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In the paper it is postulated that the so-called common slip domains influence the character
of the strain hardening phenomena for complex loading paths. The slip domains were evaluated
on the basis of the Batdorf–Budiansky slip theory of plasticity. Evolution of a yield surface
for different non-proportional tension-torsion loading paths was determined for PA4 aluminum
alloy and the hypothesis that the strain hardening depends on the development of the common
slip domains was shown to be justified.

1. Introduction

Investigations of material behavior under non-proportional loading are of fun-
damental importance for verification and improvement of the theories of non-
elastic deformation and creep. Such investigations can provide a deeper insight
into the material deformation mechanisms and thus contribute to improvement
of the constitutive equations and the related principal theorems concerning solu-
tion uniqueness. One of the most significant phenomena occurring during loading
of the common structural materials is strain hardening. Unfortunately, the mech-
anisms underlying the strain hardening lack a complete understanding, and an
adequate and practical theoretical model linking the evolution of the microstruc-
tures with the parameters at the macro-scale still remains a challenge.

To approach the strain hardening, various phenomenological models have
been introduced and the literature does not provide any consistent view on the
hardening phenomena. While some references state that the strain hardening is
basically of anisotropic (directional) character [1–4], other maintain that in some
cases it can be considered isotropic [5]. References [6, 7] indicate the influence of
two effects, that is isotropic when depends on the effective strain and anisotropic
when it depends on the principal direction of the strain tensor, the isotropic
effect being dominant. The reasons behind the different material behavior under
different loading conditions have not been satisfactorily explained. The models
of strain hardening are, as a rule, of purely phenomenological character and
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generally do not consider the underlying phenomena on the micro-structural
level.

The goal of the present paper is to try to explain the differences in material
behavior observed experimentally on the basis of the concepts of the slip theory
of plasticity. The basic ideas of the slip theory have been presented, among
others, by [8–13].

It can be observed that researchers of deformable bodies develop theories
based on the microstructure of material [14–17] on the one hand, and theories
based on models of an ideally homogeneous body representing means of the
properties of a polycrystal on the other hand. The theory presented in this paper
belongs to the second category.

It is commonly approved that the plastic deformation of a single crystal can
be explained by considering the development of crystallographic slips within cer-
tain characteristic planes. A polycrystal body consists of a multitude of crystals
and grains with different orientations. In a continuum formulation, the total
strain can be regarded as a result of an infinite number of slips along all possible
slip planes. This is the basic hypothesis of the Batdorf–Budiansky slip theory
of plasticity [8]. It is assumed that the non-elastic deformation leads to an in-
crease of the defect density in a material structure within slip bands [18–22]. The
defects constitute barriers to further deformation and the resolved shear stress
necessary for continued slip becomes greater. The overall effect is an increase of
the macroscopic yield stress and is referred to as strain hardening. Therefore it
seems to be justified to formulate a hypothesis that the strain hardening can be
described in terms of the slip theory.

Analysis of evolution of the yield surfaces under non-proportional loading
is of particular importance for understanding of the basic features of material
hardening. Here it is postulated that for complex loading paths, the character
of strain hardening is influenced by the so-called common slip domains. The
main objective of the present work has been to verify the above hypothesis
experimentally. To this aim, yield surfaces for different non-proportional loading
paths have been determined. The experiments have been carried out using thin-
walled tubular samples of PA4 aluminum alloy subjected to tension and torsion.
The slip domains have been evaluated on the basis of the modified Batdorf–
Budiansky slip theory [23, 24].

It should be emphasized that a number of researchers [9, 25] propose mod-
els which are set in the micromechanics of non-elastic deformation to a much
larger degree than the model presented in this work. Such models are very com-
plicated mathematically. The model presented in this work is phenomenological
to a large extent and relatively simple, as far as the mathematical side is con-
cerned.
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2. Theoretical considerations

The Batdorf–Budiansky slip theory assumes that the material is initially
isotropic, i.e. that the spatial arrangement of crystals is disordered and that
no direction appears to be privileged. A material body is presumed to be com-
posed of an infinite number of crystals (continuum approach). Possible slip planes
within an infinitesimal material volume can be visualized as planes tangent to
a half-sphere of a unit radius, any such plane being defined by a normal n given
by two angles α and β (Fig. 1).

Fig. 1. Half-sphere of unit radius with angles α, β and ω defining the slip planes and slip
directions.

The slip direction l within a given slip plane is defined by an angle ω measured
from the parallel of latitude axis ξ1 in the local orthogonal coordinate system
(n, ξ1, ξ2) (Fig. 1). For all possible slips defined in the n, l system there should be:

0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2, 0 ≤ ω ≤ 2π.

Among all possible slip systems at a given material point under a given stress
state, only some (but possibly infinitely many) will be active. The region on the
unit half-sphere corresponding to all slip planes with active slip systems will be
here referred to as a slip domain.

By using the tensor transformation rules, the tangent stresses τ in the local
coordinates (n, l) can be expressed as follows:

(2.1) τ = σijlinj (i, j = x, y, z),
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where σij are the stress components in the Cartesian coordinates and nj and li
are direction cosines of n and l with respect to the Cartesian coordinates defined
as it follows:

(2.2)

lx = − sinα cos ω − cos α sin β sinω,

ly = cos α cos ω − sin α sin β sin ω,

lz = cos β sinω,

nx = cos α cos β, ny = sin α cos β, nz = sinβ.

The total deformation can be calculated by summing up the effects of all
active slip systems, namely:

(2.3) γij =

∫∫

Ω

ω2∫

ω1

(nilj + njli) ϕ dω dΩ (i, j = x, y, z),

where Ω is the surface area of the half-sphere corresponding to active slip sys-
tems, dΩ = cos β dα dβ, ω1 and ω2 are angles bounding the slip directions within
the slip planes and ϕ is the slip intensity function [8].

Here some modifications to the slip theory will be introduced and the slip
intensity function ϕ as proposed by Batdorf and Budiansky [8] will not be
used. A function of resistance to plastic deformation S is introduced as follows:

(2.4) S = τ0 (1 + rϕ) ,

where τ0 denotes the yield stress under pure shear, i.e. the initial resistance to
plastic deformation (for ϕ = 0) and r is a material constant.

It is assumed that the slip system defined by n and l that develops at a given
point of a polycrystal body, results in strain hardening mainly in the same sys-
tem. It also influences hardening in other slip systems. The slip intensity function
ϕ defined with indexes in the system determined by n and l satisfies the con-
dition ϕn−l = ϕnl. When the sign of external loading is changed, there is an
additional term with the minus sign in the function of resistance to plastic de-
formation S (2.4) (the value of the function S will decrease). Such an approach
makes it possible to describe the Bauschinger’s effect [23] among other things.
The function of resistance to plastic deformation S applied according to the pro-
cedure presented below makes it possible to describe the strain-stress curve of
the material, e.g. subject to tension.

Function (2.4) being essentially a phenomenological description of a homo-
geneous model, accounts for the above fundamental feature of strain hardening
observed in experimental investigations of elementary slip processes.
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A constitutive law for the plastic resistance of an actual material body could
be possibly formulated on the basis of the solid-state physics and mathemati-
cal statistics. However, the problem is very complicated and thus a simplified
description based on function (2.4) is used here.

For material points within regions where slipping occurs one can write:

(2.5) τ = S,

while outside of the above regions (i.e. at material points where there is no
slipping):

(2.6) τ < S.

The variant of the slip theory used in the present work is based on the
relations (2.2)–(2.6). The above relations will be now used to evaluate the char-
acteristics of the strain-hardening phenomena with a particular application to
such materials as PA4 aluminum alloy. It can be stated that strain hardening
develops in material regions where slipping occurs. The above assumption leads
to the following hypothesis: Plastic deformation resulting under a certain load
state will influence the deformation under subsequently applied other load state,
provided that the slip systems generated under the later load state are influenced
by the slip systems developed under the former load state. Whether or not, the
case can be judged by inspecting the existence of common slip domains on the
unit half-sphere for both loading states.

Let us evaluate the slip domains, first in the case of a specimen subjected to
the tensile stress σz above the yield point, and then in the case of a specimen
subjected to the shear stress τxz resulting from the torsional moment.

On the basis of Eqs. (2.1) and (2.2), the shear stress τ defined in the system
n, l on the half-sphere and resulting from σz will have the form:

(2.7) τ (σz) =
1

2
σz sin 2β sin ω.

In order to evaluate the slip intensity function ϕ, in the system n, l we need
to use Eqs. (2.4), (2.5) and (2.7). Then we will obtain:

(2.8) rϕ(σz) =
σz

2τ0
sin 2β sin ω − 1.

As at the slip boundary ϕ = 0, the slip domain can be determined by requir-
ing the expression on the right-hand side of Eq. (2.8) to be zero. It can be easily
done using numerical methods.

The plastic deformation εz is assigned from Eq. (2.3) after replacing the slip
intensity function ϕ by Eq. (2.8).
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In the case of the shear stress τxz resulting from torsional moment, a proce-
dure of evaluating of the slip domain is similar. On the basis of Eqs. (2.1) and
(2.2) the shear stress in the system n, l will be expressed by the form:

(2.9) τ (τxz) = τxz (cos α cos 2β sinω − sinα sinβ cos ω) .

After using Eqs. (2.4), (2.5) and (2.9), the slip intensity function will take
the form:

(2.10) rϕ (τxz) =
τxz

τ0
(cos α cos 2β sinω − sinα sin β cos ω) − 1.

The plastic deformation γxz is assigned from Eq. (2.3) after replacing the slip
intensity function ϕ by Eq. (2.10).

In the case of the concurrent action of tensile force and torsional moment
on the basis of Eqs. (2.1) and (2.2), the shear stress in the system n, l will be
expressed by the form:

(2.11) τ (σz, τxz) =
1

2
σz sin 2β sinω + τxz (cos α cos 2β sinω − sinα sinβ cos ω) .

The slip intensity function ϕ in the system n, l is assigned on the basis of
Eqs. (2.4), (2.5) and (2.11), namely:

(2.12) rϕ (σz, τxz) =

=
1

τ0

[
1

2
σz sin 2β sinω + τxz (cos α cos 2β sinω − sinα sinβ cos ω)

]
− 1.

Equation (2.12), after placing it in Eq. (2.3), is used to determine the plastic
deformation resulting from the action of a complex load (tension with torsion).

Rigorous analytical calculation of plastic deformation in the case of complex
loading is difficult. This concerns the determination of the boundaries of the
slip domains and the evaluation of the function (2.3). The above problem can,
however, be easily solved by numerical methods. To this aim the half-sphere
of unit radius is divided into a great number h of sufficiently small elementary
regions denoted by index k

(2.13) ∆Ωk = cos βk∆β∆α,

where ∆β∆α are the finite intervals of the angles β and α.
The integrals in Eq. (2.3) are approximated by a sum. The plastic deforma-

tion conditioned by slips occurring on the elementary k-th region ∆Ωk, will be
expressed by the forms:

(2.14) (εz)k =
1

2
sin 2βk cos βk∆β∆α




g∑

p=1

sinωp (ϕk)p ∆ω




k

,
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(2.15) (γxz)k = cos αk cos βk cos 2βk∆β∆α




g∑

p=1

sinωp (ϕk)p ∆ω




k

− 1

2
sin αk sin 2βk∆β∆α




g∑

p=1

cos ωp (ϕk)p ∆ω




k

,

where index p = 1, 2, 3 . . . g at ω denotes successive slip directions within the
plane n bounded by the angles ω1 and ω2; ∆ω is the value of the finite interval
of the angle ω.

According to Eqs. (2.14) and (2.15), the calculations are performed for all
elementary regions ∆Ωk forming the surface of the half-sphere. The results are
summed, i.e.:

εz =

h∑

k=1

(εz)k,(2.16)

γxz =
h∑

k=1

(γxz)k,(2.17)

where h denotes the number of elementary regions ∆Ωk occurring within the
slips, i.e. ϕk > 0. If for a given elementary k-th region of the half-sphere the
relation ϕk ≤ 0 holds, no slips occur and then in numerical calculation it is as-
sumed that ϕk = 0. Values of ϕk for next points of the half-sphere are determined
on the basis of Eqs. (2.8), (2.9) or (2.12).

The slip domains corresponding to two stress states σz and τxz applied con-
secutively can either partially overlap or be completely separated. If overlapping
occurs then within certain slip planes defined by their normal n, the slipping
under shear stresses τxz will depend on the slips generated under the previously
applied normal stresses σz. Thus in such a case the strain hardening caused
by tensile loading influences the hardening, resulting from a subsequent torsion
loading.

Figure 2 and Fig. 3 illustrate the slip domains corresponding to certain values
of the stresses σz and τxz. All calculations are performed for r = 9.3 · 103,
τ0 = 105 MPa, ∆β = ∆α = ∆ω = 1◦.

If σz and τxz are just above the yield limit, then the slip domains are relatively
small and do not overlap, i.e. there is no interaction between the strain hardening
caused by the tensile and torsional loads (Fig. 2).

The slip domains for tension and torsion will partially overlap as in Fig. 3,
provided the applied stresses are sufficiently large. Those overlapping parts of the
slip domains are defined as common slip regions. In that case, predeformation
resulting from tension influences the subsequent torsion.
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Fig. 2. The slip domains calculated for PA4 aluminum alloy under uni-axial tensile stress
state σz = 235 MPa and pure shear stress state τxz = 110 MPa.

Fig. 3. The slip domains calculated for PA4 aluminum alloy under uni-axial tensile stress
state σz = 260 MPa and pure shear stress state τxz = 148 MPa.

3. Experimental investigation

In order to verify the above theoretical considerations, a number of exper-
iments using thin-walled cylindrical samples were carried out on the tension-
torsion machine Instron 8502 Plus. The samples were made of aluminum alloy
PA4 (containing 0.7–1.2% Mg, 0.6–1.0% Mn, 0.7–1.2% Si, bellow 0.5% Fe, and
impurities of 0.1% Cu and 0.2% Zn). The dimensions of the samples were as
follows: the external diameter 17.5 mm, the wall thickness 0.75 mm and the
measurement length 75 mm. The samples were subjected to a preliminary ho-
mogenizing treatment at a temperature of 438 K for 6 hours. The method de-
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scribed in Ref. [26] was used to test for material anisotropy and following the
thermal treatment, the mechanical properties were found to be isotropic. The
stress-strain curve obtained for tensile loading is shown in Fig. 4. The apparent
yield stress under tension was found to be R0.1 = 220.2 MPa while the elastic
modulus was E = 72319 MPa. On the basis of the strain-stress curve the initial
yield stress has been evaluated σ0 = 210 MPa. In that case the initial shear
stress is τ0 = 105 MPa (τ0 is initial resistance to plastic deformation).

Fig. 4. Stress-strain curve for aluminum alloy: apparent yield stress R0.1 = 220.2 MPa,
initial resistance to plastic deformation τ0 = 105 MPa.

Two series of experiments were carried out. The samples in the first group
were subjected to a tensile force (causing some initial plastic deformation) fol-
lowed by unloading (partial or complete and different for different samples). Sub-
sequently, a torsional moment was applied and its value was increased from zero
up to the point resulting with deformation intensity of 0.1%. The above method
based on the apparent yield point (assumed in the present work to represent the
yield criterion) proved to be more effective than the Lode extrapolation method,
due to a straightforward implementation in the computer program controlling
the testing machine. Each loading path was repeated for two samples.

Figure 5 shows the exemplary loading path of the sample that was first
subjected to the tensile stress σB

z , then unloaded by diminishing stress to the
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value σC
z , and after that subjected to the shear stress τxz of the value causing

deformation intensity of 0.1%.

Fig. 5. The exemplary loading path of the sample subjected first to a tensile force and then
(after partial unloading) to a torsional moment.

It is observed that as a result of the tensile stresses σB
z at the point B, the

material slips by ϕB(σz). The value of the slip can be determined on the basis
of Eq. (2.8), i.e.:

(3.1) rϕB(σz) =
σB

z

2τ0
sin 2β sin ω − 1.

After unloading the sample to the point C and applying a torsional moment
resulting with the shear stress τxz, the plastic resistance function (2.4) will take
the form:

(3.2) S = τ0

[
1 + r

(
ϕB + ϕ

)]
,

where ϕB denotes the value of the slip intensity function at the point B deter-
mined according to (3.1).

It is assumed that plastic deformations do not decay after unloading, i.e.
the value of the slip intensity function does not get lower after diminishing ten-
sile stress (strain hardening of a material does not decrease). This being so, on
the basis of Eqs. (2.5) and (3.2) the slips condition after partial unloading and
subsequent applying the shear stress τxz will take the following form:

(3.3) τ0

[
1 + r

(
ϕB + ϕ

)]
= τ

(
σC

z , τxz

)
,
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where the shear stress function τ
(
σC

z , τxz

)
in the system n, l is expressed by the

relation (2.11) with σC
z = σB

z − ∆σz.
On the basis of the condition (3.3) one will obtain:

(3.4) rϕ =
1

τ0
τ
(
σC

z , τxz

)
− rϕB − 1.

The Eq. (3.4) makes it possible to calculate the value of the shear stress τxz

causing the definite plastic deformation in the case when there was a predefor-
mation caused by the tensile stress σB

z . The above calculations can be performed
using Eqs. (2.11), (2.13)–(2.17), and their results are presented in Fig. 6 as lines
a, b, c.

Figure 6 presents graphically the experimental results of strain hardening
depending on the loading path. The strain hardening is the cause of the expansion
and shift of the plasticity surface, in relation to the initial surface determined
for εi = 0.1%.

Fig. 6. Evolution of the yield surface for PA4 aluminum alloy determined using thin-walled
tubular samples under combined tension and torsion, with initial plastic deformation induced

by preliminary tensile loading (a – initial surface; b, c – evolving surfaces for increasing
plastic deformation).
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4. Concluding remarks

Analysis of the experimental results presented in Fig. 6, taking into account
the slip domains illustrated in Fig. 2 and Fig. 3, confirms the hypothesis formu-
lated in Sec. 2 of the present paper. The plastic properties of a given material
are determined by interaction of the slip systems that develop during loading.
At a given material point, the strain hardening corresponding to the plastic de-
formation under tensile loading influences the subsequent plastic deformation
under torsion loading, provided there are common slip domains. The existence
of the common slip domains can be verified using the relations presented above.

The case shown in Fig. 2 corresponds to a situation when there is no interac-
tion between the slip systems developed under two consecutively applied stress
states. The case is represented by the curves a and b in Fig. 6. The curve c in
Fig. 6 corresponds to the location of slip domains as shown in Fig. 3. It can be
observed that the slip domains overlap.

The hardening model is found to be a good approximation in cases when
plastic deformation is small.

Increasing of plastic deformation causes the common slip domains to grow
and thus the yield surface changes not only due to the transformation of its
center in the direction of loading but also due to an increase of its size in the
transverse directions.
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HEAT AND MASS TRANSFER IN MHD FLOW FROM A PERMEABLE
SURFACE WITH HEAT GENERATION EFFECTS

M. M. A b d e l k h a l e k
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The objectives of the present study are to investigate steady two-dimensional laminar flow
of a viscous incompressible, electrically conducting and heat-generating fluid, driven by a con-
tinuously moving porous plate immersed in a fluid-saturated porous medium, in the presence of
a transverse magnetic field. A uniform magnetic field acts perpendicularly to the porous surface
which absorbs fluid with a suction velocity. The non-linear partial differential equations gov-
erning the problem under consideration have been transformed by a similarity transformation
into a system of ordinary differential equations, which is solved numerically by applying a per-
turbation technique. The effects of material parameters on the velocity and temperature fields
across the boundary layer are investigated [28, 29]. A parametric study of all the governing
parameters is carried out and representative results are illustrated to reveal a typical tendency
of the solutions. Representative results are presented for the velocity temperature distributions
as well as the local friction coefficient and the local Nusselt number. Favorable comparisons
with the previously published work confirm the correctness of the numerical results.

Key words: heat and mass transfer, magnetohydrodynamics, heat generation, porous media,
numerical analysis.

1. Introduction

The study of the dynamics of conducting fluid finds applications in a variety
of engineering problems, the ones related to the cooling processes of nuclear reac-
tors, and those related to the connected flow through a porous medium, since the
geothermic region gases are electrically conducting and affected by a magnetic
field. Recently many authors has been attracted to magnetohydrodynamic con-
vection problems in non-porous medium, (Sparrow and Cess [1]; Riley [2];
Raptis and Singh [3]; Sacheti et al. [4]; and Hussein [5]. Some works are
available in the subject of MHD convection in porous medium (Kafoussias [6];
Gulab and Mishra [7]; Raptis and Kafousias [8]; Raptis [9]; Takhar

and Ram [10] and Abdelkhalek [11–16]). There has been considerable in-
terest in studying flow and heat transfer characteristics of electrically conduct-
ing and heat-generating/absorbing fluids (Moalem [17]; Chakrabarti and
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Gupta [18]; Vajravelu and Nayfeh [19]; Chiam [20]; Chamkha [21]; Chan-

dran et al. [22]; Hadjinicalaou [23]; Chamkha [24], Al–Mudhaf et al. [25]
and Ramirez–Iraheta et al. [26]).

The main objective of this analysis is the investigation of steady two-dimen-
sional laminar flow of a viscous incompressible, electrically conducting and heat
generating fluid, driven by a continuously moving porous plate immersed in
a fluid-saturated porous medium, in the presence of a transverse magnetic field.
A uniform magnetic field acts perpendicularly to the porous surface which ab-
sorbs fluid with a suction velocity. A similarity transformation is used to simplify
the numerical effort and a numerical solution for the problem is obtained by the
perturbation technique [28, 29]. Numerical results are presented concerning the
effects of the Hartmann number, Prandtl number, Darcy number, dimensionless
heat generation/absorption coefficient and suction injection parameter. Typical
results for the velocity and temperature distributions are presented for various
governing parameters. Also, the local skin friction coefficients as well as the heat
and mass transfer results are illustrated for representative values of the major
parameters.

Fig. 1. Physical model and coordinate system.

Consider a two-dimensional steady, laminar, incompressible boundary-layer
flow of an electrically conducting and heat-generating fluid, over a porous flat
surface embedded in a porous medium, and subjected to a transverse magnetic
field (see Fig. 1). It is assumed that there is no applied voltage what implies the
absence of an electric field. The transversely applied magnetic field and magnetic
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Reynolds number are very small and hence the induced magnetic field is negligi-
ble. Viscous and Darcy‘s resistance terms are taken into account with constant
permeability of the porous medium. The MHD term is derived from the order
of magnitude analysis of the full Navier–Stokes equations. All thermophysical
properties are assumed to be constant. The effects of viscous dissipation, Ohmic
heating and Hall currents are neglected. The X-axis is placed along the hor-
izontal plate and Y -axis is perpendicular to it. Let the plate be moving with
a constant speed U and at a temperature Tw. Above the plate, the fluid is sta-
tionary and is kept at a temperature T∞. Under the above assumptions, the
boundary layer equations governing the flow and heat transfer over an infinite
plate can be written as follows [33].

The continuity equation,

(1.1) uX + vY = 0.

The momentum equation,

(1.2) uuX + vuY = ξ uY Y − K−1ξ u − Cu2 − σ β2ρ−1u.

The energy equation,

(1.3) uTX + vTY = ρ−1C−1
P (Q (T − T∞) + KeTY Y ) ,

where X and Y are the dimensional distances along and normal to the surface,
respectively; u and v are the components of dimensional velocities along X and
Y directions, respectively; T is the temperature, ρ is the fluid density of the
medium, ξ is the kinematic viscosity, CP is the specific heat at constant pres-
sure, K is the permeability of the porous medium, C is the Forcheimer inertia
coefficient, Ke is the effective thermal conductivity, β is the magnetic induction,
σ is the fluid electrical conductivity and Q is the heat generation/absorption
coefficient. The second term on the right-hand side of the momentum Eq. (1.2)
denotes the bulk matrix linear resistance, i.e. the Darcy term and the fourth is
the MHD term.

The appropriate boundary conditions for the velocity and temperature fields
are given by:

(1.4)
Y = 0, u(X) = U, v(X) = −vw(X), T (X) = Tw,

Y → ∞, u(X) = 0, T (X) = T∞,

where U is a constant, vw(X) > 0 is the fluid suction at the plate surface, and
vw(X) < 0 is the fluid blowing or injection at the wall.
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In order to make the results more general in their applicability, the equa-
tions are solved in non-dimensional form. For this purpose, the following non-
dimensional variables are defined:

(1.5)

Y =

(
2ξ X

U

)0.5

η, u = U F ′(η),

v =
(
η F ′ − F

)(ξ U

2X

)0.5

, θ =
T − T∞

Tw − T∞
.

With a new set of independent and dependent variables, defined by Eq. (1.5),
Eq. (1.1) is identically satisfied, and the partial differential equations (1.2)–(1.3)
transform into the ordinary differential equations (1.6)–(1.7).

F ′′′ + FF ′′ −
((

M + D−1
)
− αXF ′

)
F ′ = 0,(1.6)

θ′′ + Pr

(
F θ′ + γX θ

)
= 0.(1.7)

Primes denote derivatives with respect to η.
The appropriate flat plate, with the free-convection boundary conditions

Eq. (1.4), is also transformed into the applicable form, Eq. (1.8):

(1.8)
η = 0, F = Fw, F ′ = 1, θ = 1,

η → ∞, F ′ = 0, θ = 0,

where M =

√
2σ xβ(x)2

ρ U2
is the Hartmann number, D−1 =

2ξX

KU
is the in-

verse Darcy number, αX = 2CX is the dimensionless inertia coefficient, Pr =
ρ ξ CP

Ke
is the Prandtl number, γX =

2Q X

Uρ CP
is the dimensionless heat gen-

eration/absorption coefficient, Fw = −vw(X)

√
2X

ξ U
is the dimensionless suc-

tion/blowing coefficient.
The resulting differential equations contain arbitrary parameters, the Prandtl

number, the magnetic field strength and the buoyancy force. Solutions for the
resulting semi-infinite domain, nonlinear equations are accomplished with a three
the part series method. The employed power series, Eq. (1.9), contains term A
that satisfies the boundary conditions and differential equations at infinity, the
second term that satisfies the boundary conditions at zero and is the solution
to the initial homogeneous differential equation, and additional terms that are
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utilized to obtain a better numerical accuracy. This accuracy is limited by the
number of terms that will not initiate divergence of the numerical results:

F = A + εF1 + ε2F2 + ε3F3 + · · ·(1.9)

Θ = εθ1 + ε2θ2 + ε3θ3 + · · ·(1.10)

which are subject to the boundary conditions which become:

(1.11)

η = 0, F1 = Fw, F2 = F3 = 0, F ′
1 = 1,

F ′
2 = F ′

3 = 0, θ1 = 1, θ2 = θ3 = 0, η → ∞,

F ′
n = 0, θn = 0, n = 1, 2, 3.

Equation (1.10), the temperature representation, along with Eq. (1.9) and
the associated boundary conditions (1.11), contain an undetermined parameter
ε which helps in the collection of terms for each set of the resulting linear differ-
ential equations. In some problems, it will have a physical meaning which results
in a power series of that parameter. Substitution of the series representation into
the differential equations and collection of terms with the same powers of ε result
in a set of linear differential equations, and the first three sets are:

F ′′′
1 + AF ′′

1 −
(
M + D−1

)
F ′

1 = 0,(1.12)

θ′′1 + PrAθ′1 + PrγXθ1 = 0,(1.13)

F ′′′
2 + AF ′′

2 −
(
M + D−1

)
F ′

2 = αXF ′2
1 − F1F

′′
1 ,(1.14)

θ′′2 + PrAθ′2 + PrγXθ2 = −PrF1θ
′
1,(1.15)

F ′′′
3 + AF ′′

3 −
(
M + D−1

)
F ′

3 = 2αXF ′
1F

′
2 − F1F

′′
2 − F2F

′′
1 ,(1.16)

θ′′3 + PrKθ′3 + PrγXθ3 = −PrF1θ
′
2 − PrF2θ

′
1.(1.17)

The solutions to the first three sets, Eqs. (1.18)–(1.23), when substituted
into Eqs. (1.9) and (1.10), provide the required representations for F and Θ.
The constant A is determined by satisfying the boundary conditions F (0) and
is a function of Pr and M .

θ1 = e−a2η,(1.18)

F1 =
(
fw + a−1

1

)
− a−1

1 e−a1η,(1.19)

θ2 = (−a8 + a7η) e−a2η + a8e
−(a1+a2)η,(1.20)



330 M. M. ABDELKHALEK

F2 = a6 + (a5 + a4η) e−a1η + a3e
−2a1η,(1.21)

θ3 =
(
a18η + a19η

2 − a21 − a22

)
e−a2η + (a21 + a20η) e−(a1+a2)η(1.22)

+ a22e
−(2a1+a2)η,

F3 = − (a13 + a14 + a17) +
(
a17 + a15η + a16η

2
)
e−a1η(1.23)

+ (a13 + a12η) e−2a1η + a14e
−3a1η.

The constants ai, i = 1, 2, 3, ..., 22 are given in the Appendix.
The series for Θ, its first derivative Θ′(0) – the wall temperature gradient,

F ′ – the velocity profile, and F ′′(0) – the wall velocity gradient. Knowing the
velocity, we can calculate the skin friction and from the temperature field, the
rate of heat transfer in terms of the Nusselt number; thus, the skin friction
coefficient CfR0.5

e = −F ′′(0), and the Nusselt number Nu = −R0.5
e Θ′(0), where

Re =
UX

2ξ
is the Reynolds number, µ =

ξ

ρ
is the dynamic viscosity.

2. Results and discussion

In order to verify the accuracy of our present method, a comparison is made
of non-dimensional wall temperature gradient Θ′(0) with those reported by Ja-

cobi [30], Tsou et al. [31], Ali [32] and Chamkha [33] for various values of the
Prandtl number Pr. Either, a comparison of non-dimensional wall velocity gra-
dient F ′′(0) with those reported by Chandran et al. [22] and Chamkha [33],
for various values of the suction/blowing coefficient Fw. The result of this com-
parison is given in Tables 1 and 2. The comparisons of all the above cases are
found to be in excellent agreement. Sets of representative numerical results are
illustrated graphically.

Figures 2 and 3 illustrate variations of different values of magnetic field pa-

Table 1. Comparison of non-dimensional wall temperature gradient (−Θ′(0))
for various values of the Prandtl number.

Pr = 0.7 Pr = 1.0 Pr = 10.0

Jacobi A.M. [30] 0.3492 0.4438 1.6790

Tsou et al. [31] 0.3492 0.4438 1.6804

Ali M. [32] 0.3476 0.4416 1.6713

Chamkha A.J. [33] 0.3524 0.4453 1.6830

Present work 0.35145 0.4468 1.6845



HEAT AND MASS TRANSFER IN MHD FLOW... 331

Table 2. Comparison of non dimensional wall velocity gradient (−F ′′(0)) for
various values of Fw.

Fw = −0.2 Fw = −0.1 Fw = 0.0 Fw = 0.1 Fw = 0.2

Chandran et al. [22] 0.5155 0.5700 0.6275 0.6881 0.7515

Chamkha [33] 0.5174 0.5714 0.6288 0.6894 0.753

Present work 0.5168 0.5725 0.62834 0.68864 0.75264

rameter (M) for non-dimensional velocity and non-dimensional distributions of
temperature, respectively. Flows were subjected to transverse magnetic fields
and wall temperatures that were constant or varied as a fractional power of the
distance in the flow direction. General results of these investigations are that
the imposed magnetic field decreases the velocity field, wall shear, flow rate and
wall heat transfer; also the onset of free convection was retarded while the fluid
temperature and the time required for the flow to reach steady state were in-
creased. In addition, considerable influences on the flow and thermal fields can be
produced under moderate magnetic field strengths only for liquid metal flows,
while the effects of induced magnetic fields and Joule heating are very small.
This is illustrated by the reduction of F ′(η) and growth of Θ(η) as M increases
in Figs. 2 and 3, respectively.

Fig. 2. Variation of velocity profiles F ′ with η, for M = 0, 1, 5, D−1 = .1, Re = 400,
αX = .1, A = .725.
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Fig. 3. Variations of temperature profiles Θ with η, for M = 0, 1, 5, D−1 = .1, Re = 400,
αX = .1, A = .725.

The effect of surface mass transfer Fw on the dimensionless velocity and tem-
perature distributions is displayed in Figs. 4 and 5. The effect of suction consists
in making the velocity and temperature distribution more uniform within the
boundary layer. Imposition of fluid suction at the surface has a tendency to
reduce both the hydrodynamic and thermal thickness of the boundary layer,
where viscous effects dominate. This has the effect of reducing both the fluid
velocity and temperature above the plate. This follows from the decreases in
non-dimensional temperature Θ(η) as the suction/injection parameter Fw in-
creases, as shown in Figs. 4 and 5.

Figures 6 and 7 show the changes in the fluid tangential and normal non-
dimensional velocity and non-dimensional temperature, as the inverse Darcy
number (D−1) and the non-dimensional porous medium inertia coefficient are
altered, respectively. The parameter (D−1) represent resistance to the flow since
they restrict the motion of the fluid along the plate. Therefore they have the same
effect as the magnetic parameter M , they are decreasing the fluid velocity and in-
creasing its temperature as shown in the figures. Figures 8 and 9 show the effect of
non-dimensional porous medium inertia coefficient (αx) on the non-dimensional
velocity and non-dimensional temperature profiles. The parameter αx represents
resistance to flow since it reduces the motion of the fluid along the plate. There-
fore they have the same effect as the magnetic parameter M , they are decreasing
the fluid velocity and increasing its temperature, as shown in the figures.
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Fig. 4. Variation of velocity profiles F ′ with η, for fw = −.2,−.1, 0, .1, .2, D−1 = .1,
Re = 400, αX = .1, A = .725.

Fig. 5. Variations of temperature profiles Θ with η, for fw = −.2,−.1, 0, .1, .2, D−1 = .1,
Re = 400, αX = .1, A = .725.
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Fig. 6. Variation of velocity profiles F ′ with η, for D−1 = 0, .1, 1, 2, 5, Re = 400, αX = .1,
M = 1, A = .725.

Fig. 7. Variations of temperature profiles Θ with η, for D−1 = 0, .1, 1, 2, 5, Re = 400,
αX = .1, M = 1, A = .725.
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Fig. 8. Variation of velocity profiles F ′ with η, for αX = 0, .1, 1, 2, 5, M = 1, D−1 = .1,
γX = 0, fw = .1.

Fig. 9. Variations of temperature profiles Θ with η, for αX = 0, .1, 1, 2, 5, M = 1, D−1 = .1,
γX = 0, fw = .1.
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Figure 10 presents the influence of various values of Prandtl number on the
non-dimensional temperature profile. Increasing the Prandtl number reduces the
thermal boundary layer along the plate. This yields a reduction in the fluid tem-
perature. The reason of this effect is that higher Prandtl number implies more
viscous fluid which increases the boundary layer thickness, and this causes re-
duction in the shear stress. The effects of inverse Darcy number D−1 on the
non-dimensional surface velocity gradient is shown in Fig. 11. The presence of
a porous medium in the flow presents resistance to flow, thus, slowing the flow
and increasing the pressure reduction across it. Therefore, as the inverse Darcy
number D−1 increases, the resistance due to the porous medium increases and
the surface velocity gradient increases. It is seen from the figure that the skin
friction increases monotonically with increasing parameter M . Figure 12 illus-
trates the change in the value of non-dimensional surface temperature (−Θ′(0))
as a result of changing both the Hartmann parameter M and inverse Darcy num-
ber D−1. It is seen from the figure that the non-dimensional surface temperature
(−Θ′(0)) decreases monotonically with increasing parameter M and decreases
with increasing D−1. The reason for this is that the presence of a porous medium
D−1 causes higher restriction to the fluid flow, which in turn slows its motion.
As a result of this, the Nusselt number at the plate surface decreases. The vari-
ations of various values of the dimensionless suction/blowing coefficient on the

Fig. 10. Variation of temperature profiles Θ with η, for Pr = −.1,−.7, 1, 6.75, 10, γX = 0,
fw = .1, Re = 400, A = .725, M = 1, D−1 = .1.
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Fig. 11. Variation of wall velocity gradient profiles F ′′ with M , for D−1 = 0, .1, 1, 2, 5,
Re = 400, A = 1.25, η = 1, αX = .1, γX = 0, fw = .1.

Fig. 12. Variation of wall temperature gradient profiles Θ′ with M , for D−1 = 0, .1, 1, 2, 5,
Re = 400, A = .875, η = 1, αX = .1, γX = 0, fw = .1.
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non-dimensional surface velocity gradient profiles F ′′ is shown in Fig. 13. It is
seen from the figure that, as expected, the non-dimensional surface velocity gra-
dient profiles F ′′ increase monotonically with increasing magnetic parameter M .
Blowing decreases the wall shear stress both in free and forced convection flows.
Suction decreases the wall shear stress in the free convection flow but increases it
in forced convection flow. This is clear from the figure. Lien et al. [34] reported
a similar result for the isothermal wall temperature condition for free convection
flows.

Fig. 13. Variation of wall velocity gradient profiles with M , for fw = −.2,−.1, 0, .1, .2,
Re = 400, A = .875, η = 1, αX = .1, γX = 0, Pr = .7, D−1 = .1.

The effects of suction/blowing coefficient Fw on the non-dimensional wall
temperature gradient is presented in Fig. 14. The suction makes the temperature
distribution more uniform within the boundary layer and decreases the thermal
boundary layer thickness. The non-dimensional wall temperature gradient in-
creases as the suction/blowing parameter Fw increases. It is seen from the figure
that the non-dimensional wall temperature gradient profiles increase monotoni-
cally with increasing parameter M . Figure 15 illustrates the change in the values
of non-dimensional wall temperature gradient with various values of the dimen-
sionless heat generation/absorption coefficient Q and Prandtl number Pr. In-
creasing the value of Pr reduces the thermal boundary layer along the plate. This
reduces the fluid temperature at every point above the plate surface and increases
the dimensional wall temperature gradient. The non-dimensional wall tempera-
ture gradient increases as the Prandtl number Pr increases. The reason for this
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trend is that higher Prandtl number implies more viscous fluid which increases
the boundary layer thickness and this causes reduction in the shear stress.

Fig. 14. Variation of wall temperature gradient profiles Θ′ with M , for
fw = −.2,−.1, 0, .1, .2, Re = 400, A = .875, η = 1, αX = .1, γX = 0, Pr = .7, D−1 = .1.

Fig. 15. Variation of wall temperature gradient profiles Θ′ with Pr, for Q = −.2,−.1, 0,
Re = 400, A = 1.75, η = 1, αX = .1, γX = 0, M = 1, D−1 = .1.
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3. Conclusions

The problem of steady, laminar, simultaneous heat and mass transfer by
natural convection boundary layer flow of an electrically-conducting and heat-
generating fluid, driven by a continuously moving porous plate immersed in
a fluid saturated porous medium in the presence of a transverse magnetic field
was considered. The resulting transformed governing equations are solved nu-
merically by a perturbation technique. The results are presented for the major
parameters including the magnetic parameter, the Prandtl number, Darcy num-
ber, the dimensionless heat generation/absorption coefficient and the dimension-
less suction/blowing coefficient. A systematic study on the effects of the various
parameters on flow, heat and mass transfer characteristics is carried out. The
particular conclusions drawn from this study can be listed as follows:

1. In the presence of a magnetic field, the velocity is found to be decreased,
associated with a reduction in the velocity gradient at the wall, and thus
the local skin-friction coefficient decreases. Also, the applied magnetic field
tends to decrease the wall temperature gradient which yields a decrease in
the local Nusselt number.

2. The effect of energy generation, varying in space and with local temper-
ature, is to heat the fluid and increase the velocities inside the boundary
layer and consequently, to decrease the heat transfer rates and increase
the skin friction. On the contrary, the effect of energy absorption terms ei-
ther space or temperature-dependent, is to cool the fluid and consequently,
to increase the heat transfer rates. The mean skin friction increases with
increasing of the suction parameter and decreases as the Prandtl number
increases. The mean rate of heat transfer increases as the suction parameter
or the Prandtl number increase, but decreases as the space or temperature-
dependent heat generation term increases.

3. To increase the buoyancy ratio is to increase the local skin friction. On
the other hand, increasing the buoyancy may increase or decrease the local
Nusselt number, depending upon the competition between the impacts of
viscous dissipation and the buoyancy ratio.

4. The local Nusselt number can be increased by increasing the values of
the Prandtl number and the wall temperature. Heat is found to be trans-
ferred from the fluid to the plate (which is indicated by a negative Nusselt
number) at a negative value.

5. As compared to an impermeable surface, the local skin-friction, the local
Nusselt number will increase when suction is present at the permeable wall,
where as the opposite trend is true for the case when the wall is subjected
to injection of fluid.
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Appendix

a1 =
A +

√
A2 + 4 (M + D−1)

2
,

a2 =
PrA +

√
P 2

r A2 − 4PrγX

2
,

a3 =
(αX − 1)

−2a1

(
4a2

1 − 2a1A − (M + D−1)
) ,

a4 =
−a1

(
Fw + a−1

1

)
[
−3a2

1 + 2Aa1 + (M + D−1)
] ,

a5 =
−2a1a3 + a4

a1
,

a6 = −a5 − a3,

a7 =

(
Fw + a−1

1

)
a2Pr

PrA − 2a2
,

a8 =
−a2Pr

a1 ((a1 + a2) ((a1 + a2) − PrA) + PrγX)
,

a9 =
((

Fw + a−1
1

) (
a2

1a5 − 2a1a4

))
,

a10 =
((

Fw + a−1
1

)
4a2

1a3 − a1a5 + 2a4

)
,

a11 =
(
Fw + a−1

1

)
a2

1a4,

a12 =
2a1a4 (1 − αX)

−2a1

(
4a2

1 − 2Aa1 − (M + D−1)
) ,

a13 =
(2αX (−a1a5 + a4) − a10 + a1a5) − a12

(
12a2

1 − 4Aa1 −
(
M + D−1

))

−2a1

(
4a2

1 − 2Aa1 − (M + D−1)
) ,

a14 =
a1a3 (5 − 4αX)

−3a1

(
9a2

1 − 3a1A − (M + D−1)
) ,
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a15 =
(a1a6−a9)

(
6a2

1−4Aa1−2(M+D−1)
)
+a11(2A−6a1)(

3a2
1−2Aa1−(M+D−1)

)(
6a2

1−4Aa1−2(M+D−1)
)
−a1(2A−6a1)

(
−a2

1+Aa1−(M+D−1)
) ,

a16 =
−a11

(
3a2

1−2Aa1−(M+D−1)
)
−a1

(
−a2

1+Aa1+(M+D−1)
)
(a1a6−a9)(

3a2
1−2Aa1−(M+D−1)

)(
6a2

1−4Aa1−2(M+D−1)
)
−a1(2A−6a1)

(
−a2

1+Aa1−(M+D−1)
) ,

a17 =a−1
1 (a12 − 2a1a13 − 3a1a14 + a15) ,

a18 =

(
−Pr

(
Fw + a−1

1

)
(a7 + a2a8) + a2a6Pr

)
(2PrA − 4a2) − 2Pra2a7

(
Fw + a−1

1

)

(PrA − 2a2) (2PrA − 4a2) − 2
(
a2

2 − PrAa2 + PrQX

) ,

a19 =
(PrA−2a2)

(
Pr(Fw+a−1

1 )a2a7

)
−
(
a2

2−PrAa2+PrγX

)(
−Pr(Fw+a−1

1 )(a2a8+a7)+a2a6Pr

)

(PrA−2a2) (2PrA−4a2) − 2
(
a2

2−PrAa2+PrγX

) ,

a20 =
−a2a7Pr

a1 ((a1 + a2) ((a1 + a2) − PrA) + PrγX)
,

a21 =

(
Pr

(
F + a−1

1

)
a8 (a1 + a2) + Pra

−1
1 (a7 + a2a8) − a20 (PrA − 2 (a1 + a2))

)

((a1 + a2) ((a1 + a2) − PrA) + PrγX)
,

a22 =
−a8Pr (a1 + a2)

a1 ((2a1 + a2) ((2a1 + a2) − PrA) + PγX)
.

Reynolds number = Inertia force/Viscous force = Re = ρνL/µ; the higher
is the Reynolds number, the greater will be the relative contribution of the
inertia effect. The smaller is the Reynolds number, the greater will be the relative
magnitude of the viscous stress.

The Hartmann number Rh = (ReRHRσ)0.5 is the ratio of the magnetic force
to the viscous force and it was introduced by Hartmann in order to describe
his experiments with viscous magnetohydrodynamic channel flow; the magnetic
number Rm = (RHRσ)0.5 is the ratio of the magnetic force to the inertial force,
and when Rσ is very small, Rm is also used to measure the electromagnetic
effects on the flow.

Prandtl number Pr = µCP /K = ν/α it is the ratio of kinematic viscosity to
thermal diffusivity. It takes into account three physical properties of the fluid
at a time. It is the ratio of two constants in molecular transportation. Symbol
ν denotes the impulse transport through molecular friction, where α is the heat
energy transport by conduction. It physically represents the relative speed at
which momentum and energy are propagated through a fluid.
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Nusselt number Nu = hL/K, it is a dimensionless heat transfer coefficient,
which equals the ratio of the heat transfer rate q to the rate at which heat would
be conducted within the fluid under a temperature gradient ∆θ/L. It can also
be defined as the ratio of heat flow rate by convection under unit temperature
gradient through a stationary thickness of L meter.

Darcy‘s model. During the last century, the researchers have derived gen-
eralized forms of the Darcy equation using either deterministic or statistical
models. The well-known original form of the equation has been rewritten as:

u = −K

µ
.∇P for an isotropic medium, where K is the so-called intrinsic per-

meability, and ∇P is the pressure gradient. Although Darcy‘s law can describe
the flow through many naturall occurring porous media, it is not valid for all
types of situations. In fact, defined for a porous medium, the Reynolds number
is based on permeability of the porous medium as ReK ≥ 1. The Darcy number
was based on the permeability of the porous medium (K).
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This paper presents the studies of the metal transfer process in gas metal arc welding with
mild steel electrode. It aims at mathematic description of the droplet flight trajectory, droplet
velocity and acceleration. To this end, the droplet flight trajectory was first fitted using the 3rd
order polynomial regression and it was found that the model can be reduced to the 2nd order.
The average diameter of a droplet, transfer rate of droplets, average velocity and acceleration
of a droplet were calculated. The geometric shape factor was estimated. A new metal transfer
monitoring method which is based on narrow band filter and does not require He-Ne laser, has
been used in this study to observe the metal transfer process.

1. Introduction

The GMAW (Gas Metal Arc Welding) process employs a continuous con-
sumable solid wire electrode and an externally supplied active shielding gas.
A scheme of the process is shown in Fig. 1. The consumable wire electrode pro-
duces an arc with the workpiece making part of the electric circuit and providing
a filler to the weld joint. The wire is fed to the arc by an automatic wire feeder,
of which both push and pull-types are employed, depending on the wire compo-
sition, diameter, and welding application. The externally supplied shielding gas
plays dual roles in the GMAW. First, it protects the arc and the molten or hot,
cooling weld metal from the contamination of the air. Second, it provides the
desired arc characteristics through its effect on ionization. A variety of gases can
be used, depending on the reactivity of the metal being welded, the design of
the joint and the specific arc characteristics that are desired.

Metal transfer is the process of the molten metal’s movement from the elec-
trode tip to the workpiece, which includes droplet formation, detachment and
transfer in the arc gap. The transport of droplets into the weld pool is largely re-
sponsible for the finger penetration commonly observed in the fusion zone [1, 2].
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Fig. 1. Illustration of GMAW.

There are a few modes of metal transfer in GMAW such as short circuiting,
globular and spray transfer. In the short circuiting transfer the end of the elec-
trode actually touches the molten pool, creating a momentary short circuit. This
condition triggers an increase in current sufficient to melt the tip of the electrode
and then reestablish the arc between the electrode and the workpiece. The cycle
repeats itself about 50 to 250 times per second. This type of transfer is good
for welding thin metals in all positions, incomplete fusion may occur in base
metal in excess of 3.2 mm. The globular transfer occurs at a current range above
short circuiting transfer. The melted droplets that transfer into the molten pool
are about two to four times the diameter of the electrode, and they fall in an
irregular pattern and with an irregular frequency. This type of transfer typically
produces spatters, and in most instances, it is the type of transfer when CO2 is
the only shielding gas. Spray transfer occurs at high welding currents with argon-
rich (> 90%) shielding gas mixtures. The molten droplets are small, and they
are forced across the arc in an axial pattern. The arc column is constricted. This
type of transfer produces minimal spatter and is conductive to high deposition
rates. The rotational spray transfer occurs when a solid wire is used with a long
electrode extension of 20 to 40 mm and the shielding gas is a mixture of Ar+CO2

or Ar+O2. The long electrode extension creates resistance heating of the elec-
trode that causes its end to become molten. Electromechanical forces make the
molten end of the electrode rotate in a helical pattern. The shielding gas mixture
affects the surface tension of the molten end assisting in the rotational transfer.
Deposition rates of 10 to 15 kg/h are attained with this transfer mode [3].

Metal transfer has been a subject matter of many investigations. A better
understanding of the metal transfer process is important for improvements in the
quality and productivity of welding. The welding voltage, current, arc length,
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shielding gas and wire feed rate can all affect the metal transfer process. Among
them, current is most often studied for its influence on the droplet size, frequency
and acceleration in the arc.

Many papers described the methodology of mathematical analysis for the
formation of droplets and analysed and calculated the effects of individual forces
acting on metal droplets at the tip of the wire in GMAW [4]. In order to deter-
mine the dominant factors, which affect the metal transfer mode, a dimensional
analysis has been conducted in previous studies [5]. Several dimensionless num-
bers which are derived on the basis of the surface-tension force are the Weber
(We), Bond (Bo), NSE , NSV . Here the subscripts S and V denote the surface
tension and viscosity. These numbers represent the relative effects of electrode
melting, gravitational, electromagnetic and viscous forces with respect to the
surface-tension force, respectively. The NSE number was found to be the most
important dimensionless number influencing the characteristics of metal trans-
fer [5]. Through the arc sensing methods are also widely used to study metal
transfer. By recording and analysing fluctuations of the welding voltage and/or
current, it is possible to predict the metal transfer mode [6]. Due to its simplicity
and nonintrusive nature, through the arc sensing can also be used to study the
GMAW process, but can also be used in welding process control. Most of recent
investigations focused on studying the effect of waveform parameters on the mode
of metal transfer in pulsed gas metal arc welding (GMAW-P) [7–11]. The metal
transfer mode is also an interesting subject matter in newly developed welding
methods such as double electrode gas metal arc welding (DE-GMAW) developed
at the University of Kentucky [12, 13]. Some studies focused on detailed analysis
of droplet velocity and developed a model based only on the electromagnetic
pinch force [14]. Many efforts have been made to optimize welding parameters
to achieve one droplet per pulse (ODPP-GMAW) [15]. Further, a non-isothermal
numerical model has been developed to simulate the metal transfer process in
GMAW. Experiments with high-speed photography and laser-shadow imaging
show that the simulation results were in broad agreement with the actual weld-
ing process [16]. The newest investigations about metal transfer even allow to
create a new classification of mode of metal transfer modes [17]. The melting of
the wire, which is fundamental and influences the process stability and produc-
tivity, has also been a main topic of some investigations [18]. Recently, hybrid
laser-MIG welding methods have also been studied [19].

Droplet acceleration in the arc has been calculated by many authors [20–25]
using the empirical formulation presented by Lancaster [26]. To calculate the
plasma drag force exerted on the droplet using this formulation, the droplet was
assumed to have a spherical shape and accelerate to the workpiece with a con-
stant acceleration [27]. The acceleration of the droplet is found to be near con-
stant by Jones et al. [28] and assumed to be constant by many authors in their
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calculations [20–24]. With many factors influencing metal transfer, theoretical
models such as the static force balance theory [29–30] and the pinch instability
theory [31–32] have been proposed to explain the metal transfer phenomena, but
the success is limited. The authors [33] investigated the relative magnitudes of
the detaching forces in static force balance theory and showed good agreement
with experimental results within the range of globular transfer; however, in the
spray transfer mode, the theory deviates significantly from the experiment.

Despite a significant progress, the existing investigations that have been car-
ried out up to date have not covered the subject matter of mathematic de-
scription of droplet flight trajectory, changes of droplet velocity and droplet
acceleration, although this subject matter can further our understanding of the
metal transfer process. Hence, the droplet size, droplet transfer rate, mathematic
descriptions of droplet flight trajectory and droplet velocity and droplet accel-
eration, are analyzed in this paper. In previous investigations the back-lighting
technique has been used to image the metal transfer process using a He-Ne
laser [34]. The problem with this method is that the laser and imaging plane
must be placed on two opposite sides of the torch. A high-speed camera with
a narrowband pass filter is used to directly view the metal transfer process. This
technique is easier to use because of the elimination of the need for back-lighting.

2. Theoretical background

The static force balance theory postulates that the drop detaches from the
electrode when the static detaching forces on the drop exceeds the static retaining
forces. Four different forces have been considered [33]:

• the gravitational force,

• electromagnetic force,

• plasma drag force,

• surface tension force.

The gravitational force is due to the mass of the drop and acts as a detaching
force when welding in flat position:

(2.1) Fg =
4

3
πR3ρDg,

where R – radius of droplet, ρD – density of droplet.
The electromagnetic force on the drop results from divergence or conver-

gence of current flow within the electrode. The electromagnetic force is given by
Lorentz’s law:

(2.2) Fem = J × B,

where J – current density, B – magnetic flux.
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By assuming that the current density on the drop is uniform, the total elec-
tromagnetic force on a drop can be obtained by integrating Eq. (2.2) over the
current conducting surface of the drop [14]:

(2.3) Fm =
µ0I

2

4π
f(s),

where I – welding current, µ0 – the magnetic permeability of the free space, f(s)
– a geometric shape factor depending on the droplet radius and neck diameter
during droplet growth and detachment.

The plasma drag force on the liquid drop can be estimated by considering
the drag force on a sphere immersed in a fluid of uniform velocity field [33]:

(2.4) Fd = CDAP

(
ρfv2

f

2

)
,

where CD – drag coefficient, AP – projected area on the plane perpendicular to
the fluid flow, ρf – density of the fluid, vf – velocity of the gas.

Surface tension force, which acts to retain the liquid drop on the electrode is
given as follows:

(2.5) FS = 2παγ,

where α – radius of the electrode, γ – surface tension of the liquid.
From the static force balance theory, the droplet size can be calculated un-

der the assumption that the drop is not detached from electrode if the sum of
detaching forces equals the retaining force [33]:

(2.6) Fγ = Fem + Fg + Fd.

Hence, Eq. (2.6) holds during the process of droplet formation. After the
droplet is detached, it travels in the arc gap subjecting the sum of the following
forces:

(2.7) Fem + Fg + Farc,

where Farc accounts all other possible forces except for the electromagnetic and
gravitational forces. To calculate the geometric shape factor f(s) defined in (2.3),
the other forces are omitted. Hence,

(2.8)
4

3
πR3ρDa =

µ0I
2

4π
f(s) +

4

3
πR3ρDg,

where a is the acceleration of the droplet in the air gap. As a result, the geometric
shape factor can be calculated as:

(2.9) f(s) =

16

3
π2R3ρD (a − g)

µ0I2
.
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3. Experimental setup and procedure

Mild steel Quantum ARC 6 carbon steel wire (AWS A5.18, ER70S-6) equiv-
alent to SG2 was used in the experiments. The electrode’s diameter is 1.2 mm
(0.045 inch). The chemical composition of the wire is given in Table 1. The
shielding gas used was pure argon.

Table 1. Chemical composition of wire.

C Mn Si P S Cu

0.06–0.15 1.40–1.85 0.8–1.15 <0.025 <0.025 <0.05

Experiments were carried out on an automated GMAW platform. A simple
scheme of the experimental setup with data flow is shown in Fig. 2. The torch
was moved while the work-piece was in a fixed position such that the camera was
stationary in relation to the work-piece. All welds were made with a standard
water cooled welding gun Miller Roughneck C 4015. The wire feeder was a Miller
R-115. The torch was moved at the travel speed of 25 cm/min (10 inch/min)
to make bead-on-plate welds. Direct current levels between 206 and 262 A were
examined, all at an operating voltage 32 V. All experiments were carried out
with a tip-to-work distance of 15 mm. The current and, therefore, the metal
transfer mode were changed by changing the wire feed rates in the range from
4.57 m/min to 6.85 m/min (180 to 270 inch/min). The conventional three-phase
welding machine Hobart EXCEL – ARC 8065 CC/CV was used.

Fig. 2. Experimental setup with flow of data.

During welding the arc voltage, welding current and wire feed speed were
continuously measured. Electrical current was measured by Hall effect current
sensor Model CLN-500. The voltage was measured by a resistance bridge directly
in the output of power supply. Signals from the welding circuit were recorded on
the PC through the data acquisition card NI DAQ 6036E. Analysis of the metal
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transfer process was performed using high speed camera Olympus i-SPEED at
3000 frame per second (fps). The camera direction was perpendicular to the
welding direction. In addition to an aperture of 11 and a shutter of 1, a narrow-
band filter (central wavelength 685 nm, bandwidth 20 nm) was used to reduce
the arc brightness in order to image the metal transfer.

4. Results and discussion

The recorded images of metal transfer from the high speed camera are ana-
lyzed by i-SPEED viewer and IrfanViewer software. An image sequence of droplet
track in GMAW for wire feed speed 270 inch/min – welding current 262 A and
arc voltage 32 V at 3000 frames per second, is shown in Fig. 3; and for wire
feed speed 180 inch/min – welding current 206 A in Fig. 4. The arrow marks the
same droplet being tracked. Experiments were performed on clean plates. The
macroscopic examination of padding welds with welding parameters are given in
Table 2.

Fig. 3. Image sequence of droplet track in GMAW. Wire speed 270 inch/min (6.85 m/min)
– welding current 262 A, arc voltage 32 V, 100% Ar. Sampling speed is 3000 frames per

second. The arrow marks the same droplet.
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Fig. 4. Image sequence of droplet track in GMAW. Wire speed 180 inch/min (4.57 m/min)
– welding current 206 A, arc voltage 32 V, 100% Ar. Sampling speed is 3000 frames per

second. The arrow marks the same droplet.
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Table 2. Macroscopic examination of padding welds.

No

Wire feed speed
[inch/min]/[m/min]
welding current [A]

and standard
deviation
I ± SdI

Appearance
Macroscopic
Section 1:1

1 180/4.57
206 ± 19

2 190/4.83
211 ± 33

3 200/5.08
216 ± 12

4 210/5.33
225 ± 7

5 220/5.59
229 ± 5

6 230/5.84
232 ± 4

7 240/6.10
247 ± 7

8 250/6.35
250 ± 3

9 260/6.60
256 ± 8

10 270/6.85
262 ± 5
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4.1. Droplet diameter and number of droplets per second

The first goal of this study was to calculate the diameter of the droplet.
To this end, it was necessary to measure droplet diameter in two directions
(horizontal dh and vertical dv diameter), as shown in Fig. 5. When the droplet
to be analyzed reaches a particular location in the image, the diameter D of the
droplet is calculated as:

(4.1) D =
(dh + dv)

2
.

Fig. 5. Methodology for calculating the diameter of a single droplet in GMAW;
dh – horizontal diameter, dv – vertical diameter.

The average diameter was calculated for each set of welding parameters using
seven image sequences. The minimal and maximal values were not used in the
calculation. Next sequence was used if the difference between horizontal and
vertical diameter was higher than 20%. The standard error of droplet diameter
was calculated based on the following formula:

(4.2) SD =
√

S2
d + S2

i ,

where SD – standard error of droplet diameter, Sd – standard deviation, Si –
measurement resolution.
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The measurement resolution was Si = 0.1 mm. The results of calculation are
given in Table 3. To calculate the transfer rate, the following assumptions were
made:

• the difference between horizontal and vertical diameter is less than 20%,
and the droplet can be assumed to be spherical approximately,

• the welding process is stable and transfer rate is constant vs. time,

• spatters are negligible.

Table 3. Relationship between wire feed speed and droplet diameter.

No
Wire feed
[inch/min]

Mean value
of dv/dh [%]

Standard deviation
Sd [mm]

Real value with standard
error D ± SD [mm]

1 180 101.86 0.12 0.99±0.16

2 190 110.08 0.12 0.90±0.16

3 200 105.07 0.06 0.82±0.12

4 210 93.36 0.07 0.68±0.12

5 220 100.41 0.08 0.65±0.13

6 230 101.23 0.12 0.52±0.15

7 240 96.54 0.12 0.51±0.15

8 250 103.08 0.06 0.48±0.12

9 260 102.16 0.02 0.46±0.10

10 270 99.81 0.03 0.43±0.10

The second goal was to calculate the droplet transfer rate (the number of
droplets detached per second). In a unit time, the total volume of the transferred
droplets is equal to the molten metal:

(4.3) n
4

3
π

(
D

2

)3

=
1

4
πd2vel,

where n – number of droplets per second, D – average diameter of droplet [m],
Vel – wire feed [m/s].

The number of droplets can thus be calculated as:

(4.4) n =
3

8
· d2

D3
· vel.

The results of the transfer rate calculation are shown in Fig. 6 for wire
feed rate in the range from 180 inch/min to 270 inch/min with volume of
droplet.
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Fig. 6. Influence of wire speed rate (welding current) on droplet volume and transfer rate.

4.2. Droplet velocity and acceleration

The authors first used a 3rd degree polynomial to fit the travel of the
droplet:

(4.5) y(t) = A + B1 · t + B2 · t2 + B3 · t3,

where t – time [ms], y – distance traveled along the arc axis after detach-
ment [mm], A, Bi – coefficients.

The resultant coefficients fitted with the residual are given in Table 4.
Since the residual in all cases is relatively small, a reduced model of 2nd

degree is considered:

(4.6) y(t) = A + B1 · t + B2 · t2.

The resultant coefficients and residuals are given in Table 5 for wire feed
rate in the range from 180 inch/min to 270 inch/min. As it can be seen, the
residuals are still small and are in the range of acceptable error. Hence, the 2nd
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Table 4. Calculated coefficients in formula 4.5 in relation to wire feed rate.

No Wire feed rate [inch/min] A B1 B2 B3 ε [mm]

1 180 0.01114 0.24233 0.07043 −0.00021 0.1141

2 190 0.00672 0.15328 0.07731 −0.00117 0.0556

3 200 −0.00651 0.20726 0.06304 −0.00115 0.0473

4 210 0.10272 0.19594 0.06292 −0.00014 0.0615

5 220 −0.02921 0.12451 0.07911 −0.00139 0.1726

6 230 −0.05401 0.54832 −0.11971 0.01942 0.0592

7 240 0.10203 0.38482 0.02997 −0.00049 0.0428

8 250 0.03580 0.17848 0.10762 −0.00688 0.0410

9 260 −0.03676 0.48401 0.13222 −0.01175 0.0418

10 270 −0.10866 0.85462 −0.03029 0.009 0.0566

Table 5. Calculated coefficients in formula 4.6 in relation to wire feed rate.

No Wire feed rate [inch/min] A B1 B2 ε [mm]

1 180 0.00363 0.25293 0.06754 0.1138

2 190 −0.02305 0.20089 0.06274 0.1489

3 200 −0.03243 0.25064 0.04921 0.0495

4 210 0.10624 0.19032 0.06462 0.0457

5 220 −0.06465 0.18118 0.06176 0.2230

6 230 0.19185 0.04307 0.07449 0.1132

7 240 0.09091 0.40344 0.02403 0.0444

8 250 −0.08189 0.39559 0.03193 0.0639

9 260 −0.09613 0.65459 0.04412 0.0448

10 270 −0.04073 0.68622 0.04618 0.0639

degree polynomial model can be accepted. The resultant models of 2nd degree
are graphically shown in Fig. 7.

To calculate the changes in velocity vi for wire feed speed in the range of
180 inch/min to 270 inch/min, the derivative of movement equation (4.6) can
be calculated. To achieve droplet velocity in unit of mm/s formula (4.6) was
multiplication by 1000 times. The results of the calculation are shown in Fig. 8.

To calculate the average droplet velocity, the following formula was used:

(4.7) vi =
1

T

T∫

0

vi(t)dt,

where T is the time the droplet reaches the weld pool. To calculate the droplet
acceleration, the 2nd derivative of movement equation was calculated:

(4.8) ÿ(t) = 2 · B2.
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Fig. 7. Influence of wire speed rate (welding current) on droplet flight trajectory.

Fig. 8. Influence of wire speed rate (welding current) on droplet velocity vs. time.
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The results of average droplet velocity and acceleration are given in Table 6.

Table 6. The average droplet velocity and droplet acceleration.

No Wire feed rate [inch/min] Average velocity [mm/s] Average acceleration [m/s2]

1 180 883.30 135.08

2 190 723.72 125.48

3 200 660.64 98.40

4 210 728.82 129.24

5 220 645.67 123.52

6 230 539.67 148.98

7 240 587.67 48.06

8 250 629.74 63.86

9 260 919.31 88.24

10 270 947.90 92.36

4.3. Geometric shape factor

Based on formula (2.9), results of droplet diameter in Table 3, and droplet
acceleration in Table 6, the geometric shape factor has been calculated. The rela-
tionship between droplet diameter and geometric shape factor is shown in Fig. 9.

Fig. 9. Influence of droplet diameter (determined by the wire speed rate or welding current)
on geometric shape factor f(s).
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As can be seen in Fig. 8, the geometric shape factor of a droplet strongly
depends on the droplet diameter and increases as the droplet diameter in-
creases.

5. Conclusion

In this paper, measurement data of metal transfer has been obtained from
the GMAW process in the range of welding wire speed from 180 inch/min to
270 inch/min. The authors can conclude:

1. Measurement of the droplet diameter has shown that average diameter of
droplet in the range of wire feed rate from 180 to 270 inch/min changes in
the range from 0.99±0.16 mm to 0.43±0.10 mm.

2. The results of calculated the drop frequency (droplet transfer rate) is in
the range from 42 to 776 droplets per second.

3. To fit the droplet flight trajectory, a 2nd degree polynomial is adequate.

4. To calculate drop velocity, the first order derivative of the fitted quadratic
curves of drop trajectory was calculated. The average drop velocity in the
range of wire feed rate from 180 to 270 inch/min varies from 883.30 to
947.90 mm/s.

5. To calculate the drop acceleration, the second order derivative of the
fitted quadratic curves of drop trajectory was calculated. The accelera-
tion is constant for each wire feed speed and in the range of 48.06 to
148.98 m/s2.

6. The geometric shape factor of the droplet was calculated. This coefficient
depends on the droplet radius and varies from 0.0039 to 0.1178 for the
droplet diameter in the range from 0.43 to 0.99 mm.

The experience gained would allow the authors to determine further direc-
tions on metal transfer research and use the simple method proposed in this
study to on-line monitor the welding process in automated GMAW.
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CONSTITUTIVE MODELLING AND NUMERICAL SIMULATION
OF DYNAMIC BEHAVIOUR OF ASPHALT-CONCRETE PAVEMENT
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Faculty of Civil Engineering, Institute of Structural Mechanics
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The main objective of the paper is to present a simple constitutive model suited for dy-
namic simulation of asphalt-concrete mixtures. ABAQUS/Explicit FE software is used for this
purpose. The model belongs to the class of overstress hypoelastic-viscoplastic materials, taking
into account the effect of pressure-dependence on yielding. The implementation of constitutive
relations formulated in the paper is done through user subroutine module VUMAT. The results
of numerical simulation of dynamic behaviour of multilayer pavement structure, illustrating
the applicability of the algorithm, is also discussed.

Key words: dynamic plasticity, asphalt concrete pavement, FEM.

1. Introduction

Rheological properties of engineering materials are characterized by elas-
tic, plastic and viscous phenomena. The plastic behaviour is always associated
with large deformations, whereas the viscosity is observed during fast loading.
The loads acting on asphalt-concrete pavement structure are dynamic in na-
ture. Thus, the crucial problem in analysis of such pavements is a formulation
of constitutive model of the material, taking into account the rate-dependence
phenomenon. Our objective is to present a simple class of constitutive equations
describing the behaviour of pressure-sensitive materials such as asphalt concrete,
suited for dynamic simulation. During our investigation we will not consider any
creep effects because the analysis is limited to fast loading processes [2, 19].

Within the framework of the theory of viscoplasticity [16] it is possible to
consider the influence of load intensity as well as its velocity on the process of
formation of permanent deformations. The theory states that there is a limit
state of stress defining the range of elastic behaviour. We assume that the limit
state may be defined by the yield function depending on two invariants – the
norm of deviatoric stress and the trace of the stress tensor. After reaching the
limit state, viscoplastic effects may be observed. In order to describe the vis-
cosity phenomenon, additional parameters should be taken into consideration.
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The model presented herein introduces only one viscous parameter related to
the total stress space. Thus, the relations to be obtained belongs to the class of
Duvaut-Lions overstress materials [6] in which the rate-independent plastic part
of the stress tensor may be calculated as a projection of the total stress on the
static yield surface.

We will start with large strain formulation. After some simplifying assump-
tions, a hypoelastic-viscoplastic model will be introduced. The form of consti-
tutive relationships to be obtained herein allows a user-defined implementation
within the Finite Element (FE) commercial codes. The numerical integration
algorithm was coded in ABAQUS software [1]. The implementation was done
through user subroutine module VUMAT in order to study the behaviour of
multilayer pavement structure.

2. Kinematics

Analysing large elasto-viscoplastic deformations we should start with an as-
sumption stating that the total deformation gradient F is decomposed multi-
plicatively into elastic and viscoplastic parts [11, 12]

(2.1) F = Fe Fvp, if dx = F dX,

where F maps a line element dX in the reference configuration to the dx in the
deformed configuration.

In Eq. (2.1), both tensors Fe as well as Fvp contain stretches and rigid body
rotations. For simplification we will assume that all rigid rotations are associ-
ated with viscoplastic deformation gradient. Thus, using the polar decomposition
theorem we obtain

(2.2) Fe = Ve and Fvp = VvpR,

where R describes total rotations. Moreover, Ve and Vvp are left stretch tensors
in elastic and viscoplastic part respectively.

Differentiating Eq. (2.1)2 and making use of Eq. (2.1)1, we obtain the follow-
ing expression defining velocity gradient L as well as its elastic and viscoplastic
parts given by Le and Lvp:

(2.3) L =
dv

dx
= Ḟ F−1 = Le + VeLvp (Ve)−1

if Le = V̇
e
(Ve)−1 and Lvp = Ḟ

vp
(Fvp)−1 .

The velocity gradient can be decomposed into a symmetric part denoted by
D and a skew-symmetric part denoted by W

(2.4) L = D + W where D =
1

2

(
L + LT

)
and W =

1

2

(
L − LT

)
.
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Of course, the same decomposition scheme holds for its elastic part Le =
De + We and viscoplastic part Lvp = Dvp + Wvp. Thus, based on Eq. (2.3)1 we
obtain

(2.5) L = De + We + VeDvp (Ve)−1 + VeWvp (Ve)−1 .

Eventually, taking the symmetric part in Eq. (2.5) we obtain

(2.6) D = sym (L) = De + sym
[
VeDvp (Ve)−1

]
+ sym

[
VeWvp (Ve)−1

]
.

Assuming that elastic stretches are small, i.e. Ve = (Ve)−1 = I, we obtain
from (2.6) the well-known decomposition rule for the rate of deformation tensor

(2.7) D = De + Dvp.

The decomposition scheme expressed by Eq. (2.7), along with assumption
stating that Wvp = 0, is widely used in FEM programmes [3, 18].

3. Constitutive relationships

We assume that the elastic part is described by hypoelastic law relating any
objective rate of Kirchhoff stress τ

▽ to the elastic rate of deformation

(3.1) τ
▽ = C · De,

where the C denotes the 4th rank tensor of elastic coefficients.
Combining Eq. (2.7) with Eq. (3.1) we obtain

(3.2) τ
▽ = C · (D − Dvp) .

In the case of isotropy, the above equation is replaced by

(3.3) τ
▽ = K tr (D − Dvp) I + 2 G dev (D − Dvp) ,

where the elastic constants K and G denote the bulk modulus and shear modulus
respectively.

The operators tr (·) and dev (·) := (·)− 1

3
tr (·) I used in Eq. (3.3) denote the

trace and deviator.
The objective rate of the tensor τ in the above expressions is given by

(3.4) τ
▽ = τ̇ + τΩ − Ωτ,

where τ̇ is the material rate with respect to the basis of τ. The Ω is a skew-
symmetric spin tensor. Various forms of Ω can be taken into account. For exam-
ple setting Ω = W in Eq. (3.4), gives the Jaumann rate. Another objective stress
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rate, the Green–Naghdi rate, is obtained by taking Ω = ṘRT . For numerical
simulations, the Green–Naghdi rate will be used because of needs of the user
material subroutine implemented in FE code.

The additive decomposition of the rate of deformation tensor introduced in
Eq. (2.7), may be interpreted via rheological model to be shown in Fig. 1. Such
a model, firstly defined by Bingham in the case of 1D stress-strain state, repre-
sents a family of elasto-viscoplastic materials called over-stress type models [12].
For such materials, before reaching a plastic limit state, the material behaves
like a perfectly elastic one. After that, a rate-dependent yielding is observed.

Fig. 1. Rheological model of the material.

Based on the Fig. 1, it can be proved that the total stress τ is equal to elastic
stress τ

e and may be decomposed into the stress acting in plastic network τ
p

and viscous network τ
v. Thus, we have the relation

(3.5) τ = τ
e = τ

p + η Dvp,

in which scalar η denotes the viscosity parameter. This is the only rate-dependent
material coefficient to be taken into consideration. In general case, one should
consider a tensor of viscous parameters being similar to the elastic operator C

or assume two coefficients related to volumetric and deviatoric subspaces like in
Eq. (3.3). Because of the complexity of laboratory tests for asphalt, we assume
only the single-rate-parameter model.

Now we need to describe the plastic properties of our model. The system
of constitutive relations of a perfectly plastic material is defined by the set of
admissible stresses Θ as well as by the maximum dissipation rule [15]:

τ
p ∈ Θ,(3.6)

Dvp ∈ K (τp, Θ) := {τp : Dvp · (τp − τ̃) ≥ 0 ∀ τ̃ ∈ Θ} .(3.7)
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It should be assumed that the Θ-set is convex, closed, limited and contains
zero. The mapping K used in Eq. (3.7), determines the set of viscoelastic rates
assigned to τ

p. This set has the form of an external normal cone to the Θ-set
at τ

p.
Alternatively, the system of Eqs. (3.5), (3.6) and (3.7), may be replaced by

the following minimization problem:

(3.8) Dvp = arg mineD [
1

2
η
∥∥∥D̃
∥∥∥

2
+ ΠΘ

(
D̃
)
− τ · D̃

]

if ΠΘ

(
D̃
)

:= sup
τ

p∈Θ
D̃ · τp,

where ΠΘ denotes the support functional of the Θ-set [15].
The system of constitutive relations given by Eqs. (3.3), (3.5), (3.6) and (3.7)

or by Eqs. (3.3) and (3.8) is valid for any isotropic elasto-viscoplastic material
in which the plasticity constraints are described by appropriate definition of the
Θ-set. Let us assume that this set is described by smooth yield function Φ as
follows:

(3.9) Θ := {τp : Φ (τp) ≤ 0} .

Thus, we can replace the Eqs. (3.6) and (3.7) by the following set [8]:

(3.10) Dvp = λ
∂Φ (τp)

∂τ
p

, Φ (τp) ≤ 0, λ ≥ 0, λΦ (τp) = 0,

where the scalar λ is called the Lagrange multiplier. Equation (3.10)1 is called
the associated flow rule while Eqs. (3.10)2, (3.10)3 and (3.10)4 are the load-
ing/unloading conditions or Kuhn–Tucker conditions.

Obtaining of the detailed form of Eqs. (3.10) needs the appropriate yield
condition to be taken into consideration. In the paper we will analyse a pressure-
sensitive Mises–Schleicher (MS) yield condition [5]. The yield function associated
with this condition has a form

(3.11) Φ (τp) = ‖dev τ
p‖n + αRn−1 trτ

p − Rn where R =
√

2 k.

Three additional material parameters were introduced via Eq. (3.11). Symbol
k denotes the yield limit stress based on pure shear test. Dimensionless parame-
ters α ≥ 0 and n ≥ 1 determine the shape of the yield function in the meridian
cross-section visualized in Fig. 2a.

Taking α = 0 and n = 2 in Eq. (3.11) we obtain the pressure-insensitive
Huber–Mises–Hencky (HMH) yield condition. If we substitute n = 1 in Eq. (3.11),
we will obtain the Drucker–Prager (DP) yield function. Let us note that the DP
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a) b)

Fig. 2. Meridian (a) and deviatoric (b) sections of the Mises-Schleicher yield surface.

function is non-differentiable for trτ
p = R/α. In this point the Eqs. (3.10) are

not valid. The analysis of non-smooth yield surfaces is still an open problem in
the theory of plasticity. This is not our objective to deal with this problem, so
our formulation will be limited to this specific point.

Deviatoric section of MS yield function is of circular shape as it is shown in
Fig. 2b (continuous line). In this figure we visualized also, by a dashed line, the
locus of Coulomb–Mohr (CM) yield function to be widely used in geomechan-
ics [5]. The CM yield condition may be defined by the following equation:

(3.12)
tr τ

p

3
sin φ +

1√
2
‖τp‖

[
sin
(
θ +

π

3

)
+

1√
3

cos
(
θ +

π

3

)
sin φ

]
− c cos φ = 0,

for θ ∈ 〈0, π/3〉 where θ =
1

3
arccos

√
6 tr (τp)3

‖τp‖3 .

The CM yield condition defines a yield function having the shape of a pyramid
with non-regular hexagonal base. The material parameters k and α describing
the MS function, can be evaluated based on the CM coefficients: φ – friction
angle and c – cohesion parameter. Assuming that the CM surface is inscribed in
the DP surface and that their apexes coincide, the following relations between
the material coefficients of both conditions are valid:

(3.13) k =
6 cos φ√

3 (3 − sinφ)
c, α =

2
√

2 sin φ√
3 (3 − sinφ)

.

Having assumed the MS yield condition, we can specify the relation (3.10)1

(3.14) Dvp = λn ‖dev τ
p‖n−2 dev τ

p + λαRn−1I.

The system of relationships defining our material model is composed of
Eqs. (3.3), (3.5), (3.11) and (3.14) completed by conditions (3.10)2, (3.10)3
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and (3.10)4. Using these relations we need to have the λ multiplier calculated.
After this we can calculate the rate of viscoplastic deformation from Eq. (3.14)
and substitute it into Eq. (3.3) in order to obtain the objective stress rate τ

▽.
Finally, using Eq. (3.4) the material stress rate τ̇ may be calculated.

Numerical simulations of the pavement structure will be carried out using the
explicit integration algorithm implemented in ABAQUS software (the equations
of motion will be solved explicitly). The incremental steps needed for dynamic
explicit codes are very small. Thus, we can use the following simple explicit
integration scheme in order to update the stress tensor:

(3.15) τt+∆t = τt + τ̇∆t.

In order to obtain the Lagrange multiplier, we have to analyse two cases. If
Φ (τ) ≤ 0, then λ = 0 and Dvp = 0 and τ

p = τ
e = τ (elastic case). If Φ (τ) > 0,

then Φ (τp) = 0 and λ > 0. In this case the value of λ can be obtained based on
Eqs. (3.5), (3.11) and (3.14). We may rewrite these equations eliminating Dvp,
what gives the following two relations:

(3.16) τ = τ
p + ληn ‖dev τ

p‖n−2 dev τ
p + ληαRn−1I,

(3.17) ‖dev τ
p‖n + αRn−1 trτ

p − Rn = 0.

After some algebra, these equations may be written as follows:

(3.18) λ =
‖dev τ‖ − ‖dev τ

p‖
nη ‖dev τ

p‖n−1 ,

(3.19) ‖dev τ
p‖n + αRn−1

(
trτ − 3ληαRn−1

)
− Rn = 0.

In the above scalar equations, the unknowns are λ and ‖dev τ
p‖. It is obvious

that for any n > 1 and α 6= 0, we cannot give any explicit formula for the λ
multiplier. In such a case we have to solve the nonlinear algebraic Eq. (3.19).
For numerical simulations to be shown in the next chapter, the implicit Newton
method was used.

Let us take into consideration two special cases in which the multiplier λ can
be expressed in explicit form. For the DP yield function we take n = 1. Thus, it
can be proved that

(3.20) λ =
‖dev τ‖ + α trτ − R

η (1 + 3α2)
and Dvp = λ

(
dev τ

‖dev τ‖ + αI

)
.
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In the case of the HMH yield condition, substituting α = 0 into Eq. (3.20)
we obtain a well-known formula (see [4])

(3.21) Dvp =
dev τ

η

(
1 − R

‖dev τ‖

)
.

It is obvious that for the HMH yield criterion, the plastic deformation does
not cause any volume changes. Thus, the Eq. (3.21) may be rewritten replacing
the Kirchhoff stress tensor τ by the Cauchy stress tensor σ.

4. Application

The aim of formulation of constitutive equations is to predict the behav-
iour of pavement structure under dynamic load. The problem we should solve is
a coupled system composed of initial-boundary-value problem, given by the mo-
mentum equilibrium and the constitutive equations. Since the boundary-value
problem is usually solved by the FEM, the constitutive model has to be imple-
mented in an appropriate way.

The constitutive equations considered can be mathematically classified as
a coupled system of non-linear ordinary differential equations, building an initial-
value problem. The solution of such a system can be embedded in an incremental
FEM formulation with displacement approach, leading to the well-known explicit
FEM problem for non-linear material equations, which has to be solved itera-
tively [3]. The constitutive equations were programmed within the ABAQUS/Ex-
plicit system [1]. The system requires the incremental procedure to be defined
in VUMAT subroutine coded in FORTRAN language.

In this section we will show the results of dynamic simulation of multilayer
asphalt concrete pavement exposed to the impulse of pressure. Such a load may
be a simplified model of the aircraft tire impact at the time of landing [13, 14].
We will assume the axisymmetric topology of the model. The schematic view of
the model is visualized in Fig. 3. The load acts during 0.1 [s] with the intensity
of q = 1200 [kPa]. The pressure is uniformly distributed over the circular area
with the radius equal to 20 [cm]. The pavement layers were modelled using
2820 axisymmetric 4-node elements of the CAX4 type (see [1]). They rest on
a discrete Kelvin–Voigt viscoelastic foundation have the elasticity parameter
equal to k = 150 [MN/m3] and the viscosity module η = 1 [MNs/m3]. The FE
mesh is built over the 1.4 [m]×4.0 [m] rectangular area.

We carried out three numerical calculations assuming various material prop-
erties of the pavement layers. The first simulation was executed for a perfectly-
elastic material. The values of elastic parameters (see Table 1) are assumed to be
partially based on [10, 19] and are of the same value like in [20]. The parameters
presented in Table 1 were also used for next simulations.
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Fig. 3. Schematic view of the structure.

Table 1. Elastic parameters of pavement layers.

K [MPa] G [MPa]

Wearing course 160 74

Binder course 186 86

Base course 439 203

Subgrade 125 58

The second simulation was carried out for elasto-plastic rate-independent
material with MS yield condition. The inelastic material constants for each layer
have the following values: n = 1.2; k = 160 [kPa] and α = 0.2.

The third simulation concerns the elastic-viscoplastic model presented in the
previous section. The material constants are of the same value like in previous
simulation with the additional viscosity parameter equal to η = 500 [kPa · s].

The contours of equivalent HMH stress are visualized in Figs. 4 and 5 (elasto-
plastic pavement) and in Figs. 6 and 7 (elasto-viscoplastic pavement). The scale
deformation factor to be used in these figures is equal to 20. The contour plots
show differences in distributions of stresses at the moment of unloading for t =
0.1 [s], as well as at the end of analysis for t = 1 [s].

Additionally, Fig. 8 shows the displacement history curves at point A lo-
cated in wearing course (see Fig. 3), constructed for three material models to be
taken into consideration. The results allow to evaluate both the maximum de-
flection and the maximum permanent deflection in the structure. Thus, the max-
imum deflections to be obtained have the values between approx. 2 [mm] (elastic
pavement) and approx. 4.5 [mm] (elasto-plastic pavement). When the load is
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Fig. 4. Contours of equivalent HMH stress in elasto-plastic pavement for t = 0.1 [s].

Fig. 5. Contours of equivalent HMH stress in elasto-plastic pavement for t = 1 [s].
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Fig. 6. Contours of equivalent HMH stress in elasto-viscoplastic pavement for t = 0.1 [s].

Fig. 7. Contours of equivalent HMH stress in elasto-viscoplastic pavement for t = 1 [s].
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Fig. 8. Vertical displacement history curves for various materials of the pavement structure.

removed, the permanent vertical displacements are equal to approx. 1.3 [mm]
(elasto-plastic pavement) and approx. 0.8 [mm] (elasto-viscoplastic pavement).

It should be strongly emphasized that these results must be viewed with some
caution as they are based on insufficient laboratory tests.

Moreover, the results of the elasto-plastic rate-independent analysis may not
be simply obtained basing on Eqs. (3.18) and (3.19) because if η = 0 (no vis-
cosity) then the Eq. (3.18) is singular. The constitutive relationships for the
rate-independent model can be formulated using the procedure described in [8].

5. Conclusions

The numerical studies which have been conducted demonstrate that the ma-
terial model presented in the paper may be used in order to characterize asphalt
pavement’s dynamic behaviour in a wide range of material parameters. As it was
emphasized in the previous section, the detailed analysis needs complex experi-
mental tests to be conducted. The numerical example we presented herein shows
only the applicability of the theory. Additional testing is required of the static
and dynamic ranges of load rates, in order to evaluate plastic and viscous prop-
erties of the material. For example, a somewhat similar material model presented
by Gonzáles et al. [7] was calibrated basing on direct tensile test results carried
out for various strain rates. In our case such an experiment should be completed
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by testing the material in pure shear stress state because of the complexity of
the yield surface.

There exist many possible enhancements to the current model. For instance,
in the case of large pressure-stress states, the material obeying the Mises–Schlei-
cher yield condition does not exhibit the plasticity phenomenon, what leads to
inadequate prediction of inelastic volume changes. Thus, some modification of
the yield function leading to so-called cap models should be also considered [12].
This problems is now being studied by the author.
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WŁODZIMIERZ STANISŁAW TRZYWDAR BURZYŃSKI

(1900–1970)

Was born into the family of a secondary-school teacher of physics in Przemyśl
on the 29th of April 1900. His father Marian Jan Tomasz Trzywdar Burzyński
graduated in Kraków from the Cracow University in physics and astronomy
and received the PhD degree in physics, his mother Wanda (her maiden name
Rutkowska) passed away prematurely when Włodzimierz was only three years
old. Przemyśl, a town near the border of the Austro-Hungarian Empire, was
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converted into a “Przemyśl fortress”. It didn’t help much since in the Spring
of 1915 the fortress was besieged by the Russian Army and the whole Austro-
Hungarian garrison was taken into the Russian captivity. In November 1918,
after 123 years of partition, Poland regained freedom. However this was not
given for granted. The 18 years old Włodzimierz, still a student of the secondary
school, was not accepted by a commission of the Austrian-Hungarian Army due
to his weak health. However after a couple of months, already as a student of the
Lwów Polytechnic, he joined the Polish Army as a volunteer and took part in the
fights with Ukrainians (1st November – 16th December 1918). Next he studied
at the Lwów Polytechnic, Faculty of Civil Engineering, and joined the Polish
Army for the second time (4th – 22nd August 1920) to fight the bolshevics. For
the third time he joined the volunteers and took part in the Silesian Uprising
(3rd May 1921 – 26th of July 1921 in Upper Silesia). For his courage and activity
in fight Włodzimierz Burzyński was honoured with an “Upper Silesian Ribbon
of Courage of the First Class”.

Włodzimierz Burzyński defended his civil engineering diploma with distinc-
tion on 12th of June 1925, in the next year he married Irena Wanda Walkow-
icz on 16th February 1926. The married couple had two sons. In 1922 student
W. Burzyński became an instructor at the Lwów Polytechnic. In 1925 he became
an assistant. Under the supervision of the famous professor M.T. Huber, who
then held the chair of mechanics, he prepared his doctoral thesis on the strength
hypotheses [1] and obtained the Ph.D. degree in February 1928. After years, we
have arrived at the conclusion that the results of Burzyński’s thesis are of lasting
value and should be translated into English and published in [2]. This is so since
after eighty years, there appear some papers devoted to the same topic using
W. Burzynski’s ideas.
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A postdoctoral grant from the Polish Culture Fund enabled him to spend
eight months in Göttingen and Zurich and to get acquainted with many distin-
guished scientists in the field of the solid body mechanics: L. Prandtl (Göttin-
gen) and M. Roš (Zürich) as well as with Th. v. Kármán (Aachen), K. v. Sanden
(Karlsruhe) and R. v. Mises (Berlin). His paper “Über die Anstrengungshypothe-
sen” was published in Schweizerische Bauzeitung [3]. W. Burzyński obtained the
D.Sc. degree for his habilitation thesis entitled “On an expansion of the elastic
potential and its applications” [4] in 1932 and received the title of professor at
the Lwów Polytechnic from the President of the Republic of Poland on the 29th
September 1934. As a result of an open competition, W. Burzyński became the
successor of Professor M.T. Huber at the chair of mechanics. In 1938 Professor
W. Burzyński was elected a corresponding member of the Academy of Technolog-
ical Sciences in Warsaw, and a member of the editorial board of the “Zentralblatt
für Mechanik”. In the same year he was elected the dean of the mechanical fac-
ulty. When Poland was in 1939 partioned again and Lwów was occupied by the
Soviets, Burzyński kept his post of the dean, moreover he became, by a decision
of Polish professors who trusted him, the main adviser to entire staff in the case
when they didn’t know what to do in new circumstances.
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After almost two years, the German troops and Gestapo overtook the town.
All the universities were shut down together with secondary schools in Polish
language. A number of professors from Lwów’s academic schools, together with
many family members, were shot. Another year has passed before the Germans
decided to organise the Fachkursen. Professor W. Burzyński accepted the posi-
tion of the deputy director of the Technische Fachkursen. The representative of
the Polish Government on Exile advised to accept the decision. After mobiliza-
tion of the Ukrainian students (1943) to SS division “Hałyczyna”, the programs
of the courses could resemble those of the polytechnic.
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In July 1944 the town was overtaken by the Red Army (with the help of the
Polish Home Army). The Polytechnics was reopened under a new name and new
Soviet orders. W. Burzyński was appointed the deputy director of the school for
scientific matters. On the fourth of Janury 1945 he was arrested with a number of
the other distinguished professors and spent in prison over 7 months. After release
from prison he spent another year in Lwów teaching students and doing the
research. Professor W. Burzyński left Lwów in July 1946 and went to the Silesian
Institute of Technology where he became the chairman of two chairs, namely that
of the Technological Mechanics on the Faculty of the Mechanical Engineering and
that of the Strength of Materials in Civil Engineering Faculty. In August of 1946
W. Burzyński was elected by an assembly of teachers and students, the new
Rector of the school. Unfortunately the regulations have changed and for over
thirty years there were no elections of the rectors, deans etc. any longer in all
the academic schools in Poland.

Suddenly, in October 1949, his scientific carreer was abruptly terminated by
an incurable disease. In spite of this he was elected a member of Cracow Polish
Academy of Letters, a member of the Warsaw Scientific Society, and an honorary
member of the Polisch Society of Theoretical and Applied Mechanics. Professor
W. Burzyński died in Gliwice on July 17, 1970. In 1982 the Polish Academy of
Sciences published, in two volumes, his “Collected Papers” [5].

Zbigniew S. Olesiak
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BURZYŃSKI YIELD CONDITION VIS-À-VIS THE RELATED STUDIES
REPORTED IN THE LITERATURE

R. B. P ę c h e r s k i

Institute of Fundamental Technological Research
Polish Academy of Sciences

Świętokrzyska 21, 00-049 Warszawa, Poland

The paper is written in accompaniment of the publication of English translation of
W. Burzyński’s paper [1], which deals with the yield criterion for materials revealing the
sensitivity of yield strength to pressure derived by W. Burzyński during preparation of his
doctor thesis in 1927 [2]. More recently the dependence of yield strength on pressure is related
to the so-called strength differential (SD) effect, i.e. asymmetry of elastic range, cf. e.g. [3, 4].
Therefore, the original Burzyński’s formulation of yield condition remains actual and acquires
increasing significance. The position of Burzyński’s energy-based approach in the literature is
reported and his main achievement in this field concerning the recent studies is discussed.

Key words: Burzyński yield condition (criterion), strength differential effect, asymmetry of
elastic range, hypotheses of material effort.

1. Introduction

The aim of the paper is to show that the original results of W. Burzyński

presented in his doctoral thesis [2] are of fundamental significance and remain
important also for recent studies related with modelling of yield and failure of
solids characterized by asymmetry of elastic range and possessing, in general,
anisotropic properties. It concerns, in particular, soils and rocks, e.g. applica-
tions in modelling of interaction of a cutting-tool with geological settings [5], as
well as modern materials, e.g.: polymers [6], different kinds of composites and cel-
lular or porous solids [7, 8], high-strength steels or, in general, ultra-fine grained
alloys and nano-metals [9]. It is worthy to mention that the Burzyński criterion
is cited in the aforementioned papers [5–9]. Therefore, we have decided to pub-
lish English translation of the paper of Burzyński [1] that contains not only
the main results of his doctoral thesis [2], which appeared on January 1928 as
a comprehensive monograph, but presents also his matured view on the state of
the art of yield conditions and failure criteria at that time, which ripened during
the nine months long post-doctoral study travel to Germany and Switzerland,
connected with seminars and discussions with leading specialists in the field, cf.
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the biographical note [10]. From December 1928 until March 1929, W. Burzyński
visited the University of Göttingen, and from April until August 1929 he visited
the Confederate Material Testing Laboratory (Eidgenössische Materialprüfung
Anstalt – EMPA) at the Zurich Polytechnic (ETH – Eidgenössische Technis-
che Hochschule) in Zürich, where, among others, on the 1st of June 1929 he
took part in the 26th Conference of the Swiss Association of Material Test-
ing for Technology (26. Diskussionstag des Schweizerischen Verbandes für die
Materialprüfungen der Technik) and delivered the lecture, published in [11]. Un-
fortunately, W. Burzyński was unable to disseminate his knowledge and defend
his views since 1949, when serious illness terminated his scientific carrier. There-
fore, we would like to share his scientific legacy with the research community,
in particular now, when his concepts concerning the yield conditions have been
confirmed and rediscovered many times independently by many researchers.

2. Burzyński yield condition reported in the literature

The concept of Burzyński yield condition was presented in detail and com-
pared with several later independent propositions by M. Życzkowski [12, 13],
J.J. Skrzypek [14] and M. Jirásek and Z.P. Bažant [15], as well as by
G.S. Pisarenko and A.A. Lebedev [16] and V.V. Bozhidarnik, G.T. Su-

lym [17]. It has been also discussed in recent works on strength theory [18]
and plasticity [19]. The first foreign references can be found in the papers of
G.D. Sandel (1930) [20], H. Geiringer and W. Prager (1934) [21], M. Roš

and A. Eichinger (1949) [22], cf. also the comprehensive discussion on the im-
pact of the Burzyński’s results on the development of yield criteria by A. Bec-

chi [23], in his historical essay concerning the hundred years of studies on the
yield criteria. The strong critics of the previous proposition of G.D. Sandel in
[24] by W. Burzyński in [11], as well as in papers in Polish [1, 2], awoke the
vivid polemics and exchange of letters of the both authors with the editor [25, 26]
and [27].

At that time, the yield criterion proposed by M.T. Huber (1904),
R. v. Mises (1913) and H. Hencky (1924) [28–30], for isotropic solids char-
acterized by equal magnitude of yield stress in tension and compression, was
well established and confirmed experimentally, cf. e.g. [1]. The open question re-
mained, however, in the subject of yield criteria for isotropic materials revealing
different magnitudes of the yield stress in tension and compression, the so-called
strength differential (SD) effect leading to the asymmetry of elastic range. Also
the formulation of yield criteria for anisotropic solids was an open question at
that time; as said in [2], p. 127: “it’s still a thing of a distant future”. Neverthe-
less, the first work on anisotropic yield criteria was published by R. v. Mises

in 1928 [31]. Quite independently, an energy-based approach to the description
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of yield criterion of orthotropic and transversally isotropic materials was pre-
sented in depth by W. Burzyński in [2], as a consistent development of the
energy-based Huber’s approach to isotropic solids [28], cf. also the discussion
in [1], p. 291–292, and the concise remark in [11], p. 261. The contribution of
W. Burzyński was discussed in [12], p. 111: “The generalization of Huber-Mises-
Hencky yield condition in the case of anisotropic bodies may also be achieved by
using energy considerations . . . In the most general case of anisotropy, the elas-
tic energy cannot be decomposed into the energy of volume change and energy of
shape change. This problem was first investigated by W. Burzyński [2], who
proved that the existence of such a decomposition results in five relations between
the elastic moduli, and thus only 16 moduli remain independent”. (In [12], p. 69,
the reference to the known since the publication of Origins of Clerk Maxwell’s
Electric Ideas, Cambridge, 1937, the first proposition of elastic energy of distor-
tion as a measure of material effort by J.C. Maxwell in 1856 is also mentioned).
The Burzyński yield criterion for orthotropic solids and its relation with the con-
dition proposed twenty years later by R. Hill [32] for materials with symmetric
elastic range, as well as for orthotropic solids revealing the SD effect studied
by P.S. Theocaris [33–35] will be discussed independently in the forthcoming
paper [36].

According to the comprehensive analysis of existing criteria in [1] and [2],
the first problem was undertaken already in the Coulomb criterion, which can
be expressed by the following equivalent relations, cf. [2]:

(2.1)

σ1 − σ3

2
+

kc − kt

kc + kt

σ1 + σ3

2
= ks, kcσ1 − ktσ3 = kckt

or ± τ +
kc − kt

2
√

kckt
σ − 1

2

√
kckt = 0,

where kc and kt are the magnitudes of the yield stress at compression and ten-
sion, respectively, while ks is the yield strength in shear, given by the relation

ks
ktkc

kt + kc
, and τ , σ are the shear and normal stresses acting in the plane of shear.

Another approach was related to the Duguet–Mohr hypothesis, which reads [2]:

(2.2)

(σ1 − σ3)
2 + (kc − kt)(σ1 + σ3) = kckt,

τ2 +
kc − kt

2
σ − (kc + kt)

2

16
= 0.

These conditions have been, however, completely rejected by the researches at
that time because of the just detected large discrepancies with experimental re-
sults, which were related, inter alia, with the lack of influence of the intermediate
principal stress, [1, 2, 11]. This problem was also studied by G.D. Sandel [24],
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who assumed that the measure of material effort is the shear strain that depends
linearly on volumetric change of strain, which led to the following equivalent re-
lations:

(2.3) (n + 1)σ1 + nσ2 + (n − 1)σ3 ≤ 2ks, kcσ1 +
kckt

2
σ2 − ktσ3 = kckt,

where n =
kc − kt

kc + kt
, ks =

ktkc

kt + kc
.

Then the problem was undertaken, within the framework of energy-based ap-
proach, by F. Schleicher (1900–1957), cf. the short biographical note in [38],
who presented his results during the application lecture delivered on the 8th of
May 1925 at the Technische Hochschule Karlsruhe, in the summary of the pre-
sentation at the autumn 1925 GAMM conference in Danzig (Gdańsk) [39] and
published as a full paper in [40]. Also R. v. Mises mentioned the possibility of ac-
counting for the SD effect assuming that the yield strength depends on pressure,
in the editorial note to the paper of F. Schleicher [40], p. 199: “Eine mit der
hier entwickelten wesentlich gleichlautende Plastizitätsbedingung ist von mir in
einem Vortrage im Ausschuß für Technische Mechanik des Berliner Bezirksvere-
ines deutscher Ingeniueure am 17. Juli 1925 mitgeteilt worden. Ich habe dabei
namentlich gezeigt, wie die neue Hypothese, die eine konsequente Erweiterung
der von mir im Jahre 1913 eingeführten darstellt, durch die neuen Versuche
von Lode notwendig gemacht und durch sie voll bestätigt wird. Die Bezeichnung
“Energiekriterium” lehne ich ab, da der in Frage kommende Ausdruck für den
plastischen Körper kein Mass der Energie bildet. R. v. Mises”.

(One of developed here, essentially similar yield condition has been announced by myself in

a lecture delivered during the meeting of the Commission of Technical Mechanics of the Berlin

Branch of the German Association of Engineers on the 17th of July 1925. I have particularly

shown by that how the new hypothesis, which is a consistent extension of that one introduced

by myself in the year 1913, appeared necessary due to the new experimental investigations by

Lode and also gained full confirmation by these experiments. I am rejecting the notion “energy-

based criterion” because the pertinent relation for the case of plastic bodies gives no measure of

energy).

F. Schleicher proposed in [40] an energy-based hypothesis, in which the
equivalent stress reads:

(2.4) σvf =
√

2EΦ = f(p),

where E is the Young modulus, Φ is the total elastic energy density and p is

the pressure p =
σ1 + σ2 + σ3

3
and f is a certain function which, according

to the assumption of F. Schleicher, can be linear or parabolic with respect to
pressure p. In particular, the following relation can be obtained in the space of
principal stresses:
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(2.5) σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ3σ1)

+ (kc − kt)(σ2 + σ2 + σ3) = kckt,

where µ is the Poisson ratio. The Schleicher’s application of the total elas-
tic energy density as a measure of material effort was strongly criticized by
W. Burzyński in his paper published in German [11], as well as in his earlier
doctoral thesis [2] and the later paper written in Polish [1]. The discrepancy
with the experimental data discussed in [40], the unrealistic transition to the
Beltrami criterion for kt = kc and the presence in the yield condition (2.5) of the
Poisson ratio µ, were mostly criticized. In contrast to G.D. Sandel, F. Schleicher
neither answered to the Burzyński’s critics nor referred to any of his papers.
Nevertheless, he changed his view on the measure of material effort and in the
next paper, published on the 13th April 1928 in [41], he replaced in (2.4) the
total elastic energy Φ by the density of elastic energy of distortion Φf :

(2.6) σg =
√

6GΦf = f(p).

Discussing the possible applications of the general form (2.6), F. Schleicher
suggested the application of linear dependence of the equivalent stress on pres-
sure to certain brittle materials. In such a way, he is arriving at the cone in the
coordinates (σg, p), what corresponds also with a certain special linear form of
Burzyński criterion, cf. [1], p. 289, and to the similar condition derived later by
Drucker and Prager [3]. Considering (2.6) in an equivalent form

(2.7)
1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ2 − σ3)2 = F (p),

one obtains the relation proposed in [2], p. 183, as a certain generalization of
Mohr’s criterion. Similar generalization was considered later by some authors,
e.g. A. Nadai [42], p. 225–228.

3. Conclusions

The more careful study of the discussed above problem leads to the conclusion
that as a matter of fact there is not the dependency of the yield strength on
pressure that is essential for the adequate formulation of yield condition, but
it is rather the proper relation between the densities of energy of distortion
Φf and volumetric change Φv for different materials under varying states of
stress. The physically justified interplay of the both parts of elastic energy at
the elastic limit, which defines in a proper way the material effort at a given
state of stress, is a key point of the formulation of an adequate yield function
and yield condition. This problem was underlined and discussed in recent papers
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of R.M. Christensen [43, 44]. One of main achievements of W. Burzyński

was, according to our opinion, that he had solved this crucial question in an
original way proposing the following formulation for the hypothesis of variable-
volumetric-distortional limit energy, cf. [1], p. 288:

(3.1) Φf + η(p)Φv = K,

where a particular form of the pressure dependency of the function η(p) is as-

sumed, η = ω+
δ

p
. The core of Burzyński’s idea is the exchange of three material

parameters: ω, δ, K, appearing in (3.1) with the triplet of material constants, kt,
kc, ks known from experiments of tension, compression and simple shear. The
other form of the function η(p) could be also considered in order to account for
the ductile-brittle transition under the tri-axial states of stress in a considered
material. The Eq. (3.1) leads to one of possible formulations of the W. Burzyński
yield condition

(3.2) σ2
1 + σ2

2 + σ2
3 − 2λ(σ1σ2 + σ2σ3 + σ3σ1)

+ (kc − kt)(σ2 + σ2 + σ3) = kckt,

where λ =
kckt

2k2
s

− 1 and, depending on the sign of λ and the relation between

material constants kc, kt and ks, the Eq. (3.2) can represent in the axes of
principal stresses a paraboloid, ellipsoid or a cone of revolution, cf. the discussion
in [1], p. 289. Similar formulations were repeated independently during the last
eighty years over and over by many researches, often without the clarity of the
in-depth analysis and physical foundations of Burzyński’s work.
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