield stress only for PLA: PBAT
= 70:30 or 60:40. The strain rate dependence of the yield stress was greater when
PLA:PBAT: dialkylperoxide = 70:30: 1 and 60:40:1 than when PLA:PBAT =
70:30 and 60:40.

4. Conclusions

We have examined specimens with different mixing ratios of PLA/PBAT
and the effect of the addition of dialkylperoxide on them. The addition of di-
alkylperoxide increased the Izod impact strength. The stress-strain curves of
PLA/PBAT specimens were measured using a split Hopkinson pressure bar and
a universal testing machine. The yield stress and Young’s modulus decreased
with increasing PBAT ratios. At high strain rates, when PLA:PBAT = 70:30
and 60:40, the addition of dialkylperoxide reduced the yield stress and Young’s
modulus, and increased the work hardening. The strain rate dependence of the
yield stress was greater when PLA:PBAT: dialkylperoxide = 70:30:1 and 60:40:1
than when PLA:PBAT = 70:30 and 60:40.
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ELASTIC ENERGY DECOMPOSITION AND LIMIT CRITERIA

J. R y c h l e w s k i

In memoriam Wacław Olszak

Translated from the original paper in Russian from Advances in Mechanics, 7, 51–80 (1984)
by Andrzej Blinowski, scientific editor Ryszard B. Pęcherski.

The notes from the editor are added in brackets [. . . ]

1. A bit of history

Exactly 80 years ago1), in one little known engineering journal, appeared
a paper by a young scientist – “Właściwa praca odkształcenia jako miara wytęże-
nia materiału” [Specific work of strain as a measure of material effort M.T. Hu-
ber [1]]. The author’s destiny was to become in future a founder of the Polish
school of solid deformable bodies mechanics. The article contained one of the
classic assertions of contemporary mathematical theory of plasticity – the limit
condition for isotropic bodies, which we nowadays use to express as

(1.1) s · s ≤ 2k2,

where s is a deviatoric part of the stress tensor σ, k denotes the limit value of
pure shear stress (the notation is specified in Appendix 1).

We should notice that condition (1.1), gained popularity in scientific en-
vironment only ten years later being rediscovered by R. von Mises [2], and
subsequently, additionally explained by H. Hencky [3]. This story has been
discussed in 1924 at the I-st International Congress of Applied Mechanics in
Delft, and found a reflection in, perhaps the first, methodical elucidation of the
mathematical theory of plasticity given in 1927 by H. Mierzejewski [4].

After another decade it become clear that the yield condition (1.1) was
clearly formulated by J.C. Maxwell in a private letter to prospect lord Kelvin [5].
After the explanation of the matter of the problem, the author of the letter ad-
ditionally asserts: “I think this notion will bear working out into a mathematical

1)Written in 1984.
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theory of plasticity when I have time . . . ”. It is a pity, that such a chance did not
come about, we should remember however, that Maxwell’s attention has turned
to more important problems.

The mentioned above co-authors of the condition (1.1), (except for R. von
Mises) based it on the charming in their simplicity, considerations on the energy.
Let us recall the matter of the problem.

In a linearly elastic body under small strain ε, the stored elastic energy is
equal to the work performed by the stress σ on the strain ε and can be expressed
as a quadratic form of stresses,

(1.2) Φ(σ) ≡ 1
2
σ · ε(σ).

If a body is isotropic, then this form should be invariant. Any quadratic in-
variant of the symmetric tensor, however, can be expressed as follows:

(1.3) Φ(σ) = Aσ2 + Bs · s,

where

(1.4) σ = σ1 + s, σ ≡ 1
3
1 · σ.

Indeed, σ, s · s and det s comprise a complete (both functional and polynomial)
system of invariants on the space of symmetric tensors S , and (1.3) is the
only possible quadratic expression which can be created using them. Giving
a meaning to the constants, one obtains:

(1.5) Φ(σ) =
1

2K
σ2 +

1
4G

s · s,

where K – compressibility modulus, G – shear modulus. It means that

(1.6) Φ(σ1 + s) = Φ(σ1) + Φ(s),

i.e. the elastic energy is the sum of the energy of the volume change Φ(σ1)
and the energy of the shape change Φ(s). Having performed this decompo-
sition, J.C. Maxwell wrote: “I have strong reasons for believing, that when Φ(s)
reaches a certain limit. . . , then the element will begin to give way. . . . Condition
of not yielding

(1.7)
1
h

Φ(s) ≤ 1,

where h ≡ k2/2G. We took the liberty to change only the author’s notation for
the sake of similarity of the expressions (1.7) and (1.1).
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Arising in that place and at that time (Cambridge, middle of the XIX cen-
tury) of the ideas about the limit capacity of the elastic body for cumulating the
energy of shape change seems to us by no means accidental. Some years earlier,
one of the professors of that university, J. Green, laid the notion of the elastic
energy in the foundations of the very definition of the elasticity [6]; J.G. Stokes
pointed out quite clearly on the two kinds of the elasticity: the one trying to
restore the volume, and another one tending to restore the shape [7].

M.T. Huber quotes the decomposition (1.6) referring to H. Helmholtz [8]
and writes: “. . . można z wielkim prawdopodobieństwem uważać Φ(s) za miarę
wytężenia materiału” [1] [“. . . one can in all probability consider Φ(s) as a mea-
sure of material effort” – p. 185, [1] (English translation)]. He communicated
his supposition to A. Föppl, who wrote in his well-known at that time text-
book [9]: [“Endlich ist noch darauf hinzugeweisen, daß mit den bisher genan-
nten noch keineswegs alle Möglichkeiten erschöpft sind, die für die Bemessung
der Bruchgefahr von vornherein offen stehen. Es ist auch sehr wohl möglich, daß
wenigstens für gewisse Stoffe eine dieser anderen Möglichkeiten dem wirklichen
Verhalten near kommt als die früheren. Namentlich liegt es nahe, in irgendeiner
Weise die bezogene Formänderungsarbeit mit der Anstrengung des Stoffes in
Verbindung zu bringen, da in ihr sowohl die auftretenden Spannungen als die
von ihnen hervorgerufene Formänderung zur Geltung kommen”].

“In der Tat hat man dies wiederholt versucht, und eine besondere Form dieser
Annahme, die von Herrn Professor Huber an der Technischen Hochschule in
Lemberg aufgestellt wurde, erscheint durchaus beachtenswert, weshalb hier noch
etwas näher darauf eingegangen werden soll. Die ursprüngliche Veröffentlichung
von Huber ist uns nicht zugänglich, da sie in der polnischen Muttersprache ihres
Verfassers geschrieben ist; wir können uns aber nach einer brieflichen Mitteilung
mit einem ausführlichen Auszuge aus der Abhandlung richten, die wir Herrn Hu-
ber verdanken“ [p. 50 [9] (Finally, one should mention that the before discussed
measures of the risk of fracture by no means exhaust all possibilities that are at
our disposal. It is also very possible that at least for certain materials one of the
other possibilities approximates better the real behaviour than the earlier ones. It
is namely conceivable to relate in some way the derived [specific] work of strain
with material effort as well as to arrive at the assessment of induced stresses
and the resulting deformation.

In fact one has it repeatedly attempted and certain particular form of such
an approach, which was exhibited by Professor Huber of the Technical Univer-
sity in Lemberg [Lwów Polytechnic] appears entirely worthy of our attention.
Therefore, it should be brought closer here. The original publication of Huber is
not accessible for us, for it was written in Polish mother tongue of the author.
However, we can be guided by the comprehensive excerpt by letter, which we owe
to Mr Huber.) – translation by sc. ed.].
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R. von Mises proposed condition (1.1) starting from purely formal scheme of
the quadratic approximation of the Tresca-Saint Venant yield condition. But as
soon as the quadratic form is proposed, and a body is isotropic, then the limit
function assumes form (1.3) and, discarding the influence of the hydrostatic
pressure, one obtains (1.1), i.e. (1.7).

For completeness of the image we should mention, that E. Beltrami in
1885 [10] proposed boundedness of the complete elastic energy Φ(σ) as a limit
criterion. This proposition was repeated later by B.P. Haigh [11]. Another old
presumptions concerning the limit conditions one can find in the surveys by
W. Burzyński [12] and M.M. Filonenko–Borodich [13].

Comment: as it is known, the condition (1.1) can be for isotropic body also
differently interpreted. Particularly, V.V. Novozhilov [14] found, that the
term s · s is proportional to the, averaged over all planes, square of the shear
stress value.

2. Statement of the problem

According to the traditions of the old papers, we believe that it is justified,
at a certain stage of the knowledge, to consider the form of limit criterion, un-
derstood as the bounding imposed on some measure of the stress intensity
(called by M.T. Huber miara wytężenia [material effort ]), without specifying the
origins of the “element failure”. The last can mean the transition to nonlinear
elasticity, arising of permanent deformations (plastic, viscous, viscoplastic), dis-
integration on the micro- or macro-level, destruction of the composite structure
configuration, attaining intolerable extent of deformation and so on.

Nowadays we know, more than the old time masters did, about the mech-
anisms of numerous effects. However in the same time, the following facts of
the matter remain essential. Firstly: all the time increases the manifold of the
engineering materials: of alloys, polymers, ceramics, concrete, composites, work-
ing mechanisms of their structures remaining as a rule inadequately recognized.
Frequently thorough studies on them would be costly and time-consuming. Sec-
ondly: essentially, different structural effects can on the macro-level materialize
quite similarly. For example, small strain crystal elasticity and elasticity of the
solid polymers are based on quite different structural mechanisms, but their
“macro-scale output” is identical. From there, the actuality and necessity of the
phenomenological approach in the framework of the rational mechanics of mate-
rials comes out. Particularly, this remains true with respect to the limit criteria
under consideration.

In this context, a phenomenological condition (1.7), for which the choice of
the stress intensity measure is based on the fundamental notion of physics –
a concept of energy, preserves in our opinion its heuristic attractiveness. Basing
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on this start point, we set as our task, in the present paper, a comprehensive,
from the formal viewpoint, clarification of the possibilities of direct generalization
of the energy-based Maxwell–Huber condition (1.7) on linearly elastic anisotropic
bodies of arbitrary symmetry.

3. On the answer given by W. Olszak and W. Urbanowski

It seems to be evident, that the first attempt to enlighten the posed problem
was taken by successors of M.T. Huber. My tutors, W. Olszak and W. Ur-
banowski proceeded on the way of extracting from the complete elastic energy
of some its part, being an analogue of the energy of the shape change in isotropic
body [15]. This study was continued lastly by J. Ostrowska in the lecture de-
voted to the memory of W. Olszak [16].

Let us consider an arbitrary elastic body described by the quadratic elastic
potential

(3.1) Φ ≡ 1
2
σ · ε =

1
2
σ · S · σ =

1
2
ε ·C · ε.

Here S is a compliance tensor, C – stiffness tensor,

(3.2) CT = C, ST = S, C ◦ S = S ◦C = I

(see Appendix 1). From there, in virtue of Hooke’s law, it follows:

(3.3)
σ = ∂εΦ = C · ε,

ε = ∂σΦ = S · σ.

The idea suggested in [15] is attractive mainly because of its stimulating
difficulties. Let us try to accomplish it with the aid of the standard decompo-
sition (1.4). Unfortunately, this does not lead to the decomposition of the elastic
energy. One has:

(3.4) Φ(σ) =
1
2
(σ1 + s) · S · (σ1 + s) =

1
2
σ21 · S · 1 + σ1 · S · s +

1
2
s · S · s.

The first term

(3.5)
1
2
σ21 · S · 1 = Φ(σ1) ≥ 0

describes the work of hydrostatic pressure σ1 on the evoked by this stress state
deformation σS · 1, while the last one

(3.6)
1
2
s · S · s = Φ(s) ≥ 0
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represents the work of the deviatoric part s on the deformation caused by it
S · s. However,

(3.7) Φ(σ) 6= Φ(σ1) + Φ(s),

since there exists an additional term, which depends both on σ and s

(3.8) σ1 · S · s,

representing the sum of the work of σ1 on the deformation S · s and, equal to
it, work of s on the deformation σS · 1. Let us notice that 1 · S · s describes
a change of volume generated by the deviatoric part of load s; it can be positive
or negative depending on the sign of s. An example of the case of pure shear is
shown in Fig. 1. Difference Φ(σ)− Φ(s) does not represent energy of any stress
state and it can assume negative values. Thus the use of Φ(s) as a measure of
stress intensity appears out in general to be unsatisfactory.

Fig. 1. Volume change 1 · S · s under the deviatoric load s depends on the orientation
of s with respect to the elastic body.

Let us try to proceed on another way. We shall decompose the strain tensor

(3.9) ε = ε1 + e, ε ≡ 1
3
1 · ε

and represent the elastic energy as follows:

(3.10) Φ(σ) = Φv(σ) + Φf (σ),

where

Φv(σ) ≡ 1
2
σ · e =

1
2
s · e =

1
2
s · S · s +

1
2
σ1 · S · s,(3.11)

Φf (σ) ≡ 1
2
σ · (ε1) =

3
2
σε =

1
2
σ21 · S · 1 +

1
2
σ1 · S · s.(3.12)

Term Φf (σ) is equal to the work of the stress σ on the shape change, while
Φv(σ) represents the work of the stress σ on the volume change. In general, one
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can choose load σ in such a way, that one of the pair of terms Φf (σ) and Φv(σ)
becomes negative, while total energy Φ(σ) remains positive. Neither Φf (σ) nor
Φv(σ) represents an elastic energy of any state of stress. Thus Φf (σ) can not be
used as a measure of stress intensity [material effort].

Let us notice that these difficulties disappear with vanishing of the term
(3.8), i.e. for the elastic bodies fulfilling the condition

(3.13) 1 · S · s = 0,

for all deviatoric tensors s.
This condition was, perhaps for the first time, proposed by the student of

M.T. Huber – W. Burzyński [12]. In his opinion, it could turn up to obey in
general for all elastic bodies and to replace the famous A. Cauchy condition
[17], which evoked vigorous disputes in XIX century [18]. This is not true, of
course. In [19] we have called the bodies obeying (3.13) volumetrically-isotropic.
Condition (3.13) means that the hydrostatic load produces only volumetric de-
formation.

(3.14)

S · 1 =
1

3K
1,

1
K
≡ 1 · S · 1,

i.e. the unit tensor 1 is a proper elastic state. Isotropic bodies are volumetrically-
isotropic, because in this case

(3.15) S =
1

3K
IP +

1
2G

ID ,

where

(3.16) IP ≡ 1
3
1⊗ 1, ID ≡ I− 1

3
1⊗ 1

and (3.13) holds since IP · 1 = 1, ID · 1 = 0 [19]2).
Let us come back however to the general case, when (3.13) does not hold.

The authors of [15] passed over one idea which flashed across the thesis [12] (see
p. 30), written under direct supervision of M.T. Huber. W shall attribute, for
the beginning, a necessary clearness to this idea. Let us consider, beginning from
this point, the stress σ as being related to some standard one and hence, being

2)Obviously, (3.13) is fulfilled for any incompressible material, since in this case 1 ·S ·σ = 0
for any stress tensor σ. Such a case is (from the formal viewpoint) not covered by equalities
(3.14) (Translator’s remark).
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dimensionless. This enables us to consider σ and ε as elements of the space of
symmetric tensors S .

Definition. Two stress states α, β we shall call energy-separated for a given
elastic body, if they decompose its elastic energy, i.e. if

(3.17) Φ(α + β) = Φ(α) + Φ(β).

Two subspaces A , B in S we shall call energy-separated if all pairs α ∈ A
and β ∈ B are energy-separated. The first example of the energy-separation is
already known to us: for every isotropic linearly-elastic body, a one-dimensional
space of spherical tensors P and five-dimensional space of deviators D

(3.18) S = P ⊕D ,

are energy-separated according to (1.6).
We have not assumed in our definition that a body is linearly-elastic, we

should mention however that utility of the introduced notion in general case is
rather doubtful. In the case of linearity, though it works excellently, as we shall
make evident. Here

(3.19) (α + β) · S · (α + β) = α · S · α + β · S · β + 2α · S · β
and the energy-separation condition takes the form

(3.20) α · S · β = β · S · α = 0.

Thus, for the case of linear elasticity, energy-separation of α and β means that
the stress α does not perform work on the strain caused by the stress β, and
equally: β does not work on S · α.

Now, everything is ready for a description of the following simple case. As-
sume that, for the class of elastic bodies under consideration, there exists such
a tensor α, that the stress cα of any intensity c does not cause a failure of the
element (in the particular sense under consideration). We shall call the states
cα the safe ones. They constitute a one-dimensional space

(3.21) E ≡ {cα | c : arbitrary number}.
Let us introduce its orthogonal complement

(3.22) E ⊥ ≡ {β | β · α = 0}.
We choose now all states energy-separated from α. They constitute a five-
dimensional space

(3.23) E ⊥̇ ≡ {ω | ω · S · α = 0}.
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Evidently

(3.24) E ⊥̇ = C · E ⊥ = {C · β | β · α = 0}.

The state α is a normal of E ⊥ while the state S · α is a normal of E ⊥̇, Fig. 2.

Fig. 2. E – space of safe states, E ⊥̇– space of the states energy-separated from the safe ones,
E⊥ – space of the states orthogonal to the safe states.

Let us introduce a decomposition into a direct sum

(3.25) S = E ⊕ E ⊥̇

i.e. we shall represent every stress σ as a sum of energy-separated parts, the
first of them being a safe state

(3.26) σ = σ◦ + σ∗, σ◦ ∈ E , σ∗ ∈ E ⊥̇.

The component σ◦ will be called the safe part of the stress σ, and the compo-
nent σ∗ – the hazardous one. Making use of the condition of energy-separation
σ◦ · S · (σ− σ◦) = 0, one obtains

(3.27) σ◦ = σ◦α, σ◦ ≡ α · S · σ
α · S · α .

Operation σ → σ◦ is a projection, parallel with respect to the space E ⊥̇, on
the straight line E . It is performed with the aid of projector E◦ ∈ T , which is
uniquely defined as follows:

(3.28) E◦ · σ = σ◦ for all σ ∈ S .
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It is not difficult to show that the projector E◦ is equal to

(3.29) E◦ =
1

α · S · αα⊗ S · α.

The elastic energy can be decomposed in the following way:

(3.30) Φ(σ) = Φ(σ◦) + Φ(σ∗),

the following equality being true:

(3.31) Φ(σ◦) =
1
2
(σ◦)2α · S · α =

(α · S · α)2

2α · S · α .

Elastic energy of the hazardous part of stress is equal to

(3.32) Φ(σ∗) =
1
2
σ∗ · S · σ∗ =

1
2
σ · S∗ · σ,

where

(3.33) S∗ ≡ (E∗)T ◦ S ◦E∗ = S− (E◦)T ◦ S ◦E◦ = S− 1
α · S · αS · α⊗ S · α.

Here E∗ is a projector onto E ⊥̇ parallel to E , i.e.

(3.34) E∗ · σ ≡ σ∗ for every σ ∈ S .

Decomposition of the space (3.25) is associated with the corresponding decom-
position of unit operator

(3.35) I = E◦ + E∗, E◦ ◦E∗ = E∗ ◦E◦ = 0.

For the bodies under consideration, the following energy limit criterion can
be proposed

(3.36)
1
h

Φ(σ∗) ≤ 1,

where h is the limit value of elastic energy under loading with the stress σ∗ ∈ E ⊥̇.
For the isotropic body with the spherical safe state, one has

(3.37)
α = 1, S =

1
3K

IP +
1

2G
ID ,

E◦ = IP , E∗ = ID .

Hence σ∗ = s and

(3.38) Φ(σ∗) = Φ(s)
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becomes the energy of shape change, and limit condition (3.36) turns out to
be the Maxwell-Huber condition (1.7). Proposals [15] rely on the following
two examples which excellently exhibit a difference between the isotropic and
anisotropic bodies.

Example. Let the hydrostatic stress states be safe, i.e.

(3.39) α = 1,

(see Fig. 1). Here

σ◦ =
1 · S · σ
1 · S · 1 1 = (9Kε)1,(3.40)

σ∗ = σ− (9Kε)1.(3.41)

The space E ⊥̇ is composed of the preserving volume stress states 1 · S · σ∗ = 0.
Limit condition (3.36) takes the form

(3.42) σ · S · σ− (1 · S · σ)2

1 · S · 1 ≤ 2h.

This corresponds exactly to the first of the two possibilities proposed in [15].

Fig. 3. E – space of spherical tensors, E ⊥̇ – space of the preserving volume stresses,
D⊥ – space of deviators.

Example. Let every stress, which causes volume changes only, be safe. Then

(3.43) α = C · 1



42 J. RYCHLEWSKI

(see Fig. 4). Here

(3.44) σ◦ =
3σ

1 ·C · 1C · 1, σ ≡ 1
3
1 · σ,

(3.45) σ∗ = σ− 3σ

1 ·C · 1C · 1.

Fig. 4. E – space of stresses causing volume changes only, D – space of deviators.

Let us notice that σ∗ is a deviator, 1 · σ∗ = 0 i.e. E ⊥̇ = D . Deviator σ∗

was introduced and interestingly implemented by V.A. Lomakin [20]. Limit
condition in this case takes the form

(3.46) σ · S · σ− 9σ2

1 ·C · 1 ≤ 2h.

This is the second possibility pointed out in [15].
For every volumetrically-isotropic body, particularly for an isotropic one, we

have

(3.47) S · 1 =
1

3K
1, C · 1 = (3K)1

and both conditions (3.42) and (3.46) coincide.
Unfortunately, criterion (3.36) is of a very particular nature. Limit properties

are described here, with the exception of one constant h fixing the scale of stress,
with the elastic tensor S∗ alone. Such close bonds between the limit and the
elastic properties seem to be very particular and can not take place in a general
case of anisotropic body.

We should notice also that it is not difficult to generalize the obtained rela-
tions on the case when the space of the safe states is not one-dimensional.
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4. Principal decomposition of the elastic energy

We need now a short, but crucial for the further considerations, excursion
to some section of the algebra of Euclidean tensors, which is not known well
enough and not sufficiently exploited in mechanics.

The set S can be considered as a linear 6-dimensional space with the scalar
product

(4.1) (α, β) → α · β.

Let us take two arbitrary bases in S , i.e. two linearly independent sets of sym-
metric second-rank tensors

(4.2)
νG, G = I, II, . . . , VI,

µl, l = I, II, . . . , VI.

According to the very definition of the tensor product of the linear spaces,
a system of 36 fourth rank tensors

(4.3) νG ⊗ µl G, l = I, II, . . . , VI

constitute a basis in T ≡ S⊗S . Hence any tensor L ∈ T can be uniquely
denoted as

(4.4) L =
VI∑

G,l=I

LGlνG ⊗ µl.

Moreover, it is convenient to regard any tensor L ∈ T as a linear operator from
S into S , acting according to the rule

(4.5) α → L · α,

where (ω⊗ τ) · α ≡ (τ · α)ω.
Let us introduce, for the basis µl, its standard reciprocal basis µl. It is defined

as the unique solution of the system of equations

(4.6) µl · µk = δk
l ≡

{
1 l = k,
0 l 6= k.

Now L · µl = LI lνI + LII lνII + . . . and, hence, Eq. (4.4) can be expressed as
the fundamental identity : for any L ∈ T and any basis µK in S ,

(4.7) L = L · µI ⊗ µI + . . . + L · µVI ⊗ µVI = L · µI ⊗ µI + . . . + L · µVI ⊗ µVI.
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Let us come back to the idea of energy decomposition, which by no means
can be reduced to the examples quoted in Sec. 3.

Let us analyze a symmetric bilinear form α · S · β. It is a polar form of the
positive defined quadratic form α · S · α on S . Therefore an operation

(4.8) (α · β) → α× β ≡ α · S · β

defines another correct scalar product of symmetric tensors of rank two. We shall
call it energy-scalar product, contrary to the standard scalar product
α · β. Energy product α × β is tailored to the particular elastic body under
consideration, it is defined by its compliance tensor S. The condition of the
energy-separation α ·S ·β = 0 achieves the geometric meaning of orthogonality
in energy sense

α ⊥̇ β, i.e. α× β = 0.

Elastic energy of the stress is equal to one half of the square of the energy-norm
of σ:

(4.9) Φ(σ) =
1
2
σ× σ.

Definition. Every decomposition

(4.10) S = E1⊕, . . . ,⊕Eκ, κ ≤ 6,

for which any two components of the direct sum are energy-orthogonal (sepa-
rated)

(4.11) Eα⊥̇Eβ for α 6= β,

we shall call an energy-orthogonal decomposition of the stress space for
a given elastic body.

Distributing any stress tensor over subspaces (4.10)

(4.12) σ = σ1 + . . . + σκ, σα ∈ Eα,

we have

(4.13) σα × σβ = 0 for α 6= β

and, hence, as it should be,

(4.14) Φ(σ1 + . . . + σκ) = Φ(σ1) + . . . + Φ(σκ).

Of course, there exist many energy-orthogonal decompositions at will.
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Let us introduce a projector Eα on the subspace Eα parallel to E ⊥̇ = E1 ⊕
. . .⊕ Eα−1 ⊕ Eα+1 ⊕ . . .⊕ Eκ

(4.15) Eα ·ω =
{

ω if ω = Eα,

0 if ω ⊥̇ Eα.

Decomposition of the unity operator

(4.16) I = E1 + . . . + Eκ,

corresponds to the decomposition (4.10), here

(4.17) Eα ◦Eα = Eα, Eα ◦Eβ = 0 for α 6= β.

It is not difficult to express projectors Eα explicitly. Let us take any energy-
orthonormal basis

(4.18)
�I, . . . ,�VI,

�K × �L = δKL ≡
{

1 K = L,
0 K 6= L,

chosen in such a way, that the first s1 elements. �1, . . . ,�s1 belong to E1, s1 =
dimE1, the next s2 belong to E2, etc. The reciprocal basis will assume the
following form:

(4.19) �I ≡ S · �I, . . . ,�VI ≡ S · �VI.

Indeed

(4.20) �K · �L = �K × �L = δKL.

If one considers �K as a stress, then �K will be the strain caused by this stress.
Using identity (4.7), one obtains promptly

(4.21) E1 = �I ⊗ �I + . . . + �s1 ⊗ �s1 .

Let us notice the following relations yielding from (4.7):

S = �I ⊗ �I + . . . + �VI ⊗ �VI,(4.22)

C = �I ⊗ �I + . . . + �VI ⊗ �VI.(4.23)

The most remarkable among the energy-decompositions is the decomposition
pointed out and applied in papers [19, 21–24]. It is given by the following theorem
being some implementation of the general spectral theorem (see c.f. [25, 26]).
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Theorem: For every elastic body, defined with its compliance tensor S, there
exists exactly one energy-orthogonal and orthogonal decomposition

(4.24) S = P1 ⊕ . . .⊕P%, % ≤ 6,

(4.25) Pα ⊥̇ Pβ, Pα ⊥ Pβ, for α 6= β

and exactly one set of pair-wise unequal constants

(4.26) λ1, . . . , λ%, λα 6= λβ for α 6= β

such, that

(4.27) S =
1
λ1

P1 + . . . +
1
λ%

P%,

where Pα is an orthogonal projector on Pα, α = 1, . . . , %.

Proof. Since S is a symmetric operator acting in the space S with the scalar
product (4.1), the equation

(4.28) S ·ω =
1
λ

ω

has an orthonormal set of solutions

(4.29)
ωI, . . . , ωVI,

ωK ·ωL = δKL,

each ωK being related to the proper value λ−1
K . This orthonormal basis is ac-

companied by the energy-orthonormal one

(4.30) �1 = λ
1/2
I ωI, . . . , �VI = λ

1/2
VI ωVI

and

(4.31) �I =
1

λ
1/2
I

ωI, . . . , �VI =
1

λ
1/2
VI

ωVI.

From (4.22) it follows that

(4.32) S =
1
λI

ωI ⊗ωI + . . . +
1

λVI
ωVI ⊗ωVI.

Let ωK are labeled in such a way, that

λI = λII = . . . = λs1 = λ1, λs1+1 = . . . = λs1+s2 = λ2
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etc., then

(4.33) ωI ⊗ωI + . . . + ωs1 ⊗ωs1 = P1,

are orthogonal projectors on some subspaces

P1, . . . ; dimP1 = s1, . . .

Expression (4.32) takes the form of (4.27). It is evident that the decomposition
(4.24) is unique, orthogonal and energy-orthogonal. From (4.23) it follows, that

(4.34) C = λ1P1 + . . . + λ%P%.

Solutions ω of the Eq. (4.28) we designed in [19] as proper elastic states
of the elastic body under consideration, while parameters λ were called true
(proper) stiffness moduli3). The proper elastic states have been found for all
symmetries of crystals and the anisotropic engineering materials.

Spaces Pα consist of the proper elastic states and to each of these spaces is
prescribed its own true stiffness modulus λα. We shall call (4.24) the proper
energy-decomposition, for the body under consideration.

Let us represent arbitrary stress σ according to the proper decomposition:

(4.35) σ = σ1 + . . . + σ%, σα ≡ Pα · σ ∈ Pα;

(4.36) σα · σβ = 0, for α 6= β.

We introduce also values of projections

(4.37) σα ≡ (σα · σα)1/2 = (σ ·Pα · σ)1/2.

The elastic energy corresponding to the α-th part of the stress is equal to

(4.38) Φ(σα) ≡ 1
2
σα · S · σ =

σ2
α

2λα
, α = 1, . . . , %

and, therefore, the proper decomposition of energy (corresponding to the
proper space decomposition) takes a very simple form

(4.39) Φ(σ) =
σ2

1

2λ1
+ . . . +

σ2
%

2λ%
.

3)The Author referred to them also as to Kelvin moduli, cf. J. Rychlewski, On Hooke’s
Law, Journal of Applied Mathematics and Mechanics, 48(3), 303–314, 1984 (translator’s re-
mark).
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Basing on this foundation, one can propose the following particular quadratic
energy-criterion of the limit state:

(4.40)
σ2

1

k2
1

+ . . . +
σ2

%

k2
%

≤ 1,

where hα ≡ k2
α/2λα is the limit value of energy of the load σα ∈ Pα. If kα = ∞,

then the space Pα is composed of the safe states.
For the materials being isotropic with respect to elastic properties, the proper

elastic states are following: any hydrostatic stress σ1 = σ1 with the stiff-
ness modulus λ1 = 3K and any deviator σ2 = s, with the stiffness modulus
λ2 = 2G. Principal decomposition is given by the expression (3.18) and struc-
tural one (4.27) – by the relation (3.15). Hence, the limit criterion (4.40) can be
expressed as

(4.41)
σ2

σ2
0

+
s · s
2k2

≤ 1.

If any hydrostatic state is safe, then σ0 = ∞ and we obtain the Maxwell–Huber
criterion (1.1).

Criterion (4.40) assumes some weak coupling between elastic and limit prop-
erties. In many cases such a coupling probably takes place, e.g. due to the
symmetry of the structure of the body under consideration. However it can not
be truthfully in a general case. The simplest counterexample supplies a body
which is isotropic as regards its elastic properties, being anisotropic regarding
limit properties. We shall fully clarify the nature of the specific connection be-
tween the elastic and the limit properties in the Sec. 6.

Comment. On the ground of (4.39) one can propose, of course, a more general
energy-criterion

(4.42) F (σ1, . . . , σ%) ≤ 1;

it would, however still, enclose an assumption about the mentioned interconnec-
tion between the elastic and the limit properties.

5. Energy related meaning of the quadratic limit criteria

Noticeable, ahead evident, generalization of the condition (1.1) was proposed
in the classic work of R. von Mises [27]. He has chosen the yield condition in
the form

(5.1) s ·H · s ≤ 1,



ELASTIC ENERGY DECOMPOSITION AND LIMIT CRITERIA 49

where H ∈ T . For H = (1/2k2)ID one obtains (1.1). It was repeated by R. Hill
for orthotropic bodies in [28].

We shall discuss the most general quadratic condition of limit state

(5.2) σ ·H · σ ≤ 1.

We shall call tensor H the limit state tensor and the quadratic form σ ·H ·σ
will be called a quadratic measure of stress intensity. Without loss of
generality one can assume, that H is a symmetric tensor of T . Besides this, the
measure of intensity of an arbitrary load σ should be non-negative. Thus, the
following conditions are imposed on H:

(5.3) H = HT , α ·H · α ≥ 0 for any α ∈ S .

As always, with the quadratic form α·H·α are associated: its polar – bilinear
symmetric form α ·H ·β and the symmetric linear operator H·, α → H ·α. We
shall make use of this operator without delay.

A stress state σ we shall call the safe state for the elastic body, whose limit
properties are given by the limit state tensor H if σ ·H · σ = 0. Let us recall
the simple theorem of linear algebra.

Theorem. The set of the safe stress states constitutes a kernel of the operator
H·, i.e. it is composed of the stresses σ, fulfilling the condition

(5.4) H · σ = 0.

Proof. Let us examine measure of stress intensity on a unit sphere σ · σ = 1.
Due to non-negativeness, its null value is minimal. Therefore: if σ ·H · σ = 0,
then the derivative of the Lagrange function σ ·H ·σ−µ(σ ·σ−1) must vanish,
this yields H · σ = µσ, at the same time µ = σ ·H · σ/σ · σ = 0.

Von Mises criterion (5.1) is in fact a criterion (5.2) for which it was assumed
that an arbitrary hydrostatic stress is safe. Then 1 ·H · 1 = 0, i.e.

(5.5) H · 1 = 1 ·H = 0

and, therefore
σ ·H · σ = s ·H · s.

This assumption does not seem to us to be naturally innate in general case.
There are no a priori reasons for considering a spherical tensor as something
exceptional for anisotropic media. The habit to separate the spherical part of
stress σ1 and to consider the pressure −σ as some universal thermodynamic
parameter, has come into mechanics of the solid deformable body from the me-
chanics and thermodynamics of liquids and gases and has rooted on fertile soil
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of isotropic bodies. This habit should be revised, in our opinion. In particular,
for the anisotropic body, say a composite, quite different stress states related to
its structure (reinforcement, etc.) can emerge as the safe ones.

Concerning the limit state tensor H we shall not assume anything more
than (5.3).

R. von Mises have not ascribed any specific interpretation to his condition.
In particular, any connection of his measure of stress intensity s · H · s with
elastic energy was not discernible. We shall prove that an arbitrary quadratic
measure of stress intensity σ · H · σ possesses uniquely defined, in terms of
energy, interpretation. This is contained in the following theorem, which is an
implementation of the idea o simultaneous reduction of two quadratic forms
(here σ ·H · σ and σ · S · σ) into a sum of squares (cf. [29]).

Theorem. For every elastic body defined by its compliance tensor S and limit
state tensor H, there exist: exactly one energy-orthogonal decomposition:

(5.6) S = H1 ⊕ . . .⊕Hχ, χ ≤ 6,

(5.7) Hα ⊥̇ Hβ for α 6= β

and exactly one set of pair-wise unequal constants

(5.8) h1, . . . , hχ, hα 6= hβ, for α 6= β,

such that, for an arbitrary stress

(5.9) σ = σ1 + . . . + σχ, σα ∈ Hα,

the measure of stress intensity is equal to

(5.10) σ ·H · σ =
1
h1

Φ(σ1) + . . . +
1
hχ

Φ(σχ),

where

(5.11) Φ(σ1) + . . . + Φ(σχ) = Φ(σ).

Proof. We shall present a constructive one. We shall entirely use the energy-
scalar product (4.8) instead of the standard one (4.1). Let us introduce linear
operations

L× α ≡ L · (S · α) = (L ◦ S) · α,(5.12)

α× L ≡ (S · α) · L = (α · S) · L = α · (S ◦ L),(5.13)

L 2 N ≡ L ◦ S ◦N.(5.14)
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We shall identify tensors L ∈ T with linear operators acting from S into S ,
according to the rule

(5.15) α → L× α

instead of (4.5). Unit operator α → α under this convention is realized not by
the tensor I, but by the stiffness tensor C. Indeed,

(5.16) C× α = (C ◦ S) · α = I · α = α.

Let us write the stress intensity measure in the following form:

(5.17) α× (C ◦H ◦C)× α = α ·H · α.

The operation completed by the tensor C ◦H ◦C is symmetric with respect to
the energy-scalar product, i.e.

(5.18) α× (C ◦H ◦C)× β = β× (C ◦H ◦C)× α

for every α, β ∈ S . Let us analyze proper elements χ and proper values (2h)−1

of this operator

(5.19) (C ◦H ◦C)× χ =
1
2h

χ.

In view of the symmetry (5.18) one can evidently find an energy-orthonormal
set of solutions

(5.20) χI, . . . ,χVI, χK × χL = δKL,

where χL corresponds to the proper value (2hL)−1. The set of χK⊗χL constitutes
a basis in T (see (4.4)) i.e. for any L ∈ T

(5.21) L =
VI∑

K,L=I

LKLχK ⊗ χL;

here

(5.22) LKL ≡ χK × L× χL.

In particular, taking into account (5.19) and (5.20), for L = C ◦H ◦C one has:

(5.23) C ◦H ◦C =
1

2hI
χI ⊗ χI + . . . +

1
2hVI

χVI ⊗ χVI.
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Let χK be labeled in such a way that hI = . . . = hG1 = h1, hG1+1 = . . . =
hG2+2 = h2 etc. Let us consider

(5.24)
H1 ≡ χ1 ⊗ χ1 + . . . + χG1

⊗ χG1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
and denote

(5.25) H1 ≡ Im H1 . . . , dimH1 = G1, . . .

It is evident that

(5.26) Hα × χ =
{

χ for χ ∈ Hα,
0 for χ ∈ Hβ, β 6= α

and Hα⊥̇Hβ for α 6= β. In other words, Hα are energy-orthoprojectors and
constitute energy-orthogonal decomposition of the unity operator

(5.27) C = H1 + . . . + Hχ,

(5.28) Hα 2 Hα = Hα, Hα 2 Hβ = 0 for α 6= β.

It corresponds to space decomposition (5.6), (5.7).
Collecting together in (5.23) the terms with the same hL, one obtains

(5.29) C ◦H ◦C =
1

2h1
H1 + . . . +

1
2hχ

Hχ.

Taking (5.9) we get (5.11). Now

(5.30) σ ·H · σ =
1

2h1
σ×H1 × σ + . . . +

1
2hχ

σ×Hχ × σ

and, since

(5.31) σ×Hα × σ = σα × σα = 2Φ(σα)

we obtain (5.10).
Everything here is constructed effectively, together with the definitions of

hK and χK using the Eq. (5.19), which can be rewritten as

(5.32) (2hH− S) · χ = 0.

The expression for the limit state tensor can be expressed as follows:

(5.33) H =
1

2hI
S · χI ⊗ S · χI + . . . +

1
2hVI

S · χVI ⊗ S · χVI,
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or

(5.34) H =
1

2hI
S1 + . . . +

1
2hχ

Sχ,

where

(5.35) Sα ≡ S ◦Hα ◦ S, α = 1, . . . , χ,

(5.36) S = S1 + . . . + Sχ.

Thus, any arbitrary quadratic criterion of limit state can be ex-
pressed in the form of energy-inequality

(5.37)
1
h1

Φ(σ1) + . . . +
1
hχ

Φ(σχ) ≤ 1.

Parameters

(5.38) hα ≡ χ · S · χ
2χ ·H · χ = const for any χ ∈ Hα

are the limit values of elastic energy for the loads σα ∈ Hα.
If hα = ∞, then the loads σα ∈ Hα are safe. Criteria (3.42) and (3.46)

represent particular cases of (5.37) for

(5.39) χ = 2, h1 = ∞, dimH1 = 1.

Let us notice that expression (5.33) presents the most general form of limit
state tensor in such a sense, that H is uniquely determined by some energy-
orthogonal basis χK and a set of hK

(5.40) (h1, . . . , hVI; χI, . . . ,χVI) → H.

6. On possible forms of coupling between the elastic
and the limit properties

Theorem (5.10) does not assume any connection between the directional
distribution of the elastic properties described by the compliance tensor S and
the limit properties described by the limit state tensor H. Though, some coupling
may appear due to the structure of the body. Our theorem points out a form
through which this coupling may possibly reveal itself.

The principal decomposition of elastic energy (4.24) differs from the decom-
position with regard to limit properties (5.6) by its orthogonality. Let us make
clear when (5.6) is also orthogonal. We shall start from the following lemma:

Lemma. Energy-orthogonal decomposition

(6.1) S = E1 ⊕ . . .⊕ Eκ, κ ≤ 6
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is orthogonal if and only if it is stable (invariant) with respect to the compliance
tensor S.

Proof. Sufficiency. Let the energy-orthogonal decomposition be stable with re-
spect to S, i.e. S ·ω ∈ Eα for each ω ∈ Eα and for all α = 1, . . . ,κ. Then in
any Eα one can find a basis ω1, . . . ,ωq, q = dim Eα consisting of the proper
elements of S,

(6.2) S ·ωK = µKωK , K = 1, . . . , q,

where µK > 0, i.e. the form α ·S ·α, is positive definite. Let us take any α ∈ Eα

and any β ∈ Eβ, β 6= α. Since Eα⊥̇Eβ, then

(6.3) α · β = (α1ω1 + . . . + αqωq) · β =
(

α1

µ1
S ·ω1 + . . . +

αq

µq
S ·ωq

)
· β

=
α1

µ1
ωq × β + . . . +

αq

µq
ωq × β = 0,

i.e. Eα ⊥ Eβ.
Necessity. Let any two terms of energy-orthogonal decomposition be orthogo-
nal, i.e.

(6.4) Eα ⊥̇ Eβ and Eα ⊥ Eβ for all α 6= β.

Let us take arbitrary Eα. In virtue of (6.4), an orthogonal complement E ⊥α
coincides with the energy-orthogonal one E ⊥̇α . Therefore for any α ∈ Eα, taking
any τ ∈ E ⊥α we have α× τ = α · S · τ = 0, i.e. S ·α ∈ E ⊥⊥α = Eα. Therefore any
Eα is invariant with respect to S.

Definition. We shall tell that A, B ∈ T are coaxial if there exists an ortho-
normal basis

(6.5) ω1, . . . , ωVI, ωK ·ωL = δKL,

composed of the proper elements of both tensors, i.e. such, that for some sets
αI, . . . , αVI and βI, . . . , βVI:

(6.6)
A = αIωI ⊗ωI + . . . + αVIωVI ⊗ωVI,

B = βIωI ⊗ωI + . . . + βVIωVI ⊗ωVI.

Let us notice that the numbers of equal values in the array αI, . . . , αVI can be
entirely different from those of βI, . . . , βVI. Hence, decompositions of S into
direct sums of the proper subspaces of A and B can be quite different.
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Theorem. Energy-orthogonal decomposition of the stress space with regard to
the limit properties of the body (5.6) is orthogonal if and only if the limit state
tensor H and the compliance tensor S are coaxial.

Proof. Necessity. Let a decomposition (5.6) be orthogonal. This means, accord-
ing to the lemma, that it is stable with respect to the S. Therefore, there exists
such an orthonormal basis ωI, . . . ,ωVI, composed of the proper elements of
S, that any ωK belongs to one of Eα. For any χ ∈ Eα, however, Eq. (5.32) is
satisfied with some value of h. Thus, for any ωK , H ·ωK = νKωK for a certain
νK , i.e. basis ωK is composed of proper elements of the tensor H. Sufficiency.
Assume that H and S are coaxial, ωK being an orthonormal basis composed
of proper elements of S and H. Then χK = ωK satisfy Eq. (5.32). Carried out
according to relations (5.24), decomposition (5.6) is, therefore, orthogonal.

Coaxiality of the tensors S, H

S =
1
λI

ωI ⊗ωI + . . . +
1

λVI
ωVI ⊗ωVI,(6.7)

H =
1

2hI
ωI ⊗ωI + . . . +

1
2hVI

ωVI ⊗ωVI,(6.8)

reflects some coupling between the elastic and the limit properties. It does not
seem to be very rigid.

We shall present the following interpretation of the coaxiality (6.7), (6.8).
For any quadratic form σ ·A · σ, the states of local extremality, defined by the
condition

(6.9) σ ·A · σ = ext at ω ·ω = 1, under condition σ ·A · σ = 1

are the proper elements, i.e.

(6.10) A · σ = ασ.

Indeed, (6.9) is equivalent to

(6.11) ∂σF = 0 for F ≡ σ ·A · σ− α(σ · σ− 1)

which yields Eq. (6.10).
Proper elastic states S ·ω = (1/λ)ω are, therefore, the states of extremal

energy and the proper states of H, H ·ω = χω are the states of extremal
limit stress measure.

Coaxiality of S and H, therefore, means that there exists an orthonormal set
of states ωK being simultaneously the states of extremal energy and the states
of maximal limit stress intensity, see Fig. 5.
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Fig. 5. Coaxiality of the compliance tensor S and the limit state tensor H, the cross-section
of the surface of equal energy and the surface of the equal limit stress intensity with the

plane (ωL, ωK) in the stress space.

Let us consider a more restrictive modification of a coupling between the
elastic and the limit properties, where any state of extremal energy is simulta-
neously the state of extremal limit stress measure. This is a particular case of
coaxiality when

(6.12) λK = λL ⇒ hK = hL.

Taking the structural decomposition of the compliance tensor

(6.13) S =
1
λ1

P1 + . . . +
1
λ%

P%,

where λα 6= λβ for α 6= β, one has

(6.14) H =
1

2h1
P1 + . . . +

1
2h%

P%,

values of hα being not necessarily different. Just in this case, a quadratic limit
criterion takes the form (4.40).

7. Expression of any limit criterion in the E. Beltrami form

As we have already mentioned, E. Beltrami in his unjustly forgotten pa-
per [10] posed a limit criterion

(7.1) Φ(σ) ≤ h = const.
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This proposal meets at once the following objection: for overwhelming majority
of circumstances, hydrostatic stress can be considered as safe. We shall, however,
not throw the baby out with the bathwater. A rational root of E. Beltrami proposal
consists in the fact that for the failure of element, one always needs to spend
some work, which, in the elastic element, should be equal to the elastic energy
stored until that instant. Shortcoming of the direct realization of this concept
in the form of (7.1) lies only in the assumption that this work does not depend
on the kind of stress state.

Let us introduce and denote as h(ω), ω ·ω = 1, the limit value of elastic
energy which the element is capable to accumulate under the load σ = cω,
c > 0. For the usual elastic body (hyperelastic), h(ω) is equal to the work,
which is necessary for failure of the element under such stress. W shall modify
the proposal of E. Beltrami as follows:

(7.2) Φ(σ) ≤ h

(
σ

(σ · σ)1/2

)
.

But such a form can assume any limit criterion for which the region of the
safe states in S has a stellar shape and includes unstressed natural state; an
overdone example is shown in Fig. 6. Indeed, any such a region is described by
inequality

(7.3) σ · σ ≤ k2

(
σ

(σ · σ)1/2

)
,

Fig. 6. An exotic example of a star-shape region of safe states, containing unstressed natural
state.
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where k is the limit function defined on the unit sphere in S . Since for linearly
elastic body one has

(7.4) Φ(σ) = (σ · σ)Φ
(

σ

(σ · σ)1/2

)
,

then (7.3) is equivalent to (7.2) with

(7.5) h(ω) = Φ(ω)k2(ω).

Since the expressed assumption regarding the shape of the region of safe
states is fulfilled for all thinkable cases (materials, processes, kinds of limit prop-
erties), representation (7.2) is not confined to any kind of particular form of limit
criterion.

For the quadratic criteria of limit states (5.2) considered above

(7.6) k2(ω) = (ω ·H ·ω)−1 = [h1Φ(ω1) + . . . + hχΦ(ωχ)]−1.

where

(7.7)
ω = ω1 + . . . + ωχ, ωα ∈ Hα,

ω1 ·ω1 = . . . = ωχ ·ωχ = 1.

The Maxwell–Huber criterion represented in E. Beltrami form looks as follows:

(7.8) Φ(σ) ≤ h + l
σ2

s · s ,

where

(7.9) h ≡ k2

2G
, l ≡ k2

K
.

Quadratic criteria are discussed from somewhat different viewpoint in [30].

8. Conclusions

Simple, but unexpected theorem (5.10) exhausts in a formal sense the prob-
lem of energy-criteria of the limit state which, for isotropic bodies, was posed
by Maxwell, Beltrami and Huber.

This problem was transferred in the Polish school of mechanics along the
relay of generations, from M.T. Huber to W. Burzyński and W. Olszak, from
W. Olszak to W. Urbanowski, an from them to J. Ostrowska. I am obliged to
her for discussions which helped me to clarify this history of the subject. I am
also grateful to N.N. Malinin for his kind discussions, during which he proved
to be an expert on Polish works.
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Appendix 1

List of equivalences, making possible to transform readily any expression of
this paper to the standard Cartesian index notation with the usual summation
rules:

σ, ε, α ↔ σij , εij , αij ,

1, s ↔ δij , sij ,

C, S, H ↔ Cijkl, Sijkl, Hijkl,

α · β ↔ αijβij ,

α× β ↔ Sijklαijβkl,

α⊗ β ↔ αijβkl,

L · α ↔ Lijklαkl,

α · L · β ↔ Lijklαijβkl,

AT = A ↔ Aijkl = Aklij ,

A ◦B ↔ AijpqBpqkl,

∂εΦ ↔ ∂Φ

∂εkl

Iijkl =
1
2
(δikδjl + δilδkj).

In the whole paper, S is the space of the symmetric Euclidean tensors of
second rank and T denotes its tensorial product

T ≡ S ⊗S .

Tensors of stiffness C, compliance S and limit state H obey conditions of internal
symmetry

Aijkl = Ajikl = Aklij .

In the whole paper, besides the present Appendix, the summation over re-
peated indices is not applied.

Appendix 2

We quote this fragment of the letter of J.C. Maxwell, [from Origins of Clerk
Maxwell’s Electric Ideas. . . [5], pp. 31–33], which had a chance to become a foun-
dation of contemporary mathematical theory of plasticity.
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129 Union Street
Aberdeen
18 Dec. 1856

Dear Thomson
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is my present notion about plasticity of homogeneous amorphous solids.
Let αβγ be the 3 principal strains at any point PQR the principal stresses connected

with αβγ by symmetrical linear equations the same for all axes. Then the whole work
done by PQR in developing may be written

U = A(α2 + β2 + γ2) + B(βγ + γα + αβ)

where A and B are coeffts, the nature of which is foreign to our inquiry. Now we may
put

U = U1 + U2,

where U1 is due to a symmetrical compression (α1 = β1 = γ1) and U2 to distortion
without compression (α2 + β2 + γ2 = 0)

α = α1 + α2, β = β1 + β2, γ = γ1 + γ2.

It follows that U1 = 1/3(A + B)(α + β + γ)2

U2 =
2A−B

3
(
α2 + β2 + γ2 − (βγ + γα + αβ)

)
.

Now my opinion is that these two parts may be considered as independent U1 being
the work done in condensation and U2 that done in distortion. Now I would use the old
word “Resilience” to denote the work necessary to be done on a body to overcome its
elastic forces.

The cubical resilience R is a measure of the work necessary to be expended in
compression in order to increase the density permanently. This must increase rapidly
as the body is condensed, whether it be wood or lead or iron.

The resilience of rigidity R2 (which is the converse of plasticity) is the work required
to be expended in pure distortion in order to produce a permanent change of form in
the element. I have strong reasons for believing that when

α2 + β2 + γ2 − βγ − γα− αβ

reaches a certain limit = R2 then the element will begin to give way. If the body be
tough the disfigurement will go on till this function U2 (which truly represents the work
which the element would do in recovering its form) has diminished to R by an alteration
of the permanent dimensions.

Now let a b c be the very small permanent alterations due to the fact that U2 > R2

for an instant. Whenever U2 = R2 the element has as much work done to it as it can
bear. Any more work done to the element will be consumed in parmanent alterations.
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Therefore if U2 = R2, and in the next instant, U be increased, dU must be lost in
some way.

My rough notion on this subject is that

a =
dU

U
α, b =

dU

U
β, c =

dU

U
γ

the new values of α β γ will be

α′ = α− a, β′ = β − b, γ′ = γ − c.

This is the first time that I have put pen to paper on this subject. I have never
seen any investigation of the question, „Given the mechanical strain in 3 directions
on an element, when will it give way?” I think this notion will bear working out into
a mathemat. theory of plasticity when I have time; to be compared with experiment
when I know the right experiments to make.

Condition of not yielding

α2 + β2 + γ2 − βγ − γα− αβ < R2.

Yours
J.C. Maxwell
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Summary

The well-known yield condition for isotropic materials, known as the M.T. Hu-
ber (and R. von Mises, H. Hencky) yield condition, has oryginally been proposed by
J.C. Maxwell (see Appendix 2) in 1856. Maxwell and Huber atttributed the following
physical sense to the criterion: the material stays elastic as long as the distortion energy
does not reach the critical value. The attempt made by W. Olszak and W. Urbanowski,
who tried to generalize the criterion to anisotropic bodies, is not convincing owing to the
fact that, in the case of anisotropic media, decomposition of the total elastic energy into
the parts connected with the change of volume and the change of shape is impossible.

The notion of “energy-ortogonal” states of stress is introduced in the paper. One
state of stress is energy-orthogonal to another state of stress if the first one does not
perform any work along the deformations produced by the other. The following theorem
is proved: each limit criterion may be represented as a certain condition imposed upon
a linear combination of elastic energies corresponding to a uniquely determined (for the
given material) pari-wise energy-orthogonal, additive components of the total state of
stress. Hence, each quadratic criterion has a definite energy interpretation. Moreover, it
is shown that each limit criterion may be written in the form of an ineguality bounding
the accumulated elastic energy. Considered are also the problems of possible forms of
coupling of elastic properties of materials with the corresponding limit criteria.
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Translator’s note

My schoolmate, friend and tutor in science Jan Rychlewski is bodily still among us,
but his heavy disease makes not possible the author’s supervision over the translation.
Keeping this in mind, the translator tried to avoid, if possible, any more important
departures from a literal translation. This was a difficult task. Russian phrasing of Jan
was extremely rich and colorful. He is in fact a Russian native speaker. Being an ethnic
Pole born in USSR, he was in early childhood separated from his family in result of
sad events of year 1938. During his mature years spent in Poland, he maintained close
connection with the Russian culture and language. Neither English nor Russian is a
translator’s native tongue (however he believes that his Russian is much better than
English). Thus, despite the translator’s efforts to make his best, sometimes the results
may occur to be odd. The whole responsibility for his lack of competence in the linguistic
matter, the translator takes on his shoulders. The only justification can be his will to
pay his debt of gratitude to the diseased friend.

Andrzej Blinowski
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