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The present work presents sample results of preliminary computations of the turbulent
aerothermodynamic flow field and of the noise generated by the flame front, due to turbu-
lent fluctuations in the flame (combustion roar), in lifted and attached jet diffusion flames
of methane. The two-dimensional (2D) time-dependent numerical model was built based on
Reynolds-averaged Navier–Stokes (N-S) equations, equipped with the standard k-e turbulence
models to calculate the reacting jet flows. A reactedness – mixture fraction two-scalar ex-
ponential PDF model, based on non-premixed flame arguments, was combined with a local
Damkohler number extinction criterion to delineate between the reacting and non-reacting
regions. Although the inclusion of the effects of premixed flame propagation could help to
improve the model, initial comparisons with experimental results suggest adequate qualitative
agreement between the computations and reported data. The reasonable agreement obtained
for the aerothermodynamic flame characteristics permitted a meaningful computation of the
combustion noise (roar) characteristics of the studied flames, in order to address the coupled
effects of heat release by the flame and turbulent interactions on the autonomous flame noise
generation.

Key words: combustion roar, lifted flame, sound spectrum, turbulent combustion modeling.

Notations

νt turbulent eddy viscosity,
Lt turbulent length scale,
k turbulent kinetic energy,
ε eddy dissipation rate,
f mixture fraction,
u instantaneous velocity,

〈u〉 phase-averaged (or resolved) velocity,
u time-mean component,

u′′ large-scale (resolved) fluctuating component,
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u′ stochastic (subgrid) turbulent fluctuation,
〈u′iu′j〉 Reynolds stresses,

∆ mesh size,
J Jacobian of the transformation,
Y mass fraction,
τk Kolmogorov time scale,

Dal local Damkohler number,
τλ turbulent time scale,

τch chemical time scale,
τid mixing-dependent chemical ignition delay time,

u′jf ′, u′jY
′
CO2

turbulent fluxes,
C0 speed of sound,
S area of combustor nozzle,
D laminar diffusion coefficient,
x scalar dissipation,

E1D one-dimensional turbulence spectrum of the assumed shape,
θfν thickness of the mixing layer between fuel and air = 1/

p
(∇2fν),

A = [Tflame − T0]/[Tflamefst (1− fst)],
fν frequency,

SPL sound pressure level.

1. Introduction

Renewed interest has emerged in recent years in the study of interaction be-
tween the combustion process and the acoustics of the reacting environment [1].
Combustion roar is related to the noise generated directly by the flame due to
turbulent fluctuations, independently or in combination with acoustic resonance
of the reacting environment and usually involves a broadly distributed spec-
trum [2, 3]. The topic is of interest for practical combustor designs since it is
interrelated with combustor acoustic/pressure oscillations or resonance, acoustic
pollution of the environment diagnosis of operational variations and faults, and
ultimately active or hybrid combustor operation control techniques [4, 5]. Practi-
cal examples which are interesting from the point of view of research on combus-
tion roar are the combustion chambers of aircraft jet engines, flares and hot-air
balloons, where minimization of flame noise is desirable.

In the present work, modeling of the autonomous noise generation by the tur-
bulence/chemistry fluctuations in the flame front vicinity of jet diffusion flames
is investigated. To describe the acoustic performance of the jet flame as an au-
tonomous source of sound, an integral expression is employed that provides the
(acoustically one-dimensional) noise spectrum of the flame, in terms of an as-
sumed shape turbulence spectrum at the flame front, closely following the for-
mulation put forward and derived in closed form by Klein [5].
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As a first step towards understanding of the phenomenon, the turbulent non-
premixed jet flames attached and lifted from the burner rim are studied as model
problems. A diffusion flame attached to the burner nozzle lifts above the jet exit
rim or blows out abruptly, when the fuel jet velocity steadily increases and
exceeds the critical value. Apart from their relevance in the design and safe op-
eration of industrial systems, such jet flame stability phenomena provide a useful
research tool for experimental and numerical studies of turbulent reacting flow
characteristics and related phenomena such as those presently addressed. A re-
cent review by Pitts [6] and non-intrusive measurements by Schefer et al. [7]
suggest that individual theories such as turbulent premixed flame propagation,
laminar flameless quenching, large or small scale mixing, are all plausible the-
oretical viewpoints to describe the coupled aero-thermochemical phenomena of
lift-off and blow-out.

In the described work, a 2D time-dependent phase-averaged Navier–Stokes
flow simulation method [8] capable of calculating the mean and turbulent prop-
erties of the momentum and thermo-chemical fields, is employed to study the
behavior of axisymmetric co-flowing methane-air jet diffusion flame configura-
tions. Both the laminar and turbulent (lifted-off) operational conditions have
been investigated to test and develop the model over a range of conditions with
increasing complexity. A modular post-processor is then employed for the pre-
diction of turbulent combustion noise, exploiting the time-mean and fluctuating
thermo-chemical quantities obtained from the basic reacting flow field predic-
tions.

2. Numerical method

2.1. Aerodynamic model

The reacting flows were calculated with the 2D time-dependent N-S equations
governing the temporal and spatial variation of the velocities and pressures, e.g.
u = 〈u〉+u′ with 〈u〉 = u+u′′ where u and 〈u〉 are the instantaneous and phase-
averaged (or resolved) velocities, u and u′′ are the time-mean and large-scale
(resolved) fluctuating components and u′ is the stochastic (subgrid) turbulent
fluctuation. The model description given below closely follows the formulations
adopted in [8]. For the reacting flows, density-weighted values are used i.e. 〈f̃〉 =
ρ〈f〉/ρ. The equation set may be written as follows:

(2.1)

∂ρ

∂t
+

∂〈ũi〉
∂xi

= 0,

∂〈ũi〉
∂t

+ 〈ũi〉∂〈ũi〉
∂xj

= −1
ρ

∂p

∂xi
+

∂

∂xj

[
ν

∂〈ũi〉
∂xj

− 〈u′iu′j〉
]

+ (ρ− ρ∞)gi,
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with the Reynolds stresses obtained from the standard eddy-viscosity formula:

(2.2) −〈u′iu′j〉 = 〈νt〉
(

∂〈ũi〉
∂xj

+
∂〈ũj〉
∂xi

)
− 2

3

[
〈ν̃t〉∂〈ũi〉

∂xi
+ 〈k̃〉

]
δij .

In the conventional k − ε model, 〈ν̃t〉 is related to the turbulence energy 〈k̃〉
and its dissipation rate 〈ε〉 as 〈ν̃t〉 = Cµ〈k̃〉2/〈ε〉, where 〈k̃〉 and 〈ε〉 are obtained
from the standard transport equations:

∂

∂xj
(Ujk) =

∂

∂xj

(
νt

σk

∂k

∂xj

)
− uiuj

∂Ui

∂xj
− ε,(2.3)

∂

∂xj
(Ujε) =

∂

∂xj

(
νt

σε

∂ε

∂xj

)
− Cε1

ε

k
uiuj

∂Ui

∂xj
− Cε2

ε2

k
,(2.4)

where Cµ = 0.009, Cε1 = 1.44, Cε2 = 1.92, σκ = 1.0, σε = 1.3.
The standard k− ε model has been formulated and tested within the steady-

state calculation procedures, against a range of plane shear flows with no distinct
peaks in their energy spectrum. When a 2D time-dependent calculation is used,
part of the energy spectrum is directly resolved by this type of calculation.
There is clearly a certain ambiguity as to whether the standard model is capable
of partitioning the total stress into its stochastic and periodic contributions [8].

In the present time-dependent calculations, the spatial filtering due to the
employed mesh is also accounted for in an effort to distinguish the directly com-
puted (albeit 2D) turbulent motions, which are resolved by the mesh of size
∆ = (∆x∆y)1/2, from the turbulence already modeled by the k − ε model.
〈ν̃t〉 is therefore evaluated here by borrowing the Smagorinsky mixing length
model from the large–eddy simulation (LES) formalism and the hybrid turbu-
lence model is:

(2.5)
〈ν̃t〉 = (Cs∆)2

(
2〈S̃ij〉〈S̃ij〉

)1/2
if Lt =

〈k̃〉3/2

〈ε̃〉 > ∆ and

〈ν̃t〉 = Cµ〈k̃〉2/〈ε̃〉 if Lt < ∆.

Cs is taken as 0.1. The resulting ν̃t is fed back into the production of 〈k̃〉 in the
k− ε equations, thereby producing a continuous distribution of νt. The implicit
scheme used here is therefore well suited for this hybrid formulation. Calculations
with the standard k−ε model have been proven clearly to be inferior to the recent
hybrid method predictions, both for cold and reacting bluff-body flows, what has
been demonstrated in Koutmos et al. [8].
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2.2. Combustion model

2.2.1. Basic turbulence/chemistry interaction model. A partial equilibrium
scheme corresponding to a two-scalar description employing the mixture fraction,
f , and the CO2 concentration, YCO2 , were used. The reaction CO + OH ↔
CO2 +H was introduced to allow for non-equilibrium effects, and CO2 formation
from CO is assumed to proceed as:

ṙCO2 = kfYCOYOH −
(

kf

kε

)
YCO2YH, kf = 6.76 · 1011 exp

(
T

1102

)

and kε is taken from the JANAF (Tables).
Additionally, when the mixture strength exceeds the rich flammability limit,

the composition is taken as that of equilibrium at this limit diluted with pure
fuel. The final composition is calculated from the NASA equilibrium code for
given f and YCO2 values by defining YCO2 as an ‘element’. The passive, f , and
the reactive, YCO2 , variables, are calculated from the equations

(2.6)
∂

(
ρ〈f̃〉

)

∂t
+

∂

∂χj

(
ρ〈ũj〉〈f̃〉

)
=

∂

∂χj

[(
ρD +

µt

Sct

)
∂〈f̃〉
∂χj

]
,

(2.7)
∂

(
ρ〈ỸCO2〉

)

∂t
+

∂

∂χj

(
ρ〈ũj〉〈ỸCO2〉

)

=
∂

∂χj

[(
ρD +

µt

Sct

)
∂〈ỸCO2〉

∂χj

]
+ ρ˜̇rCO2 ,

with gradient transport assumptions for the turbulent fluxes u′jf ′ and u′jY
′
CO2

.
An exponential joint PDF is constructed from the normalized mixture frac-

tion and CO2 concentration values, f∗ and Y ∗
CO2

, which are used to transform the
physically allowable space of f and YCO2 into a normalized square area suitable
for integration. The relationships established by this transformation are:

(2.8) f∗ = f + YCO2/YCO2,air, Y ∗
CO2

= YCO2/(fYCO2,fuel),

where
YCO2,fuel = nMCO2/MCNHM

,

YCO2,air = MCO2/(MO2 + MN2/0.259).

The local PDF is of the form:

(2.9) P (f∗, Y ∗
CO2

) = exp[a1 + a2f
∗ + a3Y

∗
CO2

+ a4f
∗2 + a5Y

∗
CO2

+ a6f
∗Y ∗

CO2
],
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where f∗ and Y ∗
CO2

are appropriately transformed variables, and it is calculated
through the coefficients (a1 . . . a6) which depend on the local moments f ′2, Y ′2

CO2
,

f ′Y ′
CO2

, which are obtained by assuming equilibrium between the turbulent pro-
duction and destruction of these moments in their transport equation:

(2.10)
∂

(
ρX ′Z ′

)

∂t
+

∂
(
ρũjX ′Z ′

)

∂xj
=

∂

∂xj

[(
ρD +

µt

Sct

)
∂X ′Z ′

∂xj

]

+ 2
µt

Sct

[
∂X̃

∂xi

∂Z̃

∂xi

]
− CΦρ

1
τt

X ′Z ′ + X ′SZ + Z ′SX .

The moments are then obtained from the following expression:

(2.11) X ′Z ′ =
1

2.0ρ

[
2µt

Sct

∂X̃

∂xi

∂Z̃

∂xi
+ X ′SZ + Z ′SX

]
τt,

X = 〈f̃〉 or 〈ỸCO2〉 and Z = 〈f̃〉 or 〈ỸCO2〉, CΦ = 2.0.

Mean quantities and correlations are evaluated by using the PDF informa-
tion, e.g.

(2.12) ˜̇rCO2 =
1
ρ

∫∫
˜̇rCO2JρP (f∗Ỹ ∗

CO2
)df∗dY ∗

CO2
,

where J is the Jacobian of the transformation, τt is evaluated as follows in line

with the hybrid model formulation: if Lt > ∆ then τt = ∆/

√
〈k̃〉, and if Lt < ∆

then τt = 〈k̃〉/〈ε̃〉.

2.2.2. Extinction/reignition model. The modeling of finite-rate chemistry
effects such as partial extinctions and reignitions encountered in the lifted flames
follows the approach of Koutmos [9]. Local extinction is predicted when the
local Damkohler number, Dal, defined as the ratio of the turbulent time scale
τλ = 3.88τk (τk is the Kolmogorov time scale) to the chemical time scale, τch,
is below the local critical ‘limit’ Dacr being a function of position and local
conditions. The criterion for local quenching reads then:

(2.13) λ =
Dal

Dacr
=

[τλ/τch][
Σf√
2∆fR

R
1/4
et

] ≤ 1.

The mean gas state subsequent to extinction ỸQ is obtained by convoluting
with the local exponential PDF involving the reactedness, B, and the mixture
fraction:
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(2.14) ỸQ = (1/ρ̃)
∫∫

YQρP (f̃ , B̃)dfdB,

B̃ is here calculated from the following model Lagrange-type transport equa-
tion [10]:

(2.15)
∂

(
ρB̃

)

∂t
+

∂
(
ρ̃ũjB̃

)

∂χj
= SB,

while its fluctuations, B̃2 and f̃ B̃′, are obtained by invoking a scale-similarity
assumption [12]. Further details of the full model may be found in Refs. [8, 9,
12].

Reignition is allowed when a) the time-scale criterion, Eq. (2.13), is inoper-
ative and b) the cumulative probability of finding a flammable mixture at this
location, defined as

PF =

f2∫

f1

P (f∗)df∗,

is greater than 0.65. Then the source term in Eq. (2.15) is equal to

(B0 − B̃)/τid,

where τid is a mixing-dependent chemical ignition delay time [8–12].

2.3. Turbulent flame noise model

For evaluation of the autonomous sound radiation due to interaction of the
turbulent fluctuations with the flame front, the model formulation of Klein [5]
has been followed closely. Starting from the basic wave equation for low Mach
number flows [1, 2], the one-dimensional sound generated by the fluctuating heat
release from a turbulent non-premixed flame is evaluated [5] by deriving an in-
tegral expression, assuming that the instantaneous combustion zone is infinitely
thin and that combustion is fast and determined by mixing of fuel and air. The
sound spectrum can then be expressed [5] as a function of a one-dimensional tur-
bulence spectrum (of assumed shape) of the mixture fraction at the flame front.
The resulting expression for the sound spectrum for a non-premixed turbulent
flame is then given in integral form as a function of frequency:

(2.16) pp(fν) = 2π

(
C0

S

)2 ∫∫

X

[
(ρDBA)2

Lcorθfν

2U
E2

ID

(
2πfν

2U

)]
dx dy,
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where C0 – speed of sound, S – area of combustor nozzle, D – laminar diffusion
coefficient B,

B =
1
2
x

/
1
π

D

∞∫

0

EID(k)dk,

x – scalar dissipation = 2.0
ε

k
f̃ ′

2

ν , EID – one-dimensional turbulence spectrum of
assumed shape,

EID =





1, k1 < kε

(k1/k2)
−(5/3) , kε < k1 < kkol

0, k1 > kkol





with k1 = 2πfν/2U , kε = π/lt, kkol =
(
ε/ν3

)1/4, θfν – thickness of the mixing
layer between fuel and air, equal to 1/

√
(∇2fν),

A = [Tflame − T0]/[Tflamefst (1− fst)],

fν – frequency.
The parameter sound pressure level, SPL, expressed in dB, can also be eval-

uated as:

(2.17) SPL(fν) = 20 log

(√
pp(fν)

20 · 10−6

)
.

The time-averaged information about the turbulence sound spectrum and
other parameters required in the above expression is derived from the basic re-
acting flow calculation, the computation of the sound spectrum being performed
in a post-processing step.

2.4. Numerical details

The coflowing methane-air jet configuration and computational domain are
shown in Fig. 1. The convective condition ∂φ/∂t + U0 (∂φ/∂t) = 0, (C = U0)
was used at the outlet. A mesh of 205 × 123 (x, y) grid points was used with
an axial expansion ratio of 1.1. For inlet conditions, a fully developed flow was
assumed.

The equations were solved using a finite-volume method based on a stag-
gered mesh, a pressure correction method (SIMPLE) and the QUICK differenc-
ing scheme [8]. A second-order scheme was used for temporal integration. Time
steps were of the order 10−4−10−5 sec, depending on the fuel Reynolds number.
After an initial transient of about 30t0 (t0 = D/U0), the statistics were computed
over approximately 100t0.
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Fig. 1. Methane-air coflowing jet flame configuration Investigated R = 27r and the length of
computation Domain is 50r.

3. Results and discussion

Computations were initially performed for a steady-state, laminar CH4-air
diffusion flame for which experimental data by Mitchell et al. [13] is available.
Figures 1 and 2 show the flow configuration and sample results for undiluted
CH4 jet flow at 5 cm/sec through a 1.2 cm-diameter tube, with a coflow of air at
10 cm/sec, which are compared against the experimental data of reference [13].
Results are compared with the data at the final steady-state, which was reached
after about 25.000 time-steps (∆t = 0.06 sec). Overall, the agreement is satis-
factory in both the reactive scalar (temperature) and the momentum field (axial
velocity), despite some experimental uncertainties concerning the rig exit condi-
tions and these comparisons lend support for an extension of the basic model to
more complex, turbulent lifted flames.

Figure 3 displays time-averaged temperature contours for the three jet ve-
locities of 2, 20 and 40 m/sec investigated. The stoichiometric contour is also
superimposed on the plot. By comparison to the reported non-dimensional lift-off
heights, the present simulation seems to underestimate the stabilization position
by about 7% and 12% for the two jet velocities respectively. An instantaneous
isotherm snapshot of the reacting flow field is illustrated in Fig. 4. A variation of
the lifted flame base with an up and down movement of about 12%, was observed
in the time-dependent simulations. Due to their two-dimensional nature, the re-
sulting spectra could not allow a reliable evaluation of the spectral behavior of
this important lifted flame base region.

An overall qualitative picture of the velocity field is shown in the form of
vector plots in Fig. 5. The mean velocity (Favre-averaged) due to expansion
slows down approaching the flame front and accelerates as it flows past it. Any
relevant local scaling is therefore expected to include the effects of expansion
on local parameters, e.g. the flame front propagation speed in relation to the
laminar flame speed.
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a)

b)

c)

Fig. 2. Laminar CH4 jet flame predictions for fuel jet velocity a) 2 m/s, b) 20 m/s,
c) 40 m/s.
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a)

b)

c)

Fig. 3. Time-average temperature contours for fuel jet velocity a) 2 m/s, b) 20 m/s,
c) 40 m/s.

a)

[Fig. 4a]
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b)

Fig. 4. Instantaneous temperature isotherms: a) uj = 20 m/s, b) uj = 40 m/s.

a)

b)

c)

[Fig. 5a, b, c]
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d)

e)

Fig. 5. a) Instantaneous plot of velocity vectors (uj = 20 m/s); b) instantaneous plot of fuel
fraction contours (uj = 20 m/s); c) instantaneous plot of V contours (uj = 20 m/s);

d) instantaneous plot of velocity vectors (uj = 40 m/s); e) instantaneous plot of V contours
(uj = 40 m/s).

Some preliminary joint statistics between temperature and mixture fraction,
two important scaling parameters for the partially premixed regime [14], have
been produced from the time-dependent calculation of the higher fuel jet velocity
of 20 m/sec and they are shown in Fig. 6. The collected points lie close to the
stoichiometric contour in the vicinity of the movement of the flame base. Methane
is well-known for its bimodel approach to extinction from a wide range of the
previously reported papers (e.g. [12]). The present plot implies a lower level of
bimodality, with the scatter points located mostly above the mixing asymptote
and below the partial equilibrium levels. The variance of mixture fraction spreads
the points over an area slightly broader than the lean limit.

Experimental data of this nature would be very helpful in identifying the
detailed nature and flow behavior of the near-stabilization region. The reduced
bimodality with respect to customary diffusion flames [12, 14] may be attributed
to the loss of resolution in the present simulation, to deficiencies in the reignition
model which is formulated for pure diffusion flames, or to a lower variability of
the chemical time-scale arising from omission of the effects of partially premixed
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Fig. 6. Mixture fraction-Temperature scatter plot taken in the vicinity of the lifted flame
base.

flame propagation. This aspect is not treated explicitly in the model other than
through the inclusion of the relevant chemical time-scale.

Encouragingly, the present modeling formulation recovered two important,
experimentally observed trends. Firstly, the linear relationship between the flame
lift-off height and jet exit velocity, that has been extensively verified through
global and detailed measurements, as well as the correct slope of this linear
variation. Secondly, it reproduced adequately the increase in lift-off height for
a given jet inflow velocity as the fuel flow is diluted, e.g. with N2, something
expected since the residence time is now longer when the fuel stream is diluted.

The reasonable performance of the computational model of prediction of the
experimentally observed aerothermodynamic parameter variations and trends,
lends support to the extension of the method to include and apply the flame
noise described previously, to enable a meaningful evaluation of the combustion
noise radiated by the present flames. Flame noise calculations were performed
for two selected flame configurations, the attached flame with exit fuel velocity
of 2 m/s and the lifted-off flame configuration with exit fuel velocity of 20 m/s.

Equation (2.16) was discretized to be able to calculate it numerically and the
integral is computed numerically at every grid cell. The part in square brackets
in the expression of Eq. (2.16) can be considered as the strength of the local noise
source and gives an indication of a spatial distribution of the local noise ‘inten-
sity’ in the reacting flow field for each selected frequency. Integrating numerically
Eq. (2.16) for all cell surface and over the full frequency range (∆fν = 1 Hz,
Pref = 20 µPa), we deduce the sound spectrum expressed in dB sound pressure
level from Eq. (2.17). The turbulent aero-thermochemical data produced by the
basic time-dependent computation are time-averaged and supply the required in-
formation necessary to evaluate the parameters involved in Eq. (2.16) for every
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cell surface and frequency. Figures 7a, b display contours of the local noise in-
tensity (the term between the square brackets in Eq. (2.16)) for a frequency of
100 Hz.

a)

b)

Fig. 7. The local noise source intensity distribution for fuel jet velocity: a) 2 m/s, b) 20 m/s.

It is seen that noise generation levels are predominant mainly in vicinity of the
mixing interface between the fuel and the oxidizer. These attain maximum values
downstream of the lift-off flame base for the lifted flame, while for the attached
flame the peak noise strength region is again dislocated downstream of the burner
rim. In both cases, the location of the maximum noise intensity coincides with
the region of the peak temperatures levels. The lifted flame produces significantly
increased maximum values of the local noise source strength with respect to the
attached flame and this appears to be a reasonably predicted trend, since the
lifted flame produces increased turbulence levels and temperature fluctuations
downstream of its lifted base.

The calculated sound spectra for the above-discussed flames are plotted in
Figs. 8a, b. The lifted flame gives elevated energy content in the sound spectrum
by about 30% with respect to the attached case, particularly near the lower
frequency range at about 80 Hz, thereafter falling off to nearly similar levels.
This is evidently consistent with the previously discussed predictions of the local
noise intensity levels. It should also be noted that the qualitative distribution of
the spectral density also depends on the assumed turbulence spectrum used in
Eq. (2.16).
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a) b)

Fig. 8. The calculated sound spectra for: a) lifted and b) attached flame, plotted in SPL dB
(∆f = 1 Hz).

An aspect that merits discussion is whether the assumption of fast chemistry
can still be applied for the partially-premixed flame configuration with lift-off
when using Eq. (2.15), and to what extent the expected discrepancies affect the
validity of the present prediction. Experimental results would be quite helpful
to identify the extent of disagreement in the sound pressure level predictions
of this flame and this would help to improve the present modeling effort. Not
with standing the above arguments, it is believed that the present procedure has
captured the basic behaviors and trends in the aero-thermochemical and flame
noise generation characteristics of the studied flames, although further tests and
refinements would be required to enlarge the applicability of the method.

4. Summary

A computational procedure of the time-dependent reactive Navier–Stokes
equations has been employed to study the stabilization mechanism and the au-
tonomous noise generation by the flame front, due to turbulent fluctuations in
attached and lifted methane jet flames. Although the method exploited primar-
ily the diffusion flame concepts with the effects of partial extinctions/reignitions
embodied, it produced reasonable qualitative agreement with the reported data.
Despite the fact that these exploratory and preliminary computations are based
on axisymmetric configurations and hence the 3-D or the non-symmetric turbu-
lent behavior is excluded, the present method captured many important trends
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and behaviors and allows for evaluation and further development of the overall
methodology. Further extensions along the line of addressing in a more clear-cut
manner the impact of partial-premixing are also required.

The adequate accord between computations and experimental observation
in the turbulent aerothermodynamic flow and flame parameters enabled a first
attempt to evaluate the turbulent combustion noise (roar) characteristics of the
complex flame configurations investigated here. The developed methodology pro-
vides a basis to address the coupled effects of turbulence interactions, heat release
and chemistry, and the autonomous turbulent combustion noise generated at the
flame front. These preliminary results suggest that the modeling procedure fol-
lowed such complex behaviors as the variation of the flame lift-off height with
fuel jet velocity and the accompanying increase of the radiated flame noise lev-
els. Further detailed assessment and improvements of the described methodology
may however be required to demonstrate its wider applicability.
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The spectral decomposition of elasticity tensor for all symmetry groups of a linearly elastic
material is reviewed. In the paper it has been derived in non-standard way by imposing the
symmetry conditions upon the orthogonal projectors instead of the stiffness tensor itself. The
numbers of independent Kelvin moduli and stiffness distributors are provided. The correspond-
ing representation of the elasticity tensor is specified.

Key words: linear elasticity, anisotropy, symmetry group, spectral decomposition.

1. Introduction

This work is devoted to the review on the spectral decomposition of the elas-
ticity tensor (Hooke’s tensor). Possibility of application of the spectral theorem
within this context was first noticed by Lord Kelvin (W. Thompson) in 1856
[10]. Then the idea was forgotten and rediscovered by Rychlewski in 1983 [22]
and independently by Mehrabadi and Cowin in 1990 [7]. The consequences of
the theorem have been thoroughly explored by the above researchers and their
co-workers, leading to many inspiring results, i.e. the spectral form of elastic-
ity tensor was derived for all elastic symmetry classes [2, 6, 25], the role of pure
shears was analyzed [3], the extremum of elastic energy was found for the selected
sets of stress states [19], the properties of biological materials were identified [7].
After that the idea has found numerous applications, especially when dealing
with anisotropic materials. Now, this invariant decomposition of the elasticity
tensors is widely known, though, still some aspects of it remain not fully un-
derstood. The main goal of this paper is to clarify the issue of invariance of the
decomposition, mainly the crucial notion of orthogonal projector introduced by
Rychlewski [22] with respect to the notion of an eigen-state which is preferably
used in the papers by Cowin and co-workers, e.g. [6]. Furthermore the spectral
theorem is applied for elastic material of each symmetry class. The novelty of
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the present work is the derivation of the form of the stiffness tensor for the
subsequent elastic symmetry groups by imposing the symmetry conditions upon
the orthogonal projectors instead of the stiffness tensor itself. We think that the
present paper will be useful for all who would like to apply the spectral theorem
in their fields of research.

Linear elastic material (classical elastic body) is considered for which the
small strain tensor ε depends on the stress tensor σ according to Hooke’s law:

(1.1) ε = M · σ or σ = L · ε, M ◦ L = IS ,

εij = Mijklσkl or σij = Lijklεkl, MijmnLmnkl =
1
2
(δikδjl + δilδjk) ,

where M is a compliance tensor and L is a stiffness tensor. The above law is
valid for the stress states restricted by the limit Mises condition

σ ·H · σ ≤ 1, σijHijklσkl ≤ 1,

where H is the limit tensor. Theory of elasticity of anisotropic bodies is presented
in detail e.g. in [9, 16]. In this paper we deal only with the properties of the
stiffness tensor resulting from its spectral decomposition, without referring to
any boundary value problem.

Hooke’s tensors M, L are linear operators which project the space S of sym-
metric II-nd order tensors into itself. Hooke’s tensors are defined as positive-
definite IV -th order Euclidean tensors with the following internal symmetries,
namely

Aijkl = Ajikl = Aijlk = Aklij (A → L,M).

Because of the above internal symmetries, in any Cartesian basis Hooke’s tensor
is, in general, specified by 21 independent components Mijkl and Lmnrs. These
components change when the basis in physical space is transformed, therefore
they are not material constants. The compliance and stiffness tensors are also
used in quadratic forms specifying the energy functional

(1.2) 2Φ = σ ·M · σ = ε · L · ε .

Unfortunately, the complete set of the invariants for Hooke’s tensor, which
uniquely describe such tensor with an accuracy to the rigid rotation of the con-
sidered body, is not known. Because there are 21 independent components of
Hooke’s tensor, while the orientation of a sample with respect to the laboratory
is specified by 3 parameters (i.e. Euler angles), an irreducible functional basis
of orthogonal invariants for L (M,H) consists of 21−3 = 18 invariants. Con-
ventional approach does not provide the form of such basis for the whole set of
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elastic continua. However, some results can be derived when the material enjoys
some external symmetries.

Note that for the tensor of even order, the following eigen-problem is well-
posed. Using the general theory of linear operators one finds that the conditions

(1.3) L ·ω = λω, M ·ω =
1
λ

ω

specify eigenvalues and eigen-elements of these operators. Eigen-elements corre-
sponding to different eigenvalues are always pairwise orthogonal. The condition
(1.3) is also the necessary condition for the elastic energy (1.2) to reach an ex-
tremum value over the unit sphere (that is for σ · σ = 1).

In general, the tensor L has no more than six real different eigenvalues λI ,
λII , ..., λV I to which one can relate six mutually orthogonal unit eigen-elements
ωI , ωII , ..., ωV I . These normalized eigen-elements are called elastic eigen-
states. They are specified with accuracy to a sign and constitute an orthonormal
basis in the space S of the II-nd order tensors

(1.4) ωK ·ωL = δKL, K, L = I, . . . , V I.

Eigenvalues λI , λII , ..., λV I specify the material stiffness in response to the defor-
mations ε = eωK of direction of ωK , where ωK are the elastic eigen-states. λK

are called stiffness moduli or Kelvin moduli [22, 25], and they are non-negative.
This is the only constraint imposed on elastic constants by thermodynamics. For
any deformation ε = eω, where ω is an eigen-state, Hooke’s law takes the form
of the proportionality rule

σ = λε ,

where λ is the Kelvin modulus corresponding to ω. The resulting form of the
elastic energy for the elastic eigen-states has been specified already by Kelvin
[10] as follows:

ε · S · ε = λIe
2
I + λIIe

2
I + . . . + λV Ie

2
V I , eK = ε ·ωK

and
ε = eIωI + eIIωII + . . . + eV IωV I .

Each sequence

(1.5) (λI , . . . , λV I ;ωI , . . . ,ωV I),

consisting of six Kelvin moduli λK ≥ 0 and six elastic eigen-states ωK specifies
an elastic material which is theoretically admissible.
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In order to derive 6 eigen-states ωK (symmetric second-order tensors) it
is sufficient to specify 15 quantities. Conditions (1.4) of orthonormality of the
eigen-states provide 21 additional conditions

(
6
1

)
+

(
6
2

)
= 6 + 15 = 21,

which reduce the number of independent quantities from 36 (6 × 6) to 15
(36−21 = 15). Consequently, the variety of elastic continua is locally described
in a continuous way by a set of 6+15 = 21 parameters.

Out of the 15 parameters describing eigen-states one can separate three which
are not invariants. They orient the stiffness tensor L with respect to a reference
frame (a laboratory). These three parameters can be defined as three Euler an-
gles φ1, φ2, φ3. Remaining 12 parameters are dimensionless material constants
– invariants and common invariants of eigen-states (eigen-tensors) ℵk [15]. They
are common for the stiffness tensor L and compliance tensor M and they are
called stiffness distributors as far as they characterize the distribution of stiff-
ness between the material fibers and the material planes. Stiffness distributors
specify the orthonormal basis of eigen-states ωK with accuracy to the rotation
in a physical space [25].

In conclusion, parameters describing some elastic continua can be subdivided
into three groups

(6 + 12) + 3 = 21.

1. The first group consists of 6 Kelvin moduli λI , . . . , λV I which have a di-
mension of the stress tensor.

2. The second group consists of dimensionless 12 stiffness distributors
ℵ1, . . . ,ℵ12,

3. The third group consists of three Euler angles φ1, φ2, φ3.
Therefore, one has

(1.6) 〈λI , . . . , λV I ; ℵ1, . . . ,ℵ12; φ1, φ2, φ3〉.

Two elastic bodies are made of the same material if values of 18 invariants, that
is λI , . . . , λV I and ℵ1, . . . ,ℵ12, are equal for both of them.

Knowing the Kelvin moduli λK and the corresponding elastic eigen-states
ωK , the tensors L and M can be represented in the form of their spectral
decompositions [17, 22, 28]:

L = λIωI ⊗ωI + . . . + λV IωV I ⊗ωV I ,(1.7)

M =
1
λI

ωI ⊗ωI + . . . +
1

λV I
ωV I ⊗ωV I .(1.8)
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Note that the following relations result from the above equations:

TrL = Lijij = λI + λII + . . . + λV I ,

L · L = LijklLijkl = λ2
I + λ2

II + . . . + λ2
V I ,

in view of which 1/6TrL is the average stiffness modulus, while
√

L · L is the
total stiffness (the norm of L). Moreover, as for any other basis in S, the identity
tensor IS is

(1.9) IS = ωI ⊗ωI + . . . + ωV I ⊗ωV I .

As a consequence of the spectral theorem, the space of symmetric second-
order tensors S has been decomposed into the sum of six one-dimensional pair-
wise orthogonal subspaces PK of eigen-states

S = PI ⊕ PII ⊕ . . .⊕ PV I .

Let us introduce the notion of projector. Projector is defined as a identity op-
erator for the subspace P of second-order tensors, that is, it is the IV-th order
tensor P which specifies the linear operation defined as follows:

P ·ω =

{
ω if ω ∈ P,

0 if otherwise.

Consider the identity operation for the subspace PK of eigen-states and find the
corresponding projector PK , called now the eigen-projector. Using (1.9) we find
(no summation over repeated indices!)

(1.10) PK = PK ◦ IS = PK ◦ (ωI ⊗ωI + . . . + ωV I ⊗ωV I)
= (PK ·ωK)⊗ωK = ωK ⊗ωK .

Accordingly for any II-nd order tensor $ ∈ S the following relation is true

PK ·$ = αωK ∈ PK .

Projectors PK and PL corresponding to two eigen-subspaces are orthogonal,
that is

PK ◦PL =

{
O if K 6= L,

PK if K = L,

and
PI + . . . + PV I = IS .
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The above conditions of orthogonality of projectors result from the orthogonality
of corresponding eigen-subspaces. Decompositions (1.7), (1.8) and orthogonal
projectors PK (1.10) have the above diadic form if the corresponding Kelvin
moduli are single, that is if λK 6= λL for all K 6= L. Only in such a case the
spectral decompositions (1.7), (1.8) are unique.

If the material enjoys some symmetry then the number of parameters de-
scribing this material decreases. The sequence of parameters (1.6) can be then
presented as follows:

(1.11) 〈λ1, . . . , λρ; ℵ1, . . . ,ℵt; φ1, . . . , φn〉 ,
where ρ ≤ 6, t ≤ 12 and n ≤ 3. Kelvin moduli can be then multiple and the
spectral theorem takes the form

(1.12) L = λ1P1 + ... + λρPρ, ρ ≤ 6

and
S = P1 ⊕ P2 ⊕ . . .⊕ Pρ, IS = P1 + ... + Pρ .

The dimension of the subspace Pk is equal to the multiplicity of the correspond-
ing Kelvin modulus λk. The decomposition (1.12) is unique. In order to show
how the orthogonal eigen-projector looks like in the case of multiple Kelvin mod-
uli, let us assume that λV = λV I in (1.7). In such a case, the subspace PV,V I

is two-dimensional and one can define in this subspace the basis {ωV , ωV I}.
Using (1.9) we find

PV,V I = PV,V I ◦ IS = PV,V I ◦ (ωI ⊗ωI + . . . + ωV I ⊗ωV I)

= (PV,V I ·ωV )⊗ωV + (PV,V I ·ωV I)⊗ωV I = ωV ⊗ωV + ωV I ⊗ωV I .

It can be easily verified that the form of eigen-projector does not depend on the
basis of eigen-states selected in the subspace PV,V I .

If one denotes the dimensions of eigen-subspaces P1, . . . ,Pρ by q1, . . . , qρ,
correspondingly then according to [22], the expression

(1.13) 〈q1 + q2 + . . . + qρ〉, q1 + q2 + . . . + qρ = 6

is called the I-st structural index of material, while the expression

(1.14) [ρ + t + n]

is the II-nd structural index. These expressions are material characteristics.
It should be noted that the symmetry of the tensor L, which is equivalent to

the symmetry of a linear elastic continuum, results from the properties of the IV-
th order symmetric Euclidean tensors or, to be more specific, from the linearity
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of Hooke’s law and the properties of 3-dimensional Euclidean space. Therefore,
the classification of the linear elastic materials in view of their symmetry has, in
general, nothing to do with the crystallography. Elastic anisotropy of crystals is
classified in the same way as elastic anisotropy of other bodies without crystal
structure. Consequently, some of the crystal structures have their counterparts
within the elastic symmetry classes, while some of them have not [11]. An exam-
ple of the latter case are crystals of hexagonal lattice symmetry. As far as they
have a 6-fold axis of symmetry, in view of Hermann-German theorem [25], in or-
der to account for all present symmetries, they must be described as elastically
transversely isotropic.

2. Kelvin moduli λI , . . . , λV I

The Kelvin moduli λI , . . . , λV I are obtained as roots of characteristic poly-
nomial, which has the form

(2.1) det(L− λIS) = λ6 + a1(L)λ5 + . . . + a5(L)λ + a6(L) = 0.

Determinant of a IV-th order tensor A is defined as follows:

(2.2) detA ≡ det(AKL) = det(νK ·A · νL),

where νK , (K = I, . . . , V I) is any orthonormal basis in S, while AKL is the
6× 6 matrix of representation of the tensor A in this basis (see Appendix). The
choice of a basis νK has no influence on the value of the coefficients ai(L) in the
Eq. (2.1); therefore, they are the invariants of L.

For the considered λ? the corresponding eigen-state ω? is derived from the
homogeneous system of 6 linear equations:

(2.3) L ·ω? = λ? =⇒ (L− λIS) ·ω? = 0

with constraint ω? · ω? = tr(ω?)2 = 1. If the basis νK = ωK , that is it
coincides with the basis of eigen-states, then the matrix LKL = ωK · L ·ωL is
diagonal.

3. Orthogonal projectors P1, . . . ,Pρ

Knowing Kelvin’s moduli λK , number ρ of which is different, one can in-
troduce some rule which orders them λ1, . . . , λρ. For example, one can number
the moduli by increasing (decreasing) values. After unique numbering of moduli,
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the corresponding orthogonal projectors Pk can be derived using the following
system of ρ tensorial equations of fourth-order [22]:

(3.1)

P1 + P2 + . . . + Pρ = IS ,

λ1P1 + λ2P2 + . . . + λρPρ = L,

...
. . .

...

λρ−1
1 P1 + λρ−1

2 P2 + . . . + λρ−1
ρ Pρ = Lρ−1,

where
Lk = L ◦ L ◦ . . . ◦ L︸ ︷︷ ︸

k times

.

Consequently, one obtains



P1

P2

...

Pρ




=




1 1 . . . 1

λ1 λ2 . . . λρ

...
...

. . .
...

λρ−1
1 λρ−1

2 . . . λρ−1
ρ




−1 


IS

L

...

Lρ−1




.

Inversion of the above matrix exists because its determinant (the Vandermonde
determinant) is equal to

∆ =
∏

ρ≥k 6=l≥1

(λk − λl)

and by definition λk 6= λl . One finds

Pk =
(L− λ1IS) ◦ . . . ◦ (L− λk−1IS) ◦ (L− λk+1IS) ◦ . . . ◦ (L− λρIS)

(λk − λ1) . . . (λk − λk−1)(λk − λk+1) . . . (λk − λρ)
.

Distributors ℵ1, . . . ,ℵ12 are parameters which enable one to specify, in a uni-
que way, the orthogonal projectors Pk in the selected basis. The form of these
functions, which would enable one to specify the projectors for all material sym-
metries, has not been proposed yet. Some proposal for orthotropic symmetry
has been derived in [15]. To this end the harmonic decomposition discussed
in [8, 26, 27] was utilized.

Using the relation (3.1)1 it can be shown that the following identity is true:

1 ·P1 · 1 + 1 ·P2 · 1 + . . . + 1 ·Pρ · 1 = 1 · IS · 1 = 3.

The above identity provides the following relation between the traces of the
eigen-states ωK , if ρ = 6:

(3.2) (trωI)2 + (trωII)2 + . . . + (trωV I)2 = 3.
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4. Symmetries of an anisotropic linear elastic material

4.1. Notation and symmetry conditions

In what follows, the following notation is used:
• Q – orthogonal group in 3-dimensional Euclidean space E3, the set of all

orthogonal tensors,
• Q+ – the group of rotations in E3, the set of all orthogonal tensors for

which detQ = 1, where Q+ ⊂ Q,
• Rφ

a – the orthogonal tensor describing the right-hand rotation around the
axis of direction a about the angle φ. For the rotation presented in Fig. 1
one obtains the following representation of Rφ

a in the basis {ei}

Rφ
a ∼




1 0 0

0 cosφ − sinφ

0 sinφ cosφ


 ,

while the corresponding orthogonal tensor in 6-dimensional space has the
following representation in poly-basis {aK} (see Appendix):

Rφ
a ∼




1 0 0 0 0 0
0 cosφ2 sinφ2 −√2 sin φ cosφ 0 0

0 sinφ2 cosφ2
√

2 sin φ cosφ 0 0

0
√

2 sin φ cosφ −√2 sinφ cosφ cos 2φ 0 0

0 0 0 0 cosφ sinφ

0 0 0 0 − sinφ cosφ




.

Hooke’s tensors are of even order, therefore one can restrict analysis only to
the rotation tensors because symmetry resulting from the mirror reflection
will be equivalent to the symmetry resulting from the rotation around the
appropriate axis through the angle π. Note that the representation of the
orthogonal tensor in six-dimensional space looses the information about
the determinant of the corresponding 3× 3 orthogonal matrix.

• Ia – the orthogonal tensor which describes the mirror reflection with re-
spect to the plane with the unit normal a = e1. For the mirror reflection
presented in Fig. 1 one obtains the following representation of Ia in {ei}:

Ia ∼




−1 0 0

0 1 0

0 0 1


 ,
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and the corresponding representation in 6-dimensional space is the same
as that for the rotation through the angle π around a = e1:

Ia ∼




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




.

Fig. 1. Rotation and mirror reflection specified by the direction a.

Below, we explain the relation between the spectral decomposition of stiff-
ness (compliance) tensor and the well-known classification of linear elastic bodies
according to their material symmetry. As it was already discussed, if the ma-
terial enjoys some symmetry properties then the number of Kelvin moduli and
stiffness distributors decreases. The symmetry group QL of a stiffness tensor L
(a compliance tensor M) is defined as follows:

(4.1) QL = QM = {Q ∈ Q;Q ? L = L},

where Q is the orthogonal II-nd order tensor in 3-dimensional physical space. It
should be recalled that one has for Q

(4.2) QQT = QTQ = 1.

Symbol ? denotes the rotation operation for the IV-th order tensor defined in the
following way. Let {ei} be the selected orthonormal basis in E3, consequently

L = Lijklei ⊗ ej ⊗ ek ⊗ el
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and then

Q ? L = Lijkl(Qei)⊗ (Qej)⊗ (Qek)⊗ (Qel)
= LmnpqQimQjnQkpQlqei ⊗ ej ⊗ ek ⊗ el

where
Q = Qijei ⊗ ej .

The orthogonal tensor Q belongs to the symmetry group of L if the following
condition is true:

(4.3) Q ? L = L ⇔ LmnpqQimQjnQkpQlq = Lijkl.

Therefore, we have in general 21 scalar equations which impose some constraints
on the components of L for the considered Q. The classification of the linearly
elastic materials according to their symmetry includes the classical eight classes
of elastic symmetry [4, 6]. The full anisotropy (QL = {1, −1}) and the full
isotropy (QL = Q) are two extreme cases. Symmetry groups for some classes of
symmetry are contained within the symmetry group of other class. Correspond-
ing inclusion relations are schematically shown in Fig. 2.

Monoclinic

Orthotropy Trigonal

Tetragonal

Cubic Transversal

Isotropy

Anisotropy

Fig. 2. Scheme of relation between eight classes of elastic symmetry. Each arrow corresponds
to the additional symmetry conditions imposed on Hooke’s tensor.

Usually, the reduced form of the stiffness (compliance) tensor for the subse-
quent symmetry groups is derived using the relations (4.3). Then the spectral
decomposition of this reduced form is performed to specify the structural indices
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valid for the considered symmetry group. Below, we derive the form of a stiffness
tensor and the structural indices for the subsequent symmetry groups in a non-
standard way. Consider the external symmetry of the eigen-projector of L. Any
orthogonal tensor belonging to the symmetry group of Pk fulfills the condition

(4.4)
∧

Q∈QPk

Q ? Pk = Pk.

It can be shown that the symmetry group of the tensor L, QL is the common
set of symmetry groups QPk of all its projectors, namely

(4.5) QL = QP1 ∩QP2 ∩ . . . ∩QPρ.

In the components in the selected basis {ei}, relation (4.4) has the form

P (k)
mnpqQimQjnQkpQlq = P

(k)
ijkl.

If the subspace PK is one-dimensional then the symmetry condition (4.4),
together with (4.5), is equivalent to

∧

Q∈QL

Q ? (ωK ⊗ωK) = (QωKQT )⊗ (QωKQT ) = ωK ⊗ωK .

Consequently

(4.6)
∧

Q∈QL

QωKQT = ±ωK .

In components of ωK in the basis {ei}, the above equation is specified as

ωK
mnQimQjn = ±ωK

ij .

If the representation of a IV-th order tensor as a II-nd order tensor in 6-
dimensional space is used (see Appendix), then the orthogonal tensor in the
3-dimensional space can be replaced by a corresponding orthogonal tensor Q in
the 6-dimensional space, such that

Q ? L ⇔ Q?̂6L = LKL(QaK)⊗ (QaL)

and in components, for Q = QKLaK ⊗ aL, one has

(4.7) LKL = LMNQKMQLN .

In this paper, using the above conditions imposed on Pk or ωK , the specific
form of eigen-states and eigen-projectors, two structural indices, as well as the
stiffness tensor L will be derived for all 8 symmetry groups of linear elastic
material.
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4.2. Fully anisotropic material

The symmetry group of Hooke’s tensor is never empty. For full anisotropy,
that is for totally anisotropic material, a symmetry group is defined as

Qa
L = {1, −1}.

The symmetry conditions are fulfilled by any normalized set of six mutually
orthogonal symmetric II-nd order tensors

(4.8) ωK ∼




ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33


 , K = I, . . . , V I.

The specific form of them, that is the value of 12 stiffness distributors, depends
on the specific properties of the considered anisotropic material which have to
be established in experiments. If one of the eigenstates is purely hydrostatic,
namely

ω = ± 1√
3
1,

then material is called volumetrically isotropic [15]. Note that although the num-
ber of independent components is then reduced to 16, in general the material
may remain fully anisotropic.

Any material, which is not totally anisotropic is called a symmetric elastic
material [23]. Such material has at least one symmetry plane.

4.3. Material of monoclinic symmetry

Formonoclinic symmetry, symmetry of a prism with irregular basis, there
exists a single symmetry plane (see Fig. 3) and a symmetry group is the following:

(4.9) Qm
L = {1, −1, Ie1} ,

where Ie1 denotes the tensor describing the mirror reflection with respect to
the plane with unit normal e1. In the basis, in which e1 is specified, two angles
φ1 and φ2 are specified. Using the symmetry conditions (4.6) one obtains two
following matrix equations



−1 0 0

0 1 0

0 0 1







ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33







−1 0 0

0 1 0

0 0 1


 = ±




ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33



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which after performing the multiplications take the form



ωK
11 −ωK

12 −ωK
13

−ωK
12 ωK

22 ωK
23

−ωK
13 ωK

23 ωK
33


 =




−ωK
11 −ωK

12 −ωK
13

−ωK
12 −ωK

22 −ωK
23

−ωK
13 −ωK

23 −ωK
33




and 


ωK
11 −ωK

12 −ωK
13

−ωK
12 ωK

22 ωK
23

−ωK
13 ωK

23 ωK
33


 =




ωK
11 ωK

12 ωK
13

ωK
12 ωK

22 ωK
23

ωK
13 ωK

23 ωK
33


 .

a b

c

ap/2

a b

c

p/2p/2

a b

c

p/2p/2

a

a

c

p/2

p/2

e1

e2

e3

e1

e2

e3

e1

e2

e3

(a) (b)

(c)

Fig. 3. Schematic representation of monoclinic symmetry (a), orthotropy (b)
and tetragonal symmetry (c).

Eigen-states fulfilling the above relations are as follows (K = III, . . . , V I):

(4.10) ωI,II ∼




0 ωI,II
12 ωI,II

13

ωI,II
12 0 0

ωI,II
13 0 0


 , ωK ∼




ωK
11 0 0

0 ωK
22 ωK

23

0 ωK
23 ωK

33


 .
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Using orthonormality conditions of eigen-states ωI and ωII , the following form
of them is obtained

(4.11)

ωI ∼ 1√
2




0 sinφ cosφ

sinφ 0 0

cosφ 0 0


 ,

ωII ∼ 1√
2




0 cosφ − sinφ

cosφ 0 0

− sinφ 0 0


 .

It can be noted that after changing the basis by proper rotation around e1 about
φ3 = φ (that way we specify the third Euler angle), one arrives at

(4.12) ωI ∼ 1√
2




0 1 0

1 0 0

0 0 0


 , ωII ∼ 1√

2




0 0 1

0 0 0

1 0 0


 .

The eigen-states ωI and ωII , in the form of pure shears, are identical for any
material of monoclinic symmetry, provided a proper frame in the physical space
is used. This frame is defined by the unit normal e1 to the symmetry plane,
being the common direction of shearing for the above pure shears in the sense
discussed in [3], and two directions: e2, e3 which specify the unit normal to
the corresponding shearing planes as they were defined in [3]. The derived form
of eigen-states complies with the theorem formulated in [3] according to which
for any symmetric material, at least two eigen-states of the stiffness tensor are
pure shears. The specific form of remaining eigenstates ωK , (K = III, . . . , V I),
defined by 6 stiffness distributors, depends on the properties of the considered
material of monoclinic symmetry. Using (1.7) the representation of L in the poly-
basis {aK} composed of diads of the above selected unit vectors ei is derived as

(4.13) L ∼




L11 L12 L13 L14 0 0

L12 L22 L23 L24 0 0

L13 L23 L33 L34 0 0

L14 L24 L34 L44 0 0

0 0 0 0 L55 = λII 0

0 0 0 0 0 L66 = λI



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therefore it is specified by 12 independent components. The Kelvin moduli
λIII , . . . , λV I are obtained as eigenvalues of 4×4 upper left sub-matrix of (4.13).
An example of material of elastic monoclinic symmetry is the martensite phase,
the lower symmetry phase in CuZnAl shape memory alloy.

4.4. Orthotropic material

In the case of orthotropic material, that is the material possessing symme-
try of a prism with rectangular basis (see Fig. 3), the symmetry group includes
the elements

(4.14) Qo
L = {1, −1, Ie1 , Ie2} .

The symmetry conditions (4.6) can be imposed on the derived form of eigen-
states for the material of monoclinic symmetry as far as the symmetry group
of the latter material is included in the symmetry group of orthotropic material
(Qm

L ⊂ Qo
L, Fig. 2). Thus, any orthotropic material is the material of monoclinic

symmetry. Let us consider two groups of eigen-states obtained for material of
monoclinic symmetry. Imposing additional condition (related to the orthogonal
tensor Ie2) on the first group in (4.10), we find



1 0 0

0 −1 0

0 0 1







0 ωI,II
12 ωI,II

13

ωI,II
12 0 0

ωI,II
13 0 0







1 0 0

0 −1 0

0 0 1


 = ±




0 ωI,II
12 ωI,II

13

ωI,II
12 0 0

ωI,II
13 0 0




which after multiplications simplifies to the relations


0 −ωI,II
12 ωI,II

13

−ωI,II
12 0 0

ωI,II
13 0 0


 =




0 ±ωI,II
12 ±ωI,II

13

±ωI,II
12 0 0

±ωI,II
13 0 0


 .

They are identically true for the eigen-states (4.12), where the direction e2 agrees
with the unit normal to the shearing plane for one of these eigenstates.

Imposing additional condition on the second group of eigen-states in (4.10),
it is obtained


1 0 0

0 −1 0

0 0 1







ωK
11 0 0

0 ωK
22 ωK

23

0 ωK
23 ωK

33







1 0 0

0 −1 0

0 0 1


 = ±




ωK
11 0 0

0 ωK
22 ωK

23

0 ωK
23 ωK

33




and after multiplications, the following constraints are found



ωK
11 0 0

0 ωK
22 −ωK

23

0 −ωK
23 ωK

33


 =



±ωK

11 0 0

0 ±ωK
22 ±ωK

23

0 ±ωK
23 ±ωK

33



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which are true for the following forms of ω (K = IV, V, V I)

(4.15) ωIII ∼




0 0 0
0 0 ωIII

23

0 ωIII
23 0


 , ωK ∼




ωK
11 0 0
0 ωK

22 0
0 0 ωK

33


 .

After normalization we obtain the following eigen-states in the form of pure
shears [2] in the basis {ei} specified by three directions of orthotropy (this way
three Euler angles are specified):

(4.16)

ωI ∼ 1√
2




0 1 0

1 0 0

0 0 0


 ,

ωII ∼ 1√
2




0 0 1

0 0 0

1 0 0


 ,

ωIII ∼ 1√
2




0 0 0

0 0 1

0 1 0


 ,

and three subsequent eigen-states in the diagonal form in this basis, which after
utilizing orthonormality conditions we can present in the form [2]

ωIV ∼




cos θ1 0 0

0 sin θ1 cos θ2 0

0 0 sin θ1 sin θ2


 ,

ωV ∼




− cos θ3 sin θ1 0 0

0 cos θ1 cos θ2 cos θ3 +
− sin θ2 sin θ3

0

0 0 cos θ1 sin θ2 cos θ3 +
+ sin θ3 cos θ2




,

ωV I ∼




sin θ1 sin θ3 0 0

0 − sin θ3 cos θ1 cos θ2+
− cos θ3 sin θ2

0

0 0 − sin θ3 cos θ1 sin θ2+
+cos θ3 cos θ2




.
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For any orthotropic material there exist three uniquely defined (within a sign)
eigen-states in the form of pure shears, while the form of eigen-states ωIV,V,V I

is specified by three angles θ1, θ2, θ3 which themselves are the functions of
three stiffness distributors. They depend on the properties of the considered
material of orthotropic symmetry. In the paper [15] it was proposed to define
these distributors in the following way1)

(4.17) η1 = trh2
V I , η2 =

dethV I

(trωV I)3
, η3 =

tr(ω2
V IωV )

trωV
,

where hK are deviators of ωK . The above definition must be modified in the case
when η1 = 0 or two eigenvalues of ωV I are equal to each other correspondingly
in the form

(4.18) η∗3 = (dethV )2, η∗∗3 =
dethV

(trwV )3
.

The representation of L in poly-basis {aK} constructed with use of orthotropy
directions {ek} is

(4.19) L ∼




L11 L12 L13 0 0 0

L12 L22 L23 0 0 0

L13 L23 L33 0 0 0

0 0 0 L44 = λIII 0 0

0 0 0 0 L55 = λII 0

0 0 0 0 0 L66 = λI




therefore it is specified by 9 independent components. The Kelvin moduli
λIV , . . . , λV I are obtained as eigenvalues of 3×3 upper left sub-matrix of (4.19).
The orthotropic symmetry is characteristic for metal sheets with texture result-
ing from rolling process.

For the above two classes of symmetry one obtains one-dimensional eigen-
subspaces PK .

4.5. Material of trigonal symmetry

Material of trigonal symmetry (symmetry of a cube uniformly elongated
along one of its main diagonals, see Fig. 5, where the diagonal is coaxial with
the main symmetry axis e1) has the following symmetry group:

1)In [15] it was assumed that Kelvin moduli λK are ordered in view of increasing value of
the corresponding (trωK)2.



REVIEW ON SPECTRAL DECOMPOSITION OF HOOKE’S TENSOR ... 163

(4.20) Q3t
L =

{
1, −1, R2π/3

e1 , Ie2

}
,

where R2π/3
e1 denotes the rotation around the axis e1 through the angle 2π/3.

It should be noted that the monoclinic symmetry group Qm
L ⊂ Q3t

L if the
direction e1 is replaced by e2. For the symmetric direction specified in this way
with respect to the basis {ei}, two groups of eigen-states in (4.10) have the
representations (K = III, . . . , V I)

(4.21) ωI,II ∼




0 ωI,II
12 0

ωI,II
12 0 ωI,II

23

0 ωI,II
23 0


 , ωK ∼




ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33


 .

Fulfilling the additional symmetry condition (4.6) related to the orthogonal
tensor R2π/3

e1 for the second group of eigen-states (4.21), we derive the constraints




1 0 0

0 −1
2

−
√

3
2

0
√

3
2

−1
2







ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33







1 0 0

0 −1
2

√
3

2

0 −
√

3
2

−1
2




= ±




ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33


,

which after multiplications take the form



ωK
11 −

√
3

2
ωK

13 −1
2
ωK

13

−
√

3
2

ωK
13

1
4
(ωK

22 + 3ωK
33)

√
3

4
(ωK

33 − ωK
22)

−1
2
ωK

13

√
3

4
(ωK

33 − ωK
22)

1
4
(3ωK

22 + ωK
33)




= ±




ωK
11 0 ωK

13

0 ωK
22 0

ωK
13 0 ωK

33


 .

The above relations can be fulfilled only by two linearly independent unit eigen-
states with the below representation in the basis {ei}2)

(4.22) ωV,V I ∼




ωV,V I
11 0 0

0 ωV,V I
22 0

0 0 ωV,V I
22


 .

2)As it can be noticed in Fig. 5, the direction e2 can be specified with the accuracy to the
rotation about 2π/3 around e1.
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They define two one-dimensional eigen-subspaces. After normalization and ap-
plication of orthogonality conditions, they take the form

(4.23)

ωV ∼ 1√
2




√
2 sin φ 0 0

0 − cosφ 0

0 0 − cosφ


 ,

ωV I ∼ 1√
2




√
2 cos φ 0 0

0 sinφ 0

0 0 sinφ


 .

In general, the above eigen-states are not pure shears.
Imposing the symmetry condition (4.6) on the first group of eigenstates (4.21)

we find only trivial solution ω = 0, which of course is unacceptable. Conse-
quently, the remaining eigen-subspaces must be more than one-dimensional and
their form will be found using the symmetry condition (4.4). Any IV-th order
tensor orthogonal to the eigen-projectors composed of eigen-states (4.23) has the
representation

P ∼




0 0 0 0 0 0

0 −P23 P23 P24 P25 P26

0 P23 −P23 −P24 −P25 −P26

0 P24 −P24 P44 P45 P46

0 P25 −P25 P45 P55 P56

0 P26 −P26 P46 P56 P66




.

The representation of a orthogonal tensor R2π/3
e1 in the six-dimensional space is

the following one

R2π/3
e1 ∼




1 0 0 0 0 0

0
1
4

3
4

√
6

4
0 0

0
3
4

1
4

−
√

6
4

0 0

0 −
√

6
4

√
6

4
−1

2
0 0

0 0 0 0 −1
2

√
3

2

0 0 0 0 −
√

3
2

−1
2




.
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If we perform the rotation operation for the tensor P using the relation (4.7),
then we find the following non-zero components of the rotated tensor R2π/3

e1 ?̂6P:

P̃22 =
1
8
(−2P23 − 2

√
6P24 + 3P44),(4.24)

P̃23 =
1
8
(2P23 + 2

√
6P24 − 3P44),(4.25)

P̃24 =
1
8
(−2

√
6P23 − 4P24 −

√
6P44),(4.26)

P̃25 =
1
8
(2P25 − 2

√
3P26 −

√
6P45 + 3

√
2P46),(4.27)

P̃26 =
1
8
(2
√

3P25 + 2P26 − 3
√

2P45 −
√

6P46),(4.28)

P̃33 =
1
8
(−2P23 − 2

√
6P24 + 3P44),(4.29)

P̃34 =
1
8
(2
√

6P23 + 4P24 +
√

6P44),(4.30)

P̃35 =
1
8
(−2P25 + 2

√
3P26 +

√
6P45 − 3

√
2P46),(4.31)

P̃36 =
1
8
(−2

√
3P25 − 2P26 + 3

√
2P45 +

√
6P46),(4.32)

P̃44 =
1
4
(−6P23 + 2

√
6P24 + P44),(4.33)

P̃45 =
1
4
(
√

6P25 − 3
√

2P26 + P45 −
√

3P46),(4.34)

P̃46 =
1
4
(3
√

2P25 +
√

6P26 +
√

3P45 + P46),(4.35)

P̃55 =
1
4
(P55 − 2

√
3P56 + 3P66),(4.36)

P̃56 =
1
4
(
√

3P55 − 2P56 −
√

3P66),(4.37)

P̃66 =
1
4
(3P55 + 2

√
3P56 + P66).(4.38)

After algebraic manipulations, setting P̂KL = PKL, the representations of two
projectors in the poly-basis {aI} are found, namely
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PK ∼




0 0 0 0 0 0

0 (ωK
23)

2 −(ωK
23)

2 0
√

2ωK
12ω

K
23 0

0 −(ωK
23)

2 (ωK
23)

2 0 −√2ωK
12ω

K
23 0

0 0 0 2(ωK
23)

2 0 2ωK
12ω

K
23

0
√

2ωK
12ω

K
23 −√2ωK

12ω
K
23 0 2(ωK

12)
2 0

0 0 0 2ωK
12ω

K
23 0 2(ωK

12)
2




.

They project into two two-dimensional subspaces PI,II and PIII,IV of deviatoric
tensors. Using the orthogonality and after normalization of the elements, we
arrive at the following representations of these projectors

PI,II ∼ 1
2




0 0 0 0 0 0

0 (sin ρ)2 −(sin ρ)2 0 −
√

2
2

sin 2ρ 0

0 −(sin ρ)2 (sin ρ)2 0
√

2
2

sin 2ρ 0

0 0 0 2(sin ρ)2 0 − sin 2ρ

0 −
√

2
2

sin 2ρ

√
2

2
sin 2ρ 0 2(cos ρ)2 0

0 0 0 − sin 2ρ 0 2(cos ρ)2




,(4.39)

PIII,IV ∼ 1
2




0 0 0 0 0 0

0 (cos ρ)2 −(cos ρ)2 0
√

2
2

sin 2ρ 0

0 −(cos ρ)2 (cos ρ)2 0 −
√

2
2

sin 2ρ 0

0 0 0 2(cos ρ)2 0 sin 2ρ

0
√

2
2

sin 2ρ −
√

2
2

sin 2ρ 0 2(sin ρ)2 0

0 0 0 sin 2ρ 0 2(sin ρ)2




.(4.40)

Any second-order tensor belonging to PI,II and PIII,IV , respectively, is devia-
toric and has the following representation in the basis {ei} (ω any second order
tensor):

(4.41) ωI,II =
PI,II ·ω
|PI,II ·ω| ∼

1√
2




0 cosϕ cos ρ sinϕ cos ρ

cosϕ cos ρ − sinϕ sin ρ − cosϕ sin ρ

sinϕ cos ρ − cosϕ sin ρ sinϕ sin ρ



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and

(4.42) ωIII,IV =
PIII,IV ·ω
|PIII,IV ·ω| ∼

1√
2




0 cosϕ sin ρ sinϕ sin ρ

cosϕ sin ρ sinϕ cos ρ cosϕ cos ρ

sinϕ sin ρ cosϕ cos ρ − sinϕ cos ρ


 ,

where ϕ ∈ 〈0, 2π〉. The bases in those sub-spaces can be composed of two ele-
ments: ωK(ϕ1) and ωK(ϕ2), where ϕ2 = ϕ1 + π/2. The simplest bases in PI,II

and PIII,IV is obtained setting φ1 = 0 and φ2 = π/2. Note that among infi-
nite number of elements (4.41) and (4.42), one can indicate in both cases three
which are pure shears. They are specified by angles ϕ being the solutions of two
trigonometric equations

det ωI,II = 0 ⇔ cos2 ρ sinϕ(sin ρ− cos2 ϕ(3 sin ρ + cos ρ)) = 0,

detωIII,IV = 0 ⇔ sin2 ρ sinϕ(cos2 ϕ(3 cos ρ + sin ρ)− cos ρ) = 0.

Therefore, for any elastic material of trigonal symmetry at least six of its eigen-
states are the pure shears [3]. Of course, not all of them are pairwise orthogonal
as far as some of them correspond to the same eigen-value (the same Kelvin
modulus).

The specific form of PI,II and PIII,IV depends on the angle ρ being the
function of one stiffness distributor. The value of this distributor is material
characteristic for trigonal symmetry. Similarly, the specific form of eigen-states
ωV and ωV I depends on the angle φ which is the function of the second stiffness
distributor (compare [25]). One can define this distributor as follows:

η2 =
dethV I

(trωV I)3
,

where hV I is deviator of ωV I .

The considered material of trigonal symmetry is defined by
1. 4 Kelvin moduli: λ1 = λI,II , λ2 = λIII,IV , both of multiplicity 2, and

λ3 = λV , λ4 = λV I of multiplicity 1.
2. Two stiffness distributors which specify angles ρ and φ.
3. 3 Euler angles which orient symmetry axis e1 and the symmetry plane

e2 with respect to laboratory.
The unique spectral decomposition takes the form

(4.43) L = λ1P1(ρ) + λ2P2(ρ) + λ3P3(φ) + λ4P4(φ),

where
P1(ρ) = PI,II(ρ), P2(ρ) = PIII,IV (ρ),

P3(φ) = ωV (φ)⊗ωV (φ), P4(φ) = ωV I(φ)⊗ωV I(φ).
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Using (4.43) the stiffness tensor L for the material of trigonal symmetry in
the poly-basis aK composed of diads of the basis ei, has the representation

(4.44) L ∼




L11 L12 L12 0 0 0

L12 L22 L23 0 L25 0

L12 L23 L22 0 −L25 0

0 0 0 L22 − L23 0
√

2L25

0 L25 −L25 0 L55 0

0 0 0
√

2L25 0 L55




therefore it is specified by 6 independent components. It can be shown that the
Kelvin moduli λV = λ3 and λV I = λ4 are obtained as eigenvalues of the following
2× 2 matrix

(4.45)
1
3

[
L11 + 2(2L12 + L23 + L33)

√
2(L11 + L12 − (L22 + L23))√

2(L11 + L12 − (L22 + L23)) 2L11 − 4L12 + L23 + L22

]
,

while the Kelvin λI,II = λ1 and λIII,IV = λ2 of multiplicity 2 can be derived as
eigenvalues of the following 2× 2 matrix:

(4.46)

[
L22 − L23

√
2L25√

2L25 L55

]
.

Single crystal of aluminum oxide Al2O3, ceramic material, has trigonal sym-
metry.

4.6. Material of tetragonal symmetry

Material of tetragonal symmetry (symmetry of a prism of square basis,
see Fig. 3) is characterized by the following symmetry group

(4.47) Q4t
L =

{
1, −1, Ie1 , Ie2 , Rπ/2

e1

}
.

Similarly like in the case of trigonal symmetry it is impossible to fulfill the sym-
metry conditions (4.6) by 6 mutually orthogonal eigen-states. Using the results
for otrhotropic material, it can be checked that the additional condition of sym-
metry imposed by Rπ/2

e1 is fulfilled3) only by four eigen-tensors. Two of them are
pure shears which have the following representations in basis {ei}:

3)The eigen-states of the material of tetragonal symmetry can be derived by imposing the
additional symmetry condition on the eigen-states of orthotropic material because Qo

L ⊂ Q4t
L ,

Fig. 2.
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(4.48) ωIII ∼ 1√
2




0 0 0

0 0 1

0 1 0


 , ωIV ∼ 1√

2




0 0 0

0 1 0

0 0 −1


 ,

while other two eigen-states have the form

(4.49) ωV,V I ∼




ωV,V I
11 0 0

0 ωV,V I
22 0

0 0 ωV,V I
22


 .

They define four one-dimensional subspaces PK ,K = III, IV, V, V I. Moreover,
from the symmetry conditions (4.4) we obtain the following projectorPI,II which
projects into two-dimensional subspace PI,II of pure shears with common shear
direction. Its representation in the orthonormal poly-basis {aI} composed of
{ei ⊗ ej} (see Appendix) is as follows:

(4.50) PI,II ∼




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

Any unit element of this two-dimensional subspace can be written in the form

(4.51) ωI,II ∼ 1√
2




0 sinϕ cosϕ

sinϕ 0 0

cosϕ 0 0


 , ϕ ∈ 〈0, 2π〉.

An orthonormal basis in this subspace is composed of two tensors ωI,II(ϕ1) and
ωI,II(ϕ2), such that ϕ2 = ϕ1 + π/2.

For any material of tetragonal symmetry we have obtained two uniquely
specified (within a sign) eigen-states ωIII and ωIV as well as the uniquely
defined projector PI,II . The specific form of ωV and ωV I depends on the value
of one stiffness distributor which is the material characteristic for the considered
material. Using the result of [15], this distributor can be defined as

(4.52) η = η2 =
dethV I

(trωV I)3
.
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It should be noted that for the material of tetragonal symmetry the direction
e1 is uniquely defined, while the direction e2 can be specified only with accuracy
to the angle π/4.

The considered elastic material of tetragonal symmetry is specified by
1. 5 Kelvin moduli: λ1 = λI,II of multiplicity 2, λ2 = λIII , λ3 = λIV

λ4 = λV and λ5 = λV I of multiplicity 1.
2. One stiffness distributor η which specifies angle φ.
3. 3 Euler angles which orient symmetry axis e1 and the symmetry plane

e2 with respect to laboratory.
The unique spectral decomposition takes the form

(4.53) L = λ1P1 + λ2P2 + λ3P3 + λ4P4(φ) + λ5P5(φ)

where

P1 = PI,II , P2 = ωIII ⊗ωIII , P3 = ωIV ⊗ωIV

and
P4(φ) = ωV (φ)⊗ωV (φ) , P5(φ) = ωV I(φ)⊗ωV I(φ).

The representation of the stiffness tensor in poly-basis aK for the material of
tetragonal symmetry has the form similar to orthotropic material with additional
relations

(4.54) L13 = L12, L33 = L22, L66 = L55;

therefore, it is specified by 6 independent components. The Kelvin moduli depend
on LKL as follows:

(4.55) λI,II = λ1 = L55, λIII = λ2 = λ44, λIV = λ3 = L22 − L23

and λV = λ4 and λV I = λ5 are found as eigenvalues of matrix (4.45). The
stiffness distributor η is specified by components of L as follows

(4.56) η =
1

27
√

2
L12

L11 − λV

,

where LKL denote components of matrix (4.45), while λV is taken as a minimum
(a maximum) of its eigenvalues if L11 > L22 (L11 < L22). The latter specification
ensures that (trωV I)2 > (trωV )2.

As an example of material of tetragonal symmetry, the γ-TiAl intermetallic
is analyzed in Subsec. 4.10. Tetragonal symmetry has also a single crystal of
martensitic phase of ferromagnetic shape memory alloy NiMnGa.
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4.7. Transversely isotropic material

Material of transversal isotropy (cylindrical symmetry presented in Fig. 4)
has the following symmetry group (note that Q4t

L ⊂ Qt
L):

(4.57) Qt
L =

{
1, −1, Ie1 , Ie2 , Rφ

e1

}
,

where the orthogonal tensor Rφ
e1 describes the rotation around the axis e1

through any angle φ. The symmetry condition (4.6) for this rotation tensor is
fullfilled by two eigen-states (4.49) valid for tetragonal symmetry, which describe
two one-dimensional subspaces PV and PV I . Furthermore, the symmetry condi-
tion (4.4) is fullfilled for projector PI,II specified by (4.50) and another projector
PIII,IV , both projecting into two 2-dimensional subspaces of pure shears. The
projector PIII,IV has the representation

(4.58) PIII,IV ∼ 1
2




0 0 0 0 0 0

0 1 −1 0 0 0

0 −1 1 0 0 0

0 0 0 2 0 0

0 0 0 0 0 0

0 0 0 0 0 0




e2
e3

e2
e1

e3

e1

e2 e3

(a)

(b)

Fig. 4. Schematic representation of transversely isotropic material (a)
and isotropic material (b).
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written in the poly-basis {aI}. Any unit element of the two-dimensional subspace
PIII,IV can be specified in the form

(4.59) ωIII,IV ∼ 1√
2




0 0 0

0 cosψ sinψ

0 sinψ − cosψ


 , ψ ∈ 〈0, 2π〉.

Orthonormal basis in this subspace is composed of two tensors ωIII,IV (ψ1) and
ωIII,IV (ψ2), such that ψ2 = ψ1 + π/2.

It should be underlined that the representation of the eigen-states ωV,V I and
the projectors PI,II and PIII,IV is the same in any basis in which the direction
e1 is coaxial with the material symmetry direction, therefore in order to specify
the orientation of material sample with respect to the laboratory it is sufficient
to specify two Euler angles φ1 and φ2.

For any transversely isotropic material one obtains two uniquely specified
eigen-projectors PI,II and PIII,IV . The specific form of two eigen-states ωV

and ωV I , similarly as for the material of tetragonal symmetry depends on the
stiffness distributor (4.52), the value of which is the material characteristic for
the analyzed material (compare [12]).

Note that we can obtain transversely isotropic material considering also the
material of trigonal symmetry if we set the angle ρ = 0. In such a case the
projector P1 = PI,II project into the space plane deviators (4.59) (they are the
pure shears with common shearing plane e1) while the projector P2 = PIII,IV

project into the space of pure shears (4.51) with common shearing direction e1.

The considered transversely isotropic material is defined by
1. 4 Kelvin moduli: λ1 = λI,II , λ2 = λIII,IV , both of multiplicity 2, and

λ3 = λV , λ4 = λV I of multiplicity 1.
2. One stiffness distributor η which specifies angle φ.
3. 2 Euler angles which orient symmetry axis e1 with respect to laboratory.

The unique spectral decomposition takes the form

(4.60) L = λ1P1 + λ2P2 + λ3P3(φ) + λ4P4(φ)

where P1 = Ptrig
1 (0) and P2 = Ptrig

2 (0) while

P3(φ) = ωV (φ)⊗ωV (φ), P4(φ) = ωV I(φ)⊗ωV I(φ)

The representation of the stiffness tensor for the material of transversal
isotropy in poly-basis aK has the representation similar to orthotropic mate-
rial with relations (4.54), valid for the tetragonal symmetry and additionally
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(4.61) L44 = L22 − L12,

therefore, it is specified by 5 independent components. Kelvin moduli λK and
stiffness distributor η are found as for the material of tetragonal symmetry,
Eqs. (4.55)–(4.56), where in view of relation (4.61) one has λIII = λIV .

There are many engineering materials which can be modelled as transversely
isotropic. The classical example is the composite with the reinforcement in the
form of elongated aligned fibers [5]. Moreover, as it was already signalled in
the introduction, all materials for which the single crystal has the hexagonal
symmetry, in view of their elastic anisotropy are transversely isotropic. Examples
of such metals are analyzed in Subsec. 4.10.

4.8. Material of cubic symmetry

Material of cubic symmetry (symmetry of a cube, Fig. 5) has the following
symmetry group (Q4t

L ⊂ Qc
L):

(4.62) Qk
L =

{
1, −1, Ie1 , Rkπ/2

e1 , Rkπ/2
e2

}
.

The group of trigonal symmetry is also the subset of the cubic symmetry group,
however, the symmetry axis is then coaxial with one of the main diagonals of
a cube span by the vectors ei.

2p/3

e1

e2

e3

c

Fig. 5. Schematic representation of a material of cubic symmetry. Note that a crystal
elongated along the main diagonal c would have trigonal symmetry with the main axis

of symmetry coaxial with c.
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From the symmetry condition (4.6) one eigen-state is obtained

(4.63) ωV I ∼ 1√
3




1 0 0
0 1 0
0 0 1


 ,

which, as it is easy to note, describes one-dimensional subspace of hydrostatic
tensors. From the symmetry conditions (4.4) we obtain two eigen-projectors
(compare [19]). A projector PI,II,III (again in poly-basis {aI})

(4.64) PI,II,III ∼




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




projects into the 3-dimensional deviatoric subspace PI,II,III . Any unit element
(not necessarily pure shear) of this subspace can be represented as follows:

(4.65) ωI,II,III ∼ 1√
2




0 sinϕ cosψ sinϕ sinψ

sinϕ cosψ 0 cosϕ

sinϕ sinψ cosϕ 0


 ,

where ψ ∈ 〈0, 2π〉 and ϕ ∈ 〈0, π〉. The second projector PIV,V has the form

(4.66) PIV,V ∼ 1
3




2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




and projects into two-dimensional deviatoric subspace PIV,V . Any unit element
of this subspace can be represented as follows:

(4.67) ωIV,V ∼
√

2√
3




cos θ 0 0

0 cos
(

θ +
2π

3

)
0

0 0 cos
(

θ − 2π

3

)




,
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where θ ∈ 〈0, 2π〉. Orthonormal basis in this subspace can be composed of any
two tensors ωIV,V (θ1) and ωIV,V (θ2) for which θ2 = θ1 + π/2.

For any material of cubic symmetry one obtains two uniquely defined pro-
jectors PI,II,III and PIV,V as well as one uniquely specified (within a sign)
eigen-state ωV I . The decomposition of the space S into three mutually orthog-
onal eigen-subspaces is identical for any material of cubic symmetry (there are
no stiffness distributors). Material of trigonal symmetry reduces to the material
of cubic symmetry if we set

φ = φ0, ρ = ρ0, λtrig
1 = λtrig

3 = λcube
1

and tanφ0 = tan ρ0 =
√

2. Note that in this case the stiffness distributor η2 = 0.

The considered material of cubic symmetry is specified by
1. 3 Kelvin moduli: λ1 = λI,II,III of multiplicity 3, λ2 = λIV,V of multi-

plicity 2 and λ3 = λV I of multiplicity 1.
2. 0 stiffness distributors.
3. 3 Euler angles which orient symmetry axes ei with respect to laboratory.

The unique spectral decomposition takes the form

(4.68) L = λ1P1 + λ2P2 + λ3P3,

where
P1 = IS −K, P2 = K− IP , P3 = IP =

1
3
1⊗ 1

and K =
3∑

i=1
ei ⊗ ei ⊗ ei ⊗ ei.

The representation of the stiffness tensor for the material of cubic symmetry
has the form similar to an orthotropic material with additional relations between
components, namely

(4.69) L23 = L13 = L12, L33 = L22 = L11, L66 = L55 = L44,

where
λV I = λ3 = L11 + 2L12, λIV,V = λ2 = L11 − L12

and
λI,II,III = λ1 = L44,

therefore, it is specified by 3 independent components. Single crystals of Cu or Al
are of cubic symmetry. Austenite phase, high-symmetry phase in shape memory
alloys, e.g. NiTi, CuZnAl, NiMnGa, usually exhibit cubic symmetry.



176 K. KOWALCZYK–GAJEWSKA, J. OSTROWSKA–MACIEJEWSKA

4.9. Isotropic material

As it was already stated in Subsec. 4.1, the symmetry group of such material
is the whole orthogonal group Q. For isotropic material (Fig. 4) fulfillment
of condition (4.6) leads to the hydrostatic eigen-state (4.63), while symmetry
condition (4.4) leads to the projector being the sum of projectors (4.64) and
(4.66) derived for the cubic symmetry, namely

(4.70) Pd = PI,II,III + PIV,V = I− 1
3
1⊗ 1.

This projector projects the II-nd order tensor into the 5-dimensional subspace
of deviators. Its representation in the poly-basis {aI} composed of diads of basis
vectors of any orthonormal basis {ei} is the same and has the form

(4.71) Pd ∼ 1
3




2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3




.

The considered isotropic material is specified by
1. 2 Kelvin moduli: λ1 = λI,II,III,IV,V of multiplicity 5 and λ2 = λV I of

multiplicity 1.
2. 0 stiffness distributors.
3. 0 Euler angles (they are not needed because all material directions are

equivalent).
The unique spectral decomposition takes the form

(4.72) L = λ1P1 + λ2P2,

where
P1 = Pd = IS − IP , P2 = IP =

1
3
1⊗ 1.

The representation of the stiffness tensor for the isotropic material is obtained
from the stiffness tensor for cubic symmetry with additional relation

(4.73) L44 = L11 − L12 = λI,II,III,IV,V = λ1;

therefore, it is specified by 2 independent components.
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In Table 1 I and II structural index is provided for all 8 symmetry groups.
In [14] the structural indices have been derived for the volumetrically isotropic
materials (that is with the so-called Burzyński constraint) for all elastic sym-
metry groups. For such materials, the hydrostatic tensor (4.63) is one of the
eigen-states. It results in reduction of the number of stiffness distributors. Note
that for such materials the elasticity tensor is coaxial with the isotropic elasticity
tensor.

Table 1. I and II-structural index for all symmetry classes of linear elastic
materials.

Symmetry group I structural index II structural index
Number

of parameters

full anisotropy 〈1 + 1 + 1 + 1 + 1 + 1〉 [6 + 12 + 3] 21

monoclinic symmetry
(symmetry of a prism
with irregular basis)

〈(1 + 1 + 1 + 1) + 1 + 1〉 [6 + 6 + 3] 15

orthotropy
(symmetry of a prism

with a rectangular basis)
〈(1 + 1 + 1) + 1 + 1 + 1〉 [6 + 3 + 3] 12

trigonal symmetry
(symmetry of

an elongated cube)
〈(1 + 1) + (2 + 2)〉 [4 + 2 + 3] 9

tetragonal symmetry
(symmetry of a prism
with a square basis)

〈(1 + 1) + 1 + 1 + 2〉 [5 + 1 + 3] 9

transversal symmetry
(cylindrical)

〈(1 + 1) + 2 + 2〉 [4 + 1 + 2] 7

cubic symmetry
(symmetry of a cube)

〈1 + 2 + 3〉 [3 + 0 + 3] 6

isotropy 〈1 + 5〉 [2 + 0 + 0] 2

4.10. Examples

We apply the derived formulae for assessment of intensity of an elastic aniso-
tropy of single crystals of selected metals and alloys. The intensity of anisotropy
is here intuitively meant as a departure of the material behaviour from the
isotropic one, i.e. strong variation of elastic properties depending on the direction
in which they are measured. More information concerning this issue can be found
e.g. in [18, 20, 24]. It should be underlined that in general, the intensity of an
anisotropy is not equivalent to the notion of low or high symmetry of material.
Material of high symmetry (e.g. cubic) can exhibit strong anisotropy, e.g. strong
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variation of directional Young modulus [19] and vice versa: the anisotropy of
material of low symmetry can be weak.

In Table 2 the independent components of the elasticity tensor for single crys-
tals of selected materials are collected. The hcp materials (Mg, Zn, Zr, Ti metals
and α2-Ti3Al intermetallic) exhibit the hexagonal lattice symmetry, therefore,
the stiffness and compliance tensors have the form equivalent to the transversal
isotropy case with 5 independent components in anisotropy axes, Subsec. 4.7.
In the case of crystal of tetragonal symmetry (γ-TiAl intermetallic) one has 6
independent components, Subsec. 4.6. High symmetry metals such as copper and
aluminum are fcc materials of cubic symmetry with three independent compo-
nents of L.

Table 2. Elastic constants [GPa] of single crystals for selected metals
and alloys of high specific stiffness and some fcc materials

(axis 1 is the main symmetry axis).

Material L2222 L2233 L1122 L1111 L1212 L3232

Mg [1] 59.3 25.7 21.4 61.5 16.4

Zn [1] 163.7 36.4 53.0 63.5 38.8

Zr [30] 143.5 72.5 65.4 164.9 32.1

Ti [29, 31] 163.9 91.3 68.9 181.6 47.2

α2-Ti3Al [31, 21] 175 88.7 62.3 220 62.6

γ-TiAl[21] 183 74.1 74.4 178 105 78.4

Cu [1] 171.0 122.0 69.1

Al [1] 186 157 42

In Table 3 we provide the invariants resulting from spectral decomposition
of the corresponding elasticity tensors for these materials [13] (relation between
Lijkl and LKL components is specified in the Appendix by (A.2)). The following
conclusions result from the analysis of this table:

• All analyzed metals and alloys, with exception of Zn, are close to be a vol-
umetrically isotropic materials (ξ is close to zero). Note that Cu and Al,
being cubic materials, are volumetrically isotropic exactly.

• In view of above property, the intensity of elastic anisotropy4) can be as-
sessed comparing the Kelvin moduli λI , λII , ..., λV , or more specifically
their properly defined ratios, e.g λK/λmax where λmax = max{λI , . . . , λV }.
For example, one observes that elastic anisotropy of Mg or Al crystals
is not strong and it is strong for Zn or Cu. Note that introduction of
such indicators of the intensity of the elastic anisotropy generalizes the

4)Note that if ξ = 0 and λI = λII = ... = λV , the material is isotropic.
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anisotropy factor introduced for cubic crystals by Zener [32]: A = (L1111−
L1122)/(2L1212). As it could be easily verified, this factor is the ratio of de-
viatoric Kelvin moduli of cubic crystal, namely A = λcub

2 /λcub
1 .

Table 3. Kelvin moduli λK [GPa], a stiffness distributor ξ3 =
√

2η (Eq. (4.52))
and Φ = arctan(3ξ) obtained by spectral decomposition of the local elasticity

tensor for single crystals of selected metals and alloys [13].

Material λV I λV λIV λIII λII = λI ξ Φ [o]

Mg 105.7 40.8 33.6 32.8 −0.0051 −0.87
Zn 233.2 30.4 127.3 77.6 −0.0674 −11.43
Zr 286.4 94.5 71.0 64.2 0.0117 2.01

Ti 322.6 114.2 72.6 94.4 −0.0035 −0.61
α2-Ti3Al 332.6 151.1 86.4 125.2 0.0161 2.77

γ-TiAl 330.0 105.1 108.9 156.8 210 −0.0033 −0.56
Cu 415.0 49.0 138.2 0 0

Al 228.9 46.5 56.6 0 0

5. Conclusions

In the paper, the spectral theorem for the elasticity tensor has been thor-
oughly discussed. The main aim of the work was the clarification of the issue
of invariance of the spectral decomposition. Therefore, the forms of the decom-
position for all elastic symmetry groups have been derived in an original way
by imposing the symmetry conditions upon the orthogonal projectors, instead
of the stiffness tensor itself. Thanks to that, the uniqueness of the orthogonal
projectors for the considered Hooke’s tensor in contrast to the non-uniqueness of
eigen-states has been demonstrated. For completeness of the review, the number
of independent eigenvalues (Kelvin moduli) and the corresponding orthogonal
projectors have been explicitly outlined for each elastic symmetry class. Finally,
the spectral decomposition of the stiffness tensor has been derived for single
crystals of the selected metals and alloys.
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Appendix

The space S of symmetric second-order tensors possesses all the properties of
the six-dimensional Euclidean space with the scalar product defined as follows:

∧

a,b∈S
a · b = tr(ab) = aijbij ,

where aij , bij , i, j = 1, 2, 3 are components of tensors a and b in some or-
thonormal basis {ei} in the three-dimensional physical space. Therefore, any
second-order tensor has all the properties of the vector in the six-dimensional
Euclidean space.

Due to this property of S it is possible to select in S a subset of six mutually
orthogonal and normalized tensors {aK}, K = I, . . . , V I which constitute the
basis. One of the possible bases is the following orthonormal subset of basis diads
{ei ⊗ ej} of the form:

aI = e1 ⊗ e1 aIV =
1√
2
(e2 ⊗ e3 + e3 ⊗ e2),

aII = e2 ⊗ e2, aV =
1√
2
(e1 ⊗ e3 + e3 ⊗ e1),

aIII = e3 ⊗ e3, aV I =
1√
2
(e2 ⊗ e1 + e1 ⊗ e2).

A basis in the six-dimensional space is called a poly-basis. In the above poly-
basis, any symmetric tensor of the second order is specified in the following way:

a = aijei ⊗ ej = aKaK , K = I, . . . , V I, where a · b = aKbK

and relations between representations aij and aK are given by

(A.1)
aI = a11, aII = a22, aIII = a33,

aIV =
√

2a23, aV =
√

2a13, aV I =
√

2a12.

Consequently, the linear projection from the space S into S treated as the six-
dimensional Euclidean space is described by the second-order tensor belonging to
tensorial product S ⊗S. This reasoning brings us to conclusion that the fourth-
order tensor A that represents this projection in the three-dimensional physical
space has all the properties of the second-order tensor in the six-dimensional
Euclidean space. Therefore, one can write

A = Aijklei ⊗ ej ⊗ ek ⊗ el = AKLaK ⊗ aL.
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The set of all basis diads {aI ⊗ aJ} is the basis in the space S ⊗S. Components
AKL depend on components Aijkl of the IV -th order tensor A in the basis {ei}
in the physical space, in the following way:

(A.2) [AKL] =




A1111 A1122 A1133

√
2A1123

√
2A1113

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2213

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3313

√
2A3312

√
2A2311

√
2A2322

√
2A2333 2A2323 2A2313 2A2312

√
2A1311

√
2A1322

√
2A1333 2A1323 2A1313 2A1312

√
2A1211

√
2A1222

√
2A1233 2A1223 2A1213 2A1212




.

The following products can be obtained in two alternative, but fully equiva-
lent ways (a,b ∈ S; A,B,C ∈ S ⊗ S):

a · b = aijbij = aKbK ,

b = A · a ⇔ bij = Aijklakl or bK = AKLaL,

D = A ◦B ⇔ Dijkl = AijmnBmnkl or DKL = AKMBML,

where aij , bij , Aijkl, Bijkl, Dijlk and aK , bK , AKL, BKL, DKL are related by
Eqs. (A.1) and (A.2).

It should be stressed that, due to the fact that the tensor A represents linear
projection between spaces of the symmetric second-order tensors, one obtains
Aijkl = Ajikl = Aijlk. Note that in the case of the stiffness tensor L and the
compliance tensor M, additionally one has to do with diagonal symmetry, AKL =
ALK (Aijkl = Aklij).
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Introduction (p. 3)

The main subject of the theory of elasticity is to mathematically determine
the state of strain or stress in a solid body being under the conditions determined
by the action of a system of external forces, the specific shape of the body
and its elastic properties. The solution of this question exhausts the role of the
elasticity theory and next the theory of strength of materials comes into play.
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Its equally important task is to give the dimensions of the considered body
with determined exactness, with respect to the states unwanted regarding the
body safety on the one hand and the most advantageous economical conditions
on the other hand. This problem, very simple in the case of a uniaxial state
of stress, becomes so complicated in a general case that from the beginning of
the mentioned theories, special attention had to be paid to this question and
an intermediate chapter, being at the same time the final part of the theory
of elasticity and the introduction to the strength of materials theory, has been
introduced. This new passage deals with material effort and different hypotheses
related to this notion. The study of these hypotheses is exactly the subject of
the present work.

Material effort is of course closely related with the state of strain, or stress,
of the considered body. It is then justified to introduce first the basic relations
existing in the mentioned states.

[..., p. 25:] III. Dependence between the states of strain and stress.
Elastic energy. New relations.

[..., p. 27:] The sought function Φ (density of elastic strain energy function –
ed. note) can be calculated from the formula:

(5) 2Φ = c11ε
2
x + 2c12εxεy + 2c13εxεz + 2c14εxγx + 2c15εxγy + 2c16εxγz

+ c22ε
2
y + 2c23εyεz + 2c24εyγz + 2c25εyγy + 2c26εyγz

+ c33ε
2
z + 2c34εzγx + 2c35εzγy + 2c36εzγz

+ c44γ
2
x + 2c45γxγy + 2c46γxγz

+ c55γ
2
y + 2c56γyγz

+ c66γ
2
z

(the symbols cik denote elasticity coefficients and the symbols γα denote shear
strain in the plane with the normal α = x, y, z – ed. note).

[..., p. 27: The above formula] regards solid bodies which are anisotropic
in terms of elasticity. However, in case when certain special properties of the
body, simplifying its structure, exist – as it happens e.g. in crystals – the elastic
constants become related in a particular way and their number becomes lower 12).

For example, if there exist in the body three perpendicular planes of struc-
tural symmetry and the coordinate axes coincide with these three planes, the
function simplifies to the following form with 9 elasticity coefficients:

(7) 2Φ = 2c11ε
2
x + 2c12εxεy + 2c13εxεz + c22ε

2
y + 2c23εyεz

+ c33ε
2
z + c44γ

2
x + c55γ

2
y + c66γ

2
z .



188 W. BURZYŃSKI

The mentioned conditions occur with a very good approximation for a timber
cube cut out in the particular way.

For materials in which the elastic properties in the three mentioned perpen-
dicular directions are additionally identical, the function Φ simplifies further to
the following form:

(8) 2Φ = c11

(
ε2
x + ε2

y + ε2
z

)
+ 2c12 (εxεy + εxεz + εyεz) + c44

(
γ2

x + γ2
y + γ2

z

)
.

Further reduction leads to two elastic constants; [. . . ] this last case is possible
for an isotropic body.

[..., p. 30:] As it is known, for components of the state of strain or stress
it is allowed to apply arbitrary superposition of two (or more) subcomponents,
according to the scheme:

ε = ε′ + ε′′,
1
2
γ =

1
2
γ′ +

1
2
γ′′

or relatively:
σ = σ′ + σ′′, τ = τ ′ + τ ′′.

[. . . ] Let us pose now the question whether it is possible to do such a de-
composition for the function Φ in the sense of the equation Φ(ε, γ) = Φ(ε′, γ′) +
Φ(ε′′, γ′′). In other words, whether it is possible to apply an arbitrary superpo-
sition for the function of elastic energy. The answer in a general case, that is
for all cik 6= 0 and for arbitrarily taken ε and γ, must be negative, since Φ is
a quadratic function. Nevertheless, such a decomposition may turn out to be
possible for a particularly assumed decomposition of ε and γ and for a material
with certain specific elastic constants cik. [. . . ]

To all intents and purposes, there are no physical reasons for the strain energy
not to be decomposable into a sum of two other energies, that is into: the energy
of volume change and the energy of distortion. [. . . ] This assumption is the
essence of the whole reasoning – certainly not quite a theoretical one – and leads
to five new relations of the following form:

(12)

3 relations:





c14 + c24 + c34 = 0
c15 + c25 + c35 = 0
c16 + c26 + c36 = 0

2 relations:





c11 − c22 = c23 − c13

c22 − c33 = c31 − c21

c33 − c11 = c12 − c32

The number of elastic coefficients would be limited in this case to the number
of 21 − 5 = 16. For a body characterized by the Eq. (7), the number of 9 co-
efficients would be reduced to 7; and for a model described by the Eq. (8), the
number of elastic constants remains the same, i.e. 3.
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[..., p. 31:] Let us consider what form takes the function Φ, expressed by the
Eq. (5), assuming that the relations (12) are true and that the decomposition of
the components [. . . , of the strain state into a deviatoric and a spherical part]
holds. For this purpose, let us replace the coefficients c14, c25 and c36, appearing
[in (5)] in the terms 2c14εxγx, 2c25εyγy and 2c36εzγz, with three pairs of other
coefficients, resulting from the first three relations [in (12)]. Then, the nine mixed
terms with could be expressed in the form:

−(c24γx − c15γy)(εx − εy)− (c35γy − c26γz)(εy − εz)− (c16γz − c34γx)(εz − εx).

Next, let us change the position of the axes of the coordinate system to a
certain characteristic orientation – let us call it the basic one [. . . ] – namely, in
such a way to have:

(13)

c24γx − c15γy = 0,

c35γy − c26γz = 0,

c16γz − c34γx = 0.

In such a case [. . . ], the considered terms will disappear and – leaving the
names of the coefficients in the new system unchanged without fear of confusion,
or denoting additionally:

(14)

P = c44 + 2c45
c24

c15
,

Q = c55 + 2c56
c35

c26
,

R = c66 + 2c64
c16

c34

– the last six terms in (5) will transform into:

Pγ2
x + Qγ2

y + Rγ2
z .

The constants P , Q, R can be called the reduced elastic moduli of distortion
(shear), analogously to the shear modulus G, for the reasons which are to be
revealed later. Each of the constants contains four elastic coefficients.

Continuing, it remains now to take care of the rest of the terms in Eq. (5), i.e.
the six terms depending solely on the components and the six elastic constants,
which also require certain transformation. A glance at the unused until now
equations in (12) is sufficient to observe their particular property. By rearranging



190 W. BURZYŃSKI

them and adding the equations: c12 = c21, c23 = c32, c13 = c31 to both sides, we
obtain the system:

c11 + c12 + c13 = c21 + c22 + c23,

c21 + c22 + c23 = c31 + c32 + c33,

c31 + c32 + c33 = c11 + c12 + c13,

or in general:

(15) ci1 + ci2 + ci3 = c1k + c2k + c3k = 3B, (i, k = 1, 2, 3).

From the last relation and the three initial relations it results that the sum of
three normal stresses:

(16) 3p = σx + σy + σz = σ1 + σ2 + σ3 = 3B(εx + εy + εz) = 3Be

is noticeably dependent on the sum of three longitudinal strains along the axes
x, y, z; that is: on volume change and one coefficient of elasticity B. Then [the
coefficient B] will be further called modulus of elastic volume change.

Lastly, let us substitute:

c11 = B +
2
3
(M + N), c22 =

2
3
(N + L), c33 = B + (L + M),

therefore:

c12 = B − 2
3
N, c33 = B − 2

3
L, c32 = B − 2

3
M

and let us insert these values into the six discussed terms of the function Φ (7).
Then it will turn out that after the rearrangement, they will assume the following
form:

B(εx + εy + εz)2 +
2
3

[
N(εx − εy)2 + L(εy − εz)2 + M(εz − εx)2

]
,

where the coefficients

(17) L =
2
3
(B − c23), M =

2
3
(B − c31), N =

2
3
(B − c12),

can be called the general elastic moduli of distortion.
Finally then, after dividing the Eq. (5) by 2, we obtain:

(18) Φ =
1
2
B(εx + εy + εz)2 +

1
3

[
N(εx − εy)2 + L(εy − εz)2 + M(εz − εx)2

]

+
1
2
(Pγ2

x + Qγ2
y + Rγ2

z )
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as a general normal form of elastic strain energy of an anisotropic solid, in the
basic orientation determined by the Eqs. (13). The first part of the function
denotes the energy of volume change Φv and the remaining one – the energy of
distortion Φf . The total energy then reads:

(19) Φ = Φv + Φf .

[..., p. 33:] The use of principal components simplifies (18) to the following special
form of strain energy:

(20) Φ =
1
2
B(ε1 + ε2 + ε3)2 +

1
3
[N(ε1 − ε2)2 + L(ε2 − ε3)2 + M(ε3 − ε1)2].

[..., p. 34:] It is not difficult to observe that the whole foregoing reasoning can be
easily reversed and applied to the states determined by stress components. The
respective relations take the form:

(25)

C14 + C24 + C34 = 0,

C15 + C25 + C35 = 0,

C16 + C26 + C36 = 0,

C11 − C22 = C23 − C13,

C22 − C33 = C31 − C21,

C33 − C11 = C12 − C32.

The generalized elastic constants are expressed by the equations [...]:

3B∗ = Ci1 + Ci2 + Ci3 = C1k + C2k + C3k,

(26)

L∗ =
3
2
(B∗ − C23), 4P ∗ = C44 + 2C45

C24

C15
,

M∗ =
3
2
(B∗ − C31), 4Q∗ = C55 + 2C56

C35

c26
,

N∗ =
3
2
(B∗ − C12), 4R∗ = C66 + 2C64

C16

C34
,

where the additional relation reads:

(27) e = εx + εy + εz = e1 + e2 + e3 = 3B∗(σ1 + σ2 + σ3)

= 3B∗(σx + σy + σz) = 9B∗p.
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The formulae for elastic energy will take the [following] forms – a general one
in the basic system:

(28) Φ =
1
2
B∗(σx+σy+σz)2+

1
3

[
N∗(σx− σy)2+L∗(σy− σz)2+M∗(σz− σx)2

]

+ 2(P ∗τ2
x + Q∗τ2

y + R∗τ2
z )

(the symbols τα denote the shear stress in the lane with the normal α = x, y, z
– ed. note) and a particular one in the principal system:

(29) Φ =
1
2
B∗(σ1 + σ2 + σ3)2

+
1
3

[
N∗(σ1 − σ2)2 + L∗(σ2 − σ3)2 + M∗(σ3 − σ1)2

]
.

[..., p. 38:] As the conclusion of this chapter there will be given a group of formulae
[. . . ], assuming certain special states. These include: the case of uniaxial tension
or relative compression and the case of simple torsion [. . . ]. The first one is
characterized by the components:

σx = σ0, σy = σz = 0, τx = τy = τz = 0

and the second one by:

σx = τ0, σy = 0, σz = −τ0, τx = τy = τz = 0,

or
σx = σy = σz = 0, τx = 0, τy = τ0, τz = 0.

From the respective relations of the present chapter we obtain for the first case:

(49) Φf =
1

6G
σ2

0, Φ =
1

2E
σ2

0, ε0 =
1
E

σ0

and similarly for the second case:

(50) Φf =
1

2G
τ2
0 , Φ =

1
2G

τ2
0 , γ0 =

1
G

τ0.

[..., p. 39:] IV. Material effort

[..., p. 40:] Generally, under the notion material effort we understand a phys-
ical state of a body, comprehended in the sense of elasticity or plasticity or
material strength, generated by a system of stresses, and related with them
strains, in the body. This brief qualitative definition will become – I suppose –
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completely clear after looking through the discussion in this and next chapters.
[. . . ] Generally then, the new notion material effort depends on the manner in
which external forces act, on the body shape and on individual properties of the
body. These notions deserve a few words of explanation.

Under the manner in which external forces act, one should understand not
only the distribution of loading but also its variability in time. The recent state
of the strength theories does not allow to consider this important factor in cal-
culations, except for a few particular cases.

The body shape is one of the reasons for the dependence of the stress state
components on the position of the considered point in the body. It is clear that
the uniformity or non-uniformity of the state of stress strongly influences the
quality of the physical state of the whole body15). One has the impression that
authors of various hypotheses overlooked this fact; however, the ways of con-
ducting experiments contradict that. Furthermore, it is not known whether the
local grouping of stress components leading to the limiting numerical value of
material effort accounts for unwanted changes exclusively in this particular point
of the body, or influences the physical behaviour of the whole body in general.
Similarly, it is unknown whether the experimental observation of the existence
of certain planes of unwanted states (planes of shear, etc.) is a proof that the
corresponding to this planes components [of the state of stress] are the reasons
for creation of internal disorders.

These remarks fall out if a uniform state of stress is ascertained in the whole
body. For this reason, the results obtained in following chapters should be limited
to the case of a uniform state of stress or, otherwise, they should be limited
exclusively to a point.

[..., p. 41:] Regarding the structure, two kinds of solid bodies are distin-
guished: crystalline and amorphous ones, depending whether the particles of the
body are distributed in space regularly or irregularly. The majority of techni-
cal materials (metals) are continuous macroscopic conglomerates of both types
of structure. For this reason such bodies behave as isotropic ones, since the
anisotropy of particular crystals cannot be shown individually at the macro-
scopic level. Such bodies are called quasi-isotropic. However, secondary circum-
stances can trigger, even in such a conglomerate, some remarkable differences
in the material behaviour along certain directions – e.g. the influence of rolling
[. . . ] etc. and the respective differences should be accounted for. There are no
such attempts in a general sense; the hypotheses discussed in following chapters
assume isotropy of materials without any explanation.

Elastic properties of a body are determined by the so-called elastic mod-
uli or elastic constants, which were discussed in the previous chapter. For a
large group of materials these coefficients are constant, so they ascertain that
the generalized Hooke’s law remains valid. A series of recent precise experi-
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ments show irrefutably that the range of solids undergoing the Hooke’s law is
pretty large (e.g. concrete)16). The limit of validity of Hooke’s law is called the
limit of proportionality. If additionally, the strains induced within such limits
are ideally – at least in the technical meaning – elastic, we obtain a model of
a body, to which all equations from the foregoing chapter are applicable. How-
ever, these equations are valid only up to the elasticity limit. By the existence
of both limits, they ascertain, in general, proximity of these limits. Therefore,
confusing both the terms in the vast technical literature does not implicate too
serious mistakes. The proportionality limit plays the role of a mathematical con-
dition rather than a physical one – whereas it is opposite for the limit of elas-
ticity.

Bodies which do not have the limit of proportionality show more or less
distinct limits of elasticity; thus the relations of the foregoing chapter have the
character of the first approximation only.

[..., p. 42:] Beyond the elastic range, the elasticity coefficients should be con-
sidered to be variable or generally, they should not be used in the meaning they
were referred to until now. Instead, they should be replaced by certain constants
specific not only for the body but also for the considered stress process itself.

To such ranges belongs, first of all, the range of plastic strains, which begins
from the so-called limit of plasticity [. . . ].

[..., p. 43:] A few words should be said also about the third process connected
with a particular body. To the phenomena accompanying permanent strains is
related the third stage – belonging, undisputably, to the strength of materials
theory – that is the range of material cracking, ending with the limit of strength
(in a technical sense). Conditions of failure are usually very complicated and,
up till now, also not too much theoretically explained20). Uniformity or rather,
on the opposite, non-uniformity of the state of stress, which is – as a matter
of fact – difficult to be analysed in connetcion with the shape of a body, plays
a considerable role in this region. Disregarding the surface energy15, 21) can be
a reason of serious errors, even in preliminary calculations. Apart from that, it
is not known whether the specific for given materials constants reflect satisfac-
torily the essence of the phenomenon of failure, as it is assumed by some au-
thors. Qualitative diversity in different strength processes persuaded researches
[. . . ] to divide failure surfaces into two categories, i.e. the surfaces of shear and
tear22).

Under the stress properties we understand the behaviour of a body in certain
special states; these properties reveal themselves as numerical values of stress in
the above-described limit ranges. We know a whole series of such states and,
because of obvious benefits and applications in the following chapters, let us set
them schematically by means of normal principal stresses, under the assumption
σ1 > σ2 > σ3, as follows:
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I. Uniaxial tension: σ1 = kr, σ2 = 0, σ3 = 0;
II. Uniaxial compression: σ1 = 0, σ2 = 0, σ3 = −kc;
III. Simple torsion (shear): σ1 = ks, σ2 = 0, σ3 = −ks.
Only few metals are characterized by the equality kr = kc = k; in principle,

these constants are different, namely kc > kr. The discussed states are accounted
as the simplest – the fundamental ones – for the study of material effort.

[..., p. 44:] To the similar, simplest states of stress should be added also
the following ones, though more complex indeed, yet in the present state of
our knowledge on material effort they can not be omitted. These are in se-
quence:
IV. Biaxial uniform tension: σ1 = krr, σ2 = krr, σ3 = 0;
V. Biaxial uniform compression: σ1 = 0, σ2 = −kcc, σ3 = −kcc;
VI. Triaxial uniform tension: σ1 = krrr, σ2 = krrr, σ3 = krrr;
VII. Triaxial uniform compression: σ1 = −kccc, σ2 = −kccc, σ3 = −kccc.

Any other experimental states can be of course put between the ones given
above. The aforementioned values k refer to the states lying on the elasticity
limit (or proportionality limit), the limit of plasticity and the strength limit. [...]

[..., p. 48:] V. Analytical and graphical methods of presentation
of material effort. Classification of hypotheses.

[..., p. 51:] In the present work, the following classification is assumed as
the best illustration of the contents of the [material effort] hypotheses29) and
at the same time, as it partly corresponds to chronological relations of these
theories.
A. The hypotheses of limit stresses.
B. The hypotheses of limit strains.
C. The hypotheses of limit energies. [. . . ]

[..., p. 96:] VIII. The hypotheses of limit energies.
The author’s hypothesis.

C1. The hypothesis of constant limit energy of strain

The mentioned in the title hypothesis is known since the times of Bel-
trami54), who for the first time suggested the use of strain energy for calculation
of material effort. Independently of Beltrami54), Huber56) stated an identical
theory; already then, however, emphasizing certain additional thought resulting
in the change of the contents of (C1) into (C2), which will be discussed in the
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next paragraph. Finally, in recent time Haigh32), an Englishman, repeated the
suggestion of Beltrami, not having known – like Huber – Beltrami’s publication.

[..., p. 97: Formula of the hypothesis reads:]

(C10) σ2
x+σ2

y+σ2
z− 2µ(σxσy+σyσz+σzσx)+2(1+µ)(τ2

x +τ2
y +τ2

z )=k2,

where: k = kc = kr.
With the use of the principal components [of stress], the hypothesis takes

a shorter form [...]:

(C1) σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ3σ1) = k2.

[. . . , p. 99:] The above equation represents a rotationally symmetric ellipsoid
of the axis oriented at equal angles to the axes of the system σ1, σ2, σ3, with
lengths of the half-axes:

b1 = b3 =
k√

1 + µ
,

b2 =
k√

1− 2µ
.

[..., p. 100:] C2. The hypothesis of constant limit energy
of volume change and distortion

As it was mentioned before, independently of Beltrami, Huber brought for-
ward a similar proposition. He used his hypothesis for limit states of strength
supposing however, that the theory would be valid also for elastic ranges. Bas-
ing on certain facts related experimentally to exceeding the strength limit, he
observed that in the case of the states with three negative normal components
[of stress], one should consider rather the energy of distortion Φf than the total
Φ as a measure of material effort.

About his final, mathematically precisely stated position [on this matter] we
learn from the letter to Föppl8) and the following statement contained there:
“Material effort is measured by the sum of these parts of density of strain energy,
which result from the distortion and increase of volume”. The measure of mater-
ial effort is then Φ = Φv +Φf if the above assumption is fulfilled, i.e. when e > 0
or σx +σy +σz > 0; in the opposite case, i.e. when e < 0 or σx +σy +σz < 0, the
assessment of material effort is given by Φf exclusively. In this way, a discontin-
uous hypothesis is created; the states I, IV, and VI belong to the first group of
phenomena, while the states II, V and VII belong to the latter one; the state III
is proved in both ranges.
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This last state fits best to express the Huber hypothesis; comparing then
respectively the complete or partial formula (37) with the pertinent ones (49)
and (50), from the Chapter III we obtain:

(C20)

1
2(1 + µ)

(σ2
x + σ2

y + σ2
z)−

µ

1 + µ
(σxσy + σyσz + σzσx)

+(τ2
x + τ2

y + τ2
z ) = k2

s

for: σx + σy + σz ≥ 0, furthermore:

1
3
(σ2

x + σ2
y + σ2

z − σxσy − σyσz − σzσx) + (τ2
x + τ2

y + τ2
z ) = k2

s

for: σx + σy + σz ≤ 0,

as a mathematical formula of Huber’s hypothesis in a general case. The particular
form [for principal stress components] reads of course:

(C2)

1
2(1 + µ)

(σ2
1 + σ2

2 + σ2
3)−

µ

1 + µ
(σ1σ2 + σ2σ3 + σ3σ1) = k2

s

for: σ1 + σ2 + σ3 ≥ 0, and

1
3
(σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ2σ3 − σ3σ1) = k2
s ,

for: σ1 + σ2 + σ3 ≤ 0.

[..., p. 103:] C3. The hypothesis of limit energy of distortion

The decomposition of elastic energy into two characteristic parts, applied for
the first time for the assessment of material effort by Huber, has earned in the
process of time a well-deserved experimental and theoretical confirmation and
created the foundation of unusually fine and mathematically simple hypothe-
sis (C3).

According to this new theory, the measure of material effort is exclusively the
energy of distortion Φf . The hypothesis was for the first time proposed, it seems,
by Mises59). Having drawn the attention to the fact that the spatial picture of
the hypothesis (A3) [related with the criterion of Tresca] in the orthogonal system
of axes [of the principal shear stresses] τI , τII, τIII shows a cube of the edge k,
Mises expressed a conviction, that this rather should be the sphere:

τ2
I + τ2

II + τ2
III =

k2

2
.
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The second author who raised the mathematical formula (C3) to the rank of the
fundamental equation of the theory of plasticity was Hencky19),60).

[..., p. 104:] The mathematical form of the hypothesis (C3) [. . . ] in a general
case reads:

σ2
x + σ2

y + σ2
z − σxσy − σyσz − σzσx + 3(τ2

x + τ2
y + τ2

z ) = k2

or in particular [for principal stresses]:

σ2
1 + σ2

2 + σ2
3 − σ1σ2 − σ2σ3 − σ3σ1 = k2.

[..., p. 106:] C4. The hypothesis of variable limit energy of strain

In such a way one could name the hypothesis which was – as it appears –
presented during one of Mises’s lectures in 1925 and published by Schleicher50)

in 1925/1926.
According to Schleicher’s theory, the “equivalent” stress, expressed by the

left-hand side of (C1) – let us denote it shortly: σvf =
√

2EΦ – is in the limit
state a variable value depending on the state of stress, that is on:

p =
σx + σy + σz

3
=

σ1 + σ2 + σ3

3
.

In other words, [the equation] σvf = f(p) is a mathematical form of the
hypothesis of variable limit energy.

Schleicher relates his theory to elastic and plastic states and recommends to
seek for the shape of the function f experimentally, similarly as it was advised
by Mohr in the case of the shape of envelope.

[..., p. 107] It is possible to approximate the experimental curve, according
to Schleicher, by means of

(C4∗) a parabola σ2
vf = s2 − 3mp,

(C4∗∗) or a line σvf = t− 3mp.

In the first case it is: s2 = kckr, m = kc − kr, and in the second one:

t =
2kckr

kc + kr

and the already known

n =
kc − kr

kc + kr
;

in other words, the hypothesis is dependent on two parameters kc and kr. [...]
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Expressing p and σvf by means of the components of stress, we get (from
(C4∗) and (C4∗∗)) the following relations:

(C4′) σ2
x + σ2

y + σ2
z − 2µ(σxσy + σzσy + σxσz) + 2(1 + µ)(τ2

x + τ2
y + τ2

z )

+ (kc − kr)(σx + σy + σz) = kckr

and

(C4′′) σ2
x + σ2

y + σ2
z − 2µ′′(σxσy + σzσy + σxσz) + 2(1 + µ′′)(τ2

x + τ2
y + τ2

z )

+ (kc − kr)(σx + σy + σz) = kckr,

or with use of principal stresses:

(C41) σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ1σ3)

+ (kc − kr)(σ1 + σ2 + σ3) = kckr

as well as:

(C42) σ2
1 + σ2

2 + σ2
3 − 2µ′′(σ1σ2 + σ2σ3 + σ1σ3)

+ (kc − kr)(σ1 + σ2 + σ3) = kckr,

whereas:

µ′′ =
µ + n2

1− n2
=

µ(kc + kr)2 + (kc − kr)2

4kckr
.

For kc = kr, the Schleicher hypothesis expressed either by (C4′) and (C4′′)
or by (C41) and (C42), transforms in the hypothesis of Beltrami.

[..., p. 111:] C5. The hypothesis of variable limit energy
of volume change and distortion

The review of enormous theoretical material, which was presented in the
previous chapters, together with an equally extensive set of experiments, allows
judging discerningly the merits and drawbacks of the discussed hypotheses. This
assessment leads to the rejection of the theories A and B and compels to accept
the theories C, which are more consistent mathematically and therefore more
flexible for experiments.

Individual properties of the studied bodies suggest that basing the theories on
one or two experimental data does not in general render faithfully the phenom-
enon of material effort and demands to introduce more parameters into account,
as it was suggested by Schleicher. Controlling the phenomena by the modulus of
elasticity causes many problems and the only rarely returns reliable services.
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For this reason I have tried to state a hypothesis as general as (C4) which
would be, however, free of these additions which seemed for me inadequate in the
study of material effort. The starting point is the attitude similar to what Huber
stated in (C2); however, much more general and continuous. It is the following
conviction: The measure of local material effort in elastic and plastic ranges is
the sum of density of quasi-energy of distortion and a certain part – dependent
on the state of stress and individual properties of a body – of the density of the
pseudo-energy of volume change.

By adding “quasi” – or “pseudo” – we try to emphasize that the analytic
expressions used in continuation, quoted in the third chapter, do not mean –
for a certain group of bodies or relatively in certain experimental fields – elastic
energy in the sense discussed in this chapter.

The mathematical formula for the hypothesis is the equation:

Φf + ηΦv = K.

Expansions of the functions Φf and Φv are very well known to us. Determi-
nation of constant K does not present difficulties; it is the value of the left-hand
side of the equation, determined for one of the basic states, the simplest ones,
that is: I, II or III. The remaining to be discussed η is – as it results from the
assumption – a function of individual material properties as parameters and of
the state of stress as an independent variable. The individual properties should
be expressed also by the moduli of the simplest states. To the latter one should
apply several magnitudes created from the components of state of stress; be-
cause of the proved minor significance of the component τ , one should express
the independent variable of the function η by the component σ. From possible
expressions, due to the mathematical character of the energies Φf and Φv, there
suggests itself the invariant which does not privilege any of the three components,
namely

p =
σx + σy + σz

3
=

σ1 + σ2 + σ3

3
.

In general then, we assume that: η ≡ η(p). Considering series of correct ex-
periments seems to suggest generally that the influence of Φv decreases with
the algebraic increase of the mean stress p; this leads to a very well applicable
function:

η = ω +
δ

3p
.

The written [above] type [of function] does not always stand in ideal agree-
ment with experimental facts, but increasing of the number of the introduced
parameters K, ω, δ leads to a very complicated hypothesis, so this was aban-
doned and the sometimes unavoidable shortcomings [of the expression] were
compensated in continuation in a more – as it will appear – appropriate manner.
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On this occasion, it should be remarked that the role of experiment is not to
determine directly the constants K, ω, δ, as it would seem at the first moment,
but three other data which will be discussed now.

Anticipating what will follow, let us put here:

1− 2µ

1 + µ
ω =

1− 2ν

1 + ν
, 12GK =

2kckr

1 + ν
,

1− 2µ

1 + µ
δ =

2(kc − kr)
1 + ν

.

Moreover, let us substitute for shortening: 12GΦf = σ2
f . And [now] let us

insert the complete set of the mentioned transformations into the main equation.
After a simple transformation we obtain:

1 + ν

3
σ2

f + 3(1− 2ν)p2 + 3(kc − kr)p− kckr = 0.

The introduction of the parameters kr and kc into the last equation is justi-
fied, since it is easy to demonstrate that it is identically fulfilled for the states I
and II. By assuming, additionally, the state III, we obtain the relation:

ν =
kckr

2k2
s

− 1.

From the last reasoning it follows that the hypothesis (C5) is a theory based
on the three constants: kr, kc, ks or relatively: kr, kc, ν. Let us hold the last
group for later consideration because of vital mathematical benefits which will
appear in the course of time. The coefficient ν – as it will also appear – very
strongly determines individual properties of an examined body in the range of its
brittle or – opposite – plastic behaviour. It could be advantageous to call it the
“plasticity coefficient”, because it turns out that for tough and brittle materials

there is: ν <
1
2
, for tough and plastic materials there is: ν =

1
2
, and for soft

(plastic) bodies: ν >
1
2
. There is no way to the state the limits within which ν

ranges; the possible excess over
1
2

grows not so high, the matter of decreasing
the value presents itself similarly. There arises a supposition that the interval
where ν ranges fits between 0 and 1. With the course of the discussion it will
turn out that in the main we need to do this kind of assumption out of necessity.
After the above remarks, there arises the question whether the coefficient ν,
or another approximate one, could be – by instance – used for determining the
extent of [a magnitude] quite close to plasticity, i.e. hardness, with mathematical
description of which theoretical researchers have been bothering for so many
years.
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Returning, however, to the recently written equation, let us transform it into
the following formula:

(C5′)
1 + ν

3
σ2

f + 3(1− 2ν)(p + σ′)2 = k′2

where:

σ′ =
kc − kr

2(1− 2ν)
,

k′2 = kckr +
3
4

(kc − kr)2

1− 2ν
=

3k2
s(kc + kr)2 − 4k2

ck
2
r

4(3k2
s − kckr)

= −k2
1.

In the system of axes (p, σf ), the equation (C5′) represents – similarly to the
system of the axes (p, σvf ) by Schleicher – curves of the second degree, the type
of which should be now considered.

Of course there occur to mind the [three] cases: ν >
1
2
; ν =

1
2
; ν <

1
2
.

Due to the dependent on that algebraic value of k′2 or k2
1, one detail should be

emphasized here. Namely, from some later discussion it will follow that within the

sphere of experimental facts there should be: ks ≥ 2√
3

kckr

kc + kr
. The lower limit

of this inequality seems to be quite convincing, since it is enough to assume:

kc = kr = k to obtain: ks =
k√
3
, that is the relation well known to us from

(C3) and currently strongly emphasized in a series of publications. While for:

kr 6= kc

[
κ =

kc

kr
6= 1

]
this inequality would indicate that for technically possible

materials in the group of ν >
1
2
, there has to be ν < 3.5 (κ ∼= 8). However, one

can be assured that ν will not reach such a value, because: as kc increases in
comparison to kr, at the same time ks begins to significantly more strongly exceed

the given [above] limit
2√
3

kckr

kc + kr
, which results in the fact that ν considerably

lowers its limiting value. In any case, a bound on ks is followed by a bound on
ν; in the especially important case kr = kc, that is: κ = 1, we obtain – as it

was mentioned – ks ≥ k√
3
and consequently: ν ≤ 1

2
. After such bounds on the

magnitude ks, we can start the promised discussion.

And so, in the case when ν <
1
2
, which means ks >

√
kckr

3
, there is: 1−2ν > 0

and moreover k′2 > 0, and the equation (C5′) represents in the mentioned system
[of coordinate axes] an ellipse, or relatively a circle, whose centres lie on the
negative direction of p (Fig. 64) – or in the special case: kr = kc i.e. κ = 1 –
they coincide with the origin of the coordinate system (Fig. 65).
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Fig. 64. Fig. 65.

In the case of ν =
1
2
, the equation (C5′) turns into a parabola of the second

degree for χ > 1 (Fig. 66), or into two lines parallel to the axis p for κ = 1
(Fig. 67).

Fig. 66. Fig. 67.

In the case of ν >
1
2
, that is

2√
3

kckr

kc + kr
< ks <

√
kckr

3
, there is [both]

1 − 2ν > 0 as well as k′2 > 0 (which means also that k2
1 > 0) and the equation

(C5′) represents a hyperbola, whose one branch only, of course, comes into play

(Fig. 68). In the case when: ks =
2√
3

kckr

kc + kr
the hyperbola degenerates into

two crossing lines [only one of lines is depicted due to the symmetry] (Fig. 69).
Because of the already mentioned bound on the lower limit of ks, the case of
a hyperbola rotated by the angle

π

2
from the formerly discussed position is

excluded.
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Fig. 68. Fig. 69.

In the enclosed schemes are shown only halves of the considered curves rel-
evant for σf > 0. Besides, there are added lines for the states I and II, III, IV
and V, VI, and VII, similarly as it was performed in the discussed Schleicher’s

theory. The equations for these lines read: σf = ±3
√

2p, p = 0, σf = ±3
2
√

2p

and finally, for the last two ones: σf = 0. Positions of intersections of those lines
with the referred curves characterize very well the category of the investigated
material.

The given discussion, together with the set graphs allows – under the as-
sumption of the truthfulness of the theory (C5) – judging certain phenomena,
and especially it graphically explains changes of the limit value of quasi-energy
of distortion in the critical range. Uniformity of this study demands, however, to
expand the formula (C5′) into the types used in the present work. With this aim
let us expand σf according to (C30), with p – as above; then we obtain directly:

(C50)
σ2

x + σ2
y + σ2

z − 2ν(σxσy + σyσz + σzσx) + 2(1 + ν)(τ2
x + τ2

y + τ2
z )

+(kc − kr)(σx + σy + σz) = kckr

or in a simpler form:

(C5) σ2
1+σ2

2+σ2
3−2ν(σ1σ2+σ2σ3+σ3σ1) + (kc−kr)(σ1+σ2+σ3) = kckr.

At first sight, the new hypothesis – apart from the change of the notation
µ or µ′′ into ν – does not differ from Schleicher’s theory and therefore from the
equations (C4′) and (C4′′) or relatively (C41) and (C42); however, exactly this
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subtle difference in notation constitutes the fundamental superiority of (C5) over
(C4). Since while µ or µ′′ are elastic constants in direct or relatively – let us say
– reduced meaning, ν does not have – with advantage to the hypothesis – this
property at all.

It could seem that the discussed superiority is ostensible as Schleicher’s the-
ory employs only two constants in the quoted equations and the hypothesis
(C5) uses three of them. However, it should be reminded that Schleicher doubts
the possibility of sufficient representation of the material effort phenomenon by
two parameters and, as I mentioned, by examining some experiments, he as-
sumed four of those parameters using independently both equations quoted in
the section (C5) for one research series. Finally, regardless of the number of these
coefficients, the hypothesis (C4) cannot free itself from the disturbing influence
of the constant µ, the lack of which is particularly advantageous in (C5).

That there is some distinguishing generality in employing [the plasticity co-
efficient] ν into the range of the theory (C5), can be proved by the following

facts. For ν <
1
2
the hypothesis can transform in a special case into Schleicher’s

theory; namely, if there is: ν = µ or ν = µ′′. Similarly for ν = µ and κ = 1, the
theory (C5) transforms directly into Beltrami’s hypothesis (C1), or partly into

Huber’s theory (C2). In the case of ν =
1
2
we create a new eventuality: namely

for κ = 1 the theory (C5) becomes identical to (C3). For ν >
1
2

and in both
previous cases, the hypothesis contains a whole series of eventualities, which are
not considered in other theories.

[. . . , p. 127:] There arises the question if and how the current formula takes
into account the influences of – often inevitable – anisotropy of material. Com-
parison of the expressions for Φv and Φf for isotropic and anisotropic bodies in
the Eqs. (28) and (31), or relatively (29) and (32), in the Chapter III indicates a
distinct difference only in the expressions for Φf . Therefore one should suppose
that also in the discussed hypothesis, this elusive anisotropy must become visible
through an analogous change.

The use of the word “elusive” is deeply grounded. Indisputably, creation of
hypotheses of material effort for anisotropic bodies is the distant future. Al-
though, even today it can be supposed that the measure of material effort of
some bodies, indicating certain simplified properties in three directions, can be
pretty well [expressed by] the energy Φf – as it was ascertained in the theory
(C3) regarding certain isotropic materials. However, the currently discussed task
consists in catching the influences of slight anisotropy, [being] difficult to state
in terms of quantity but to some extent visible in terms of quality.

For this purpose, the best suitable will be certainly the general [form of
the] function Φf (Chapter III). However, [it should be] appropriately simplified,
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since introducing it in the complete form with six elasticity constants would give
as a result a hypothesis with eight constants. So, in the first place, not being
interested in introducing approximate relations between groups L∗, M∗, N∗ and
P ∗, Q∗, R∗ at the cost of losing the energy-based character of the functions, let
us rather at the start give up on expressing the theory in the basic system – as
it was called in the Chapter III – and let us refer it from now on to the system
of principal directions. In this manner we obtain a hypothesis of five constants
instead of three, as it was until now.

However, even this number could turn out to be too large for the approxi-
mate assessment of the symptoms of anisotropy and – even though such a kind
of increase would introduce into the account two new mutually supplementing
parameters krr and kcc – one should rather give up on this symmetry and try
to continue the reduction of the number of constants down to four. Successful
solution of this question presents itself obvious after the provided till now di-
rect reasoning. Let us assume, beforehand, that the general type of the equation
linking the variables p and σf – presented in the beginning of this section – will
not receive any external change after the present remarks.

This equation is obtained analogically as previously. Namely, let us substitute
into the main equation: Φf + ηΦv = K the complete expressions for Φf , Φv from
the formula (29) in the Sec. III. Let us multiply both sides of the equation by
3M∗

L∗N∗ and put for reduction the replacements:

1− 2ν∗

1 + ν∗
=

3B∗M∗

2L∗N∗ ω,
3(kc − kr)

1 + ν∗
=

3B∗M∗

2L∗N∗ δ,
3kckr

1 + ν∗
=

3KM∗

L∗N∗

and furthermore:
M∗2

L∗N∗ = 2λ.

By multiplying both sides of the equation transformed in such a way by
1 + ν∗

3
,

we will obtain:

1 + ν∗

3
σ∗2f + 3(1− 2ν∗)p2 + 3(kc − kr)p− kckr = 0,

where:

σ∗2f =
M∗

N∗ (σ2 − σ3)2 + 2λ(σ3 − σ1)2 +
M∗

N∗ (σ1 − σ2)2 and p =
σ1 + σ2 + σ3

3

are variables of the function written above. Instead of the variable p it would be
more rational to use in this case a slightly different one, namely:

p∗ =
λσ1 + (1− λ)σ2 + λσ3

1 + λ
.
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The reasons for such a remark, significantly changing the energy-based sense of
the hypothesis, will appear in the Chapter X.

The obtained equation ostensibly does not differ in its structure from the
previous one. [Nevertheless,] the essential difference lies, first of all, in the plas-
ticity coefficient ν∗, whose numerical value can be now quite seriously modified
by the anisotropy. Besides, the difference can possibly be in p∗ but mainly in
σ∗2f , which is currently remarkably different from σ2

f involving – at least for this
moment – three parameters. These last ones – needless to say – are not treated as
representations of the ratio of elasticity constants but as coefficients particularly
connected with the experimental essence of material effort. It seems, apparently,
that σ∗2f involves three such parameters, but assuming such a special structure
of the equation entails certain consequences. We find about them by assuming
States I and II; there occur from that the following results:

M∗

L∗
=

M∗

N∗ = 2(1− λ),

in which case, finally, [the following]:

σ∗2f = 2(1− λ)(σ2 − σ3)2 + 2λ(σ3 − σ1)2 + 2(1− λ)(σ1 − σ2)2

is a function of one parameter λ only, and the whole hypothesis will now belong
to the category of theories of the four constants kr, kc, ν, and λ, or other four if
convenience would demand to introduce them.

For λ =
1
2

there is σ∗2f = σ2
f and p∗ = p and the hypothesis as a whole

transforms into the previous, comprehensively discussed one. If one assumes that
accidental influences of anisotropy are quite strongly limited, it seems reasonable
to expect that the interval within which λ varies is quite modest, and so that it
ranges e.g. from 0 to 1. The significance of the parameter λ will come out from
the assumption of the State III for the previously written equation; namely, after
the auxiliary substitution:

ϕ =

√
2(1 + λ)

3
we will obtain the relation:

ν∗ =
1
ϕ2

kckr

2k2
s

− 1,

very strongly reminding the previous formula expressing ν.
The “coefficient of anisotropy” ϕ modifies then quite significantly the “plastic-

ity coefficient” ν to the value ν∗. The last one then will not be contained within
the limits from 0 to 1, but within a little more extended ones. If we assume
the conditions 0 ≤ λ ≤ 1 and 0 ≤ ν ≤ 1, the interval of changes of ν∗ will
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be described by the inequality −1
4
≤ ν ≤ 2; similarly, the coefficient ϕ will be

limited within the interval
√

2
3
≤ ϕ ≤ 2√

3
. However – similarly as it was previ-

ously considered – going up or down from the value ν∗ =
1
2
will be distinctively

reflected in the contents of the theory.
The mutual dependence of the discussed coefficients is described by the ex-

pression:

ν =
2λ(1 + ν∗)− (1− 2ν∗)

3
.

The difference: δ∗ = ν∗ − ν =
1 + ν∗

3
(1 − 2λ) can be δ∗ > 0 or δ∗ = 0

or δ∗ < 0, depending on λ >
1
2

or λ =
1
2

or λ <
1
2
. Now, the use of the

parameter δ∗ instead of the parameter λ =
1 + ν∗ − 3δ∗

2(1 + ν∗)
can turn out to be

more advantageous. For the assumptions made, the parameter δ∗ is described by

the interval: −1 + ν∗

3
≤ δ∗ ≤ 1 + ν∗

3
.

Nevertheless, first let us notice also what follows: the previously written equa-
tion can be transformed, analogously to the initial reasoning, into the following
form:

(C5)′∗
1 + ν∗

3
σ∗2f + 3(1− 2ν∗)(p + σ′∗)2 = k′∗2,

where:

σ′∗ =
kc − kr

2(1 + ν∗)
,

k′∗2 = kckr +
3
4

(kc − kr)2

1− 2ν∗
=

3ϕ2k2
s(kc + kr)2 − 4k2

ck
2
r

4(3ϕ2k2
s − kckr)

= −k∗21 .

In the system (p, σ∗f ) or (p
∗, σ∗f ) the Eq. (C5)

′∗ represents figures analogous to
the ones given before – of course with certain subtle differences, the presence of

which is obvious for λ 6= 1
2
that is ϕ 6= 1 or ν∗ 6= ν i.e. δ∗ 6= 0. These differences

mean that everywhere instead of ks we will write ϕks, and instead of ν we will
insert ν∗ and finally, we will replace σf for σ∗f .

The present discussion has only a sketchy character; for this reason we omit
discussion of these new details. Let us notice, however, that the current and
continued mathematical argument is in the present conditions valid only with
the assumption of inequality σ1 > σ2 > σ3 or relatively σ1 < σ2 < σ3, without
which we managed in the previous part of the section (C5).
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By expanding the last equation we come to the fundamental formula of the
author’s hypothesis for quasi-isotropic bodies, as below:

(C5)∗
σ2

1 + (1 + 2δ∗)σ2
2 + σ2

3 − 2(ν∗ + δ∗)
(

σ2σ3 +
ν∗ − δ∗

ν∗ + δ∗
σ3σ1 + σ1σ2

)

+(kc − kr)(σ1 + σ2 + σ3) = kckr.

The equation (C5)∗ represents – with omission of certain slight changes which
would result from the introduction of p∗ – the final form of the improved hypoth-
esis, and so we should devote next a few comments to it. With the assumption
that ν∗ = ν, which means δ∗ = 0, [the formula] (C5)∗ transforms, of course, into
(C5), i.e. into the form involving – depending on the values of ν and κ – various
special cases, [including] among others all hypotheses of the group C, which were
already extensively commented. [...]

As for the special cases of the formula (C5)∗, these arise, before all, in the

case of ν∗ =
1
2
; then the hypothesis transforms into the equation:

(1−λ)(σ2−σ3)2+λ(σ3−σ1)2+(1−λ)(σ1−σ2)2+(kc−kr)(σ1+σ2+σ3) = kckr.

The assumption λ = 0 leads now to one special form, unknown to us until

now. The assumption λ =
1
2
gives one of the forms of (C5) already discussed for

ν =
1
2
. Finally, putting λ = 1, we obtain an equation which for plane states (i.e.

for σ2 = 0) becomes identical to the corresponding one in Mohr’s [theory] (A5). If
for an arbitrary λ we assume kc = kr = k, we will obtain the correct theory (C3),
namely:

(1− λ)(σ2 − σ3)2 + λ(σ3 − σ1)2 + (1− λ)(σ1 − σ2)2 = k2.

The simplicity of the last equation, hiding in itself the theories (C3) and (A3),
deserves special emphasizes and attention; let us devote some time to it at the
end of this section.

Coming back to the general form (C5)∗, let us try to show it graphically. For
this purpose, let us – similarly to previous considerations – ascertain that the
discussed equation can be transformed to the form:

(C5′)∗ σ′∗21 + (1 + 2δ∗)σ′∗22 + σ′∗23 − 2(ν∗ + δ∗)

·
(

σ′∗2 σ′∗3 +
ν∗ − δ∗

ν∗ + δ∗
σ′∗3 σ′∗1 + σ′∗1 σ′∗2

)
= k′∗2 = −k∗21 ,
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where: σ′∗i = σi + σ′∗ and the meanings of the expressions σ′∗i and k′∗2 = −k∗21

remain unchanged. The equation (C5)∗ is valid for arbitrary κ and ν∗ 6= 1
2
. In

the case of ν∗ =
1
2
and κ > 1, the transformation leads to the function:

(C5′′)∗ σ′′∗21 + (1 + 2δ∗)σ′′∗22 + σ′′∗23 − 2(1 + 2δ∗)σ′′∗2 σ′′∗3 − 2(1− 2δ∗)σ′′∗3 σ′′∗1
− (1 + 2δ∗)σ′′∗1 σ′′∗2 + (kc − kr)(σ′′∗1 + σ′′∗2 + σ′′∗3 ) = 0,

where: σ′′∗i = σi + σ′′∗ and σ′′∗ = − kckr

3(kc − kr)
.

Finally, for ν∗ =
1
2

and κ = 1 the hypothesis will be expressed by the
equation just written above, which – because of the currently reduced relation:

λ =
1
2
− δ∗ – will assume after rearrangement the form:

(C5′′′)∗ σ2
1 + (1 + 2δ∗)σ2

2 + σ2
3 − 2(1 + 2δ∗)σ2σ3

− 2(1− 2δ∗)σ3σ1 − (1 + 2δ∗)σ1σ3 = k2.

Introduction of the parameter a into the equations (C5′)∗, (C5′′)∗ and (C5′′′)∗

leads to the types similar to (C51), (C52), (C5′1) and (C5′′2). Their discussion
leads to appropriate determination of the intervals in which Mohr’s circles have,
or relatively do not have, envelopes and for the first ones leads to the shapes
of the envelopes, picture of which is slightly different from the previous graphs.
For this reason we omit the respective illustration devoting more attention to
Haigh’s limit surfaces.

The last one, in the case of ν∗ <
1
2
, is a triaxial ellipsoid with the lengths of

the half-axes:

b∗1 =
k′∗√

1 + ν∗ + 3δ∗
, b∗2 =

k′∗√
1− 2ν∗

, b∗3 =
k′∗√

1 + ν∗ − δ∗
,

[the ellipsoid] is shifted to the centre: σ1 = σ2 = σ3 = −σ′∗. In the case of

ν∗ =
1
2
, κ > 1, we obtain an elliptical paraboloid with a vertex in the point:

σ1 = σ2 = σ3 = −σ′′∗ and the parameters:

q∗1 =
kc − kr

1 + 2δ

1√
3
, q∗3 =

kc − kr

3− 2δ∗
√

3.

Under the conditions: ν∗ =
1
2
and κ = 1 the critical surface is an elliptical

cylinder with the semi-axes:

b∗1 =
k∗1√

1 + ν∗ + 3δ∗
, b∗2 =

k∗1√
2ν∗ − 1

, b∗3 =
k∗1√

1 + ν∗ − δ∗
.
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This cylinder can degenerate into two parallel planes for δ∗ = −1
2
or relatively

λ = 1 (or even transform into a hyperboloid cylinder for λ > 1). Finally, the

assumption ν∗ >
1
2
hides in itself a two-shell triaxial hyperboloid with the centre:

σ1 = σ2 = σ3 = −σ′∗ and the semi-axes:

b∗1 =
k∗1√

ν∗ + 1 + 3δ∗
, b∗2 =

k∗1√
2ν∗ − 1

, b∗3 =
k∗1√

ν∗ + 1− δ∗
.

Here belongs also the special case determined by the assumption:

ks =
1
ϕ

2√
3

kckr

kc + kr
,

leading to an elliptical cone as the searched surface.

The contour of a plane state is shown regardless of ν∗ <
1
2
, ν∗ =

1
2
, ν∗ >

1
2

by the equation:
σ2

1∗ + σ2
3∗ − 2(ν∗ − δ∗)σ1∗σ3∗ = k2

∗,

where:

σi∗ = σi + σ∗, σ∗ = σ′∗
1− 2ν∗

1− 2ν∗ + δ∗
=

kc− kr

2(1− ν∗ + δ∗)
,

k2
∗ = k′∗ − σ′∗2

(1 + ν∗ + 3δ∗)(1− 2ν∗)
1− ν∗ + δ∗

= kckr +
kc − kr

2(1− ν∗ + δ∗)
.

Taking into account the initial assumption: ν∗ − δ∗ = ν and resulting from
this the following: 1 − ν∗ + δ∗ = 1 − ν, we recognize in the last equation the
contour known to us from the basic hypothesis (C5). It is an ellipse with the
semi-axes:

k∗√
1 + ν∗ − δ∗

and
k∗√

1 + ν∗ + δ∗
,

properly translated and rotated or relatively two parallel lines.

[..., p. 136:] IX. Overview of experimental data

[..., p. 160:] It is possible to show that the function [defining a measure of
material effort, which is] created from the components of the state of stress and
possessing an assumed characteristic property, can only be the expression build
from the differences between those [stress] components, that is in general:

f1(σ2 − σ3) + f2(σ3 − σ1) + f3(σ1 − σ2) = K.
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If we keep the restriction to a homogeneous form of the second degree, we will
obtain from the above the equation:

L∗(σ2 − σ3)2 + M∗(σ2 − σ3)2 + N∗(σ2 − σ3)2 = 3Φf ,

i.e. the formula already known to us from the Chapters III and VIII.
Finally, the demand upon the invariance of this form [with respect to arbi-

trary rotation] leads to the equation:

(σ2 − σ3)2 + (σ2 − σ3)2 + (σ2 − σ3)2 = 2k2,

i.e. directly to the hypothesis (C3); additionally, for L∗ = N∗ = 0, we obtain the
hypothesis (A3). [. . . ]

[. . . , p. 188:] Lwów, in December 1927.
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