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VIBRATIONS OF TIMOSHENKO BEAMS ON TWO-PARAMETER
ELASTIC SOIL

N. M. A u c i e l l o

Department of Structural Engineering
University of Basilicata

Via dell’Ateneo Lucano, 10 – 85100, Potenza, Italy

In this paper the influence of the two-parameter elastic soil on the dynamic behaviour of
a beam with variable cross-section is examined, in the presence of conservative axial loads. The
beams are assumed to follow the well-known Timoshenko hypotheses, in order to take into ac-
count both the rotary inertia and shear deformation effect. The Rayleigh–Ritz approach is used
and Boundary Characteristic Orthogonal Polynomials are chosen as trial functions; (BCOPs
method [2]). The theory is concisely presented in a matrix form, so that the contribution of
the rotary inertia and of the soil can be easily recognized. Various examples and comparisons
are illustrated, in order to emphasize the influence of the soil properties and of the beam taper
ratio. Finally, the results are also compared with the results given by other authors, using exact
and approximate approaches.

Notations

H depth of soil,
A, Ao cross-sectional area of beam; cross-sectional area of beam in x1 = 0,

KU , Kw, KG matrices in Eqs. (3.7), (3.8), (3.9),
E, G Young’s modulus; shear modulus of beam,
I, Io area moment of inertia; area moment of inertia in x1 = 0,

k shear factor,
kw, kG Winkler, first coefficient of the elastic soil; second coefficient,
K, M stiffness matrix; mass matrix,

L length of the beam,
N , P axial force; non-dimensional parameter,

Pc critical buckling load parameter,
q1, q2 vector coefficients of trial function in Eqs. (3.1), (3.2),

r radius of inertia of the beam, Eq. (4.4),
v, R vectors Eq. (2.8),

U , UP strain energy; energy of axial force,
u1, u2, u3 displacements of beam,

Ωi i-th non-dimensional eigenfrequency of beam; Eq. (4.4),
Φ, Ψ shape functions,

α thickness ratio; Eq. (4.1),
ϕ rotation of the cross-section,

γS shear deformation,
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γ parameter of foundation; Eq. (2.13),
σ, ε stress and strain vectors,

υS Poisson’s coefficient,
ρ mass density,

λw, λG non-dimensional parameters of soil; Eq. (4.3),
ωi natural frequency.

1. Introduction

Various engineering problems can be traced back to the dynamic analysis of
beams on elastic soil, and quite frequently the soil behaviour is approximated by
the well-known Winkler model, according to which the soil is viewed as a distribu-
tion of mutually independent axial springs, thus neglecting the shear-contributed
load causing constant displacements, and consequently – no bending of the beam.
This drawback can be eliminated by adopting more refined two-parameter elas-
tic models, which take into account the shear properties of the soil. Both the
classical Filonenko and Pasternak models define an additional soil parameter in
order to simulate an interaction between the springs, whereas Vlasov [8] aims
to consider the influence of the elastic medium depth. According to this the-
ory, Vallabhan and Das [9] proposed a variational procedure, which leads to
a simplified form of the second elastic soil parameter.

Most contributions to the dynamic analysis of beams on a two-parameter
elastic soil refer to slender beams, so that the classical Euler–Bernoulli hypothe-
ses are usually accepted. Quite recently, a finite element procedure for the free
vibration frequencies of slender beams on the Vlasov soil has been proposed by
Franciosi and Masi [6].

If the beam cannot considered to be slender, it is convenient to adopt the
Timoshenko theory, which takes into account both the shear deformations and
the rotary inertia of the beam, and what nevertheless leads to a manageable dif-
ferential problem. An exact solution for stiffness matrix for a Timoshenko beam
on Winkler soil has been given by Chen and Panteldes [3], taking into account
the effects of the axial forces, whereas De Rosa [5] has given the free vibration
frequencies of Timoshenko beams with constant cross-section, resting on a two-
parameter elastic soil, using two different models of the second soil parameter.

Semi-analytical and numerical approaches are obviously not limited to beams
with constant cross-section. In the finite element context, a four-node element
has been proposed by Yokoyama [10], for Rayleigh and Timoshenko beams,
and the same author, in a later paper [11], considered the effects of axial forces
and different boundary conditions. Finally, a refined cubic-quintic element has
been implemented by Bruno et al. [4].

A different approach has been used by Filipich and Rosales [7], according
to which the Rayleigh quotient is optimized and the fundamental frequency can
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be detected with great precision. On the other hand, the higher frequencies
cannot be found whit sufficient accuracy.

In this paper we aim at a general method for estimation of the free vibration
frequencies of Timoshenko beams with varying cross-section and non-classical
boundary conditions, resting on varying two-parameter elastic soil. The analysis
uses a variational Rayleigh-Ritz approach and sets of modified orthogonal poly-
nomials, which can cope with different approximation degrees of displacements
and rotations [2].

2. Formulation of the problem

Let us consider an isotropic beam with varying cross-section, resting on two-
parameter elastic soil and subjected to a conservative axial load at the end.
A Cartesian reference frame is x1, x2, x3, such that x1 becomes the beam axis,
whereas x2, x3, are assumed to be the principal axes of the cross-section. If
the Timoshenko model is assumed to be valid, then the displacements can be
written as:

(2.1) u1 = −x2ϕ(x1, t), u2 = u2(x1, t), u3 = 0,

where ϕ(x1, t) is the rotation of the cross-section, which turns out to be different
from the rotation θ of the neutral axis, so that the difference

(2.2) γS =
∂u2

∂x1
− ϕ

gives the additional rotation due to the shear deformation.
According to (2.1), the strain components are given by:

(2.3) ε =







−x2
dϕ

dx1
du2

dx1
− ϕ






.

If the derivative with respect to x1 is written as an apex, the Hooke’s law for
isotropic material gives the corresponding stress components:

(2.4) σ = Dε =

[

EI 0
0 GA

] [

−x2ϕ
′

u′2 − ϕ

]

=

[

−EI x2ϕ
′

kGA (u′2 − ϕ)

]

,

where A is the cross-sectional area, I is the moment of inertia, E is the Young’s
modulus, G is the shear modulus, and k is the shear factor.

The strain energy can be written as:

(2.5) U =
1

2

∫

V

σT εdx1 =
1

2

∫

V

εTDεdx1,
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and using (2.3) and (2.4):

(2.6) U =
1

2

L
∫

0

[

−EIϕ′

kGA(u′2 − ϕ)

]T [

−x2ϕ
′

u′2 − ϕ

]

dx1

=
1

2

L
∫

0

[

EI(ϕ′)2 + kGA(u′2 − ϕ)
]

dx1,

after integration with respect to the cross-sectional area A.
The potential energy of the axial force N at the end is a quadratic function

of the displacements, which can be written as:

(2.7) UP =
N

2

L
∫

0

u′2dx1.

Finally, the kinetic energy of the system is equal to:

(2.8) T =
1

2

L
∫

0

.
v

T
R

.
v dx1,

where v and R are given by:

v =

[

u2

ϕ

]

,(2.9)

R =

[

ρA 0
0 ρI

]

,(2.10)

respectively, where ρ is the mass density of the beam.
From (2.8) it is possible to separate the variables, and the kinetic energy

becomes

(2.11) T =
ω2

2

L
∫

0

ρ(u2
2A+ ϕ2 I) dx1.

According to Winkler, the pressure at the generic point is linearly propor-
tional to the corresponding displacement, but quite often this Winkler hypothesis
cannot be considered to be valid and more refined pressure-displacement rela-
tionships must be accepted, as for example:

(2.12) p(x1) = kw u2 − kG
d2u2

dx2
1

,
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where the physical interpretation of the second parameter kG varies according to
the different model proposed. For example, the Filonenko–Borodich soil parame-
ter kG is the tensile force of an ideal membrane connecting the Winkler spring,
whereas Pasternak assumes that the second parameter is equal to the shear force
between the foundation and the soil.

A more refined model is considered by Vlasov, assuming that the foundation
rests on an elastic half-plane, and some simplifying hypothesis allow us to express
the second soil parameter as:

(2.13) kG = γ
ES

(1 + υS)
,

where ES is the elastic modulus of the soil, υS is the Poisson coefficient, and
γ is a coefficient which depends on the foundation geometry. If ES and υS are
assumed to vary linearly with the depth H, a variational procedure, as sug-
gested by Vallabhan and Das [9], gives a simple expression for the elastic soil
parameters.

In any case, the strain energy of the soil can be calculated by using (2.12),
and regardless of the particular model, it can be written as:

(2.14) US =

L
∫

0

[

kw u
2
2 + kG

(

d2u2

dx2
1

)2
]

dx1.

3. Approximate analytical solution

An approximate solution for the problem at hand can be obtained by assum-
ing that the displacements u2 and the rotations φ can be expressed as

û2(x1) =

n
∑

i=1

aiΦi = Φ
Tq1,(3.1)

ϕ̂(x1) =
n

∑

i=1

biΨi = Ψ
Tq2,(3.2)

where q1 and q2 play the role of generalized coordinates, whereas Φi and Ψi are
the shape functions which must obey the only geometric boundary conditions.
If this expression are inserted into the strain energy formulae, then a discrete
structural system is obtained, with a finite number of degrees of freedom. The
strain energy (2.6) becomes:
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(3.3) U =
1

2

L
∫

0

EI(qT
2 Ψ

′
Ψ

′Tq2)dx1

=
1

2

L
∫

0

kGA
[

Φ
′Tq1 − Ψ

Tq2

]T [

Φ
′Tq1 − Ψ

Tq2

]

dx1,

where the strain energy (2.14) due to the elastic soil is given by

(3.4) US =
1

2

L
∫

0

kw

(

Φ
Tq1

)T (

Φ
Tq1

)

dx1 =
1

2

L
∫

0

kG

(

Φ
′Tq1

)T (

Φ
′T q1

)

dx1

and the potential energy of the axial load (2.7) transform as follows:

(3.5) UP =
N

2

L
∫

0

q1Φ
′
Φ

′Tq1dx1.

If the elastic soil parameters kw and kG are assumed to be constant along the
beam axis, then the total potential energy of the system can be written as

(3.6) Ut =
1

2
qT [KU + kwKw + (kG −N)KG]q =

1

2
qTKq,

where the coordinates have been substituted into the column vector
q = [q1 q2]

T and:

(3.7) KU = kG

L
∫

0

A

[

Φ
′
Φ

′T −ΨΦ
′T

−ΨΨ
′T

ΨΨ
T

]

dx1 + E

L
∫

0

I

[

0 0

0 Ψ
′
Ψ

′T

]

dx1,

Kw =

L
∫

0

[

ΦΦ
T 0

0 0

]

dx1,(3.8)

KG =

L
∫

0

[

Φ
′
Φ

′T 0
0 0

]

dx1.(3.9)

The KU matrix is the sum of the bending and shear stiffness matrices, whereas
Kw is the Winkler soil stiffness matrix. The stiffening effect of the second soil
parameter is clearly indicated in (3.6), because kG and the axial force N both
multiply the same geometric stiffness matrix KG.
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Finally, if the mass density is assumed to be constant along the beam, then
the assumptions (3.1) and (3.2) lead to the following matrix form of the kinetic
energy (2.11):

(3.10) T =
ω2

2

L
∫

0

ρ
[

A
(

q1ΦΦ
Tq1

)

+ I
(

q2ΨΨ
Tq2

)]

dx1 =
ω2

2
qTMq,

where

(3.11) M =

L
∫

0

ρ

[

AΦΦ
T 0

0 IΨΨ
T

]

dx1.

The mass matrix M can be divided into the mass matrix due to the transverse
displacements and the mass matrix due to the rotary inertia. A trivial application
of the well-known Hamilton principle leads to the following eigenvalue problem:

(3.12) (K − ω2M)q = 0,

which in turn leads to the frequency equation

(3.13) det(K − ω2M) = 0.

It has been already mentioned that the shape functions must obey only the
geometric boundary conditions, so that it will be possible to write:

Φ1(x1) =

nu
∑

j=0

ajx
j
1,(3.14)

Ψ1(x1) =

nϕ
∑

j=0

bjx
j
1,(3.15)

where nu and nϕ are the geometric conditions which must be imposed on the
vertical displacements and rotations, respectively. The coefficients ai and bi can
be determined imposing the boundary conditions, whereas the higher-order func-
tions can be sought by means of the Gram–Schmidt [12] iterative method.

The geometric boundary conditions at the ends of the beam can be written
as follows:

Pinned–Pinned:

(3.16) x1 = 0, x1 = L⇒ u1 = 0 ;
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Pinned–Clamped:

(3.17) x1 = 0 ⇒ u1 = 0, x1 = L⇒
[

u1 = 0
u1,1 = 0

;

Clamped–Free:

(3.18) x1 = 0 ⇒
[

u1 = 0
u1,1 = 0

, x1 = L⇒
[

u1 6= 0
u1,1 6= 0

.

4. Numerical examples

In order to test the method suggested above, some numerical examples have
been performed, for a beam with arbitrarily varying cross-section, with the area
and moment of inertia given by the general relationships:

A(x1) = A0

[

1 + α
x1

L

]

,(4.1)

I(x1) = I0

[

1 + α
x1

L

]3
,(4.2)

where A0 and I0 are the cross-sectional area and moment of at the abscissa
x1 = 0. It is also usual to introduce the following non-dimensional parameters:

(4.3) P =
NL2

π2EI0
, λw =

kwL
2

EI0
, λG =

kGL
4

π2EI0
,

whereas the free vibration frequencies are usually written as:

(4.4) Ω2
i = ω2

i L
4ρA0

EI0
, r2 =

I0
A0

.

As the first comparison, let us consider the beams with constant cross-section,
subjected to axial forces as studies by Yokoyama [11] by means of a finite
element approach. The Poisson coefficient is equal to 0.25, E/G = 2.5, the
cross-section is assumed to be rectangular, and consequently, the shear factor is
given by k = 2/3. In the following we have used 5 polynomial trial function in
order to approximate both the displacements and rotations, so that the resulting
problem has 10 degrees of freedom. The first three frequency coefficients Ωi have
been calculated for pinned-pinned (P-P) beam and for an pinned-clamped (P-C)
beam. The results are given in Table 1 together with the free frequencies as given
in [11] for a finite element mesh with 16 elements. The full agreement with the
exact frequencies is quite evident, small discrepancies can be noticed only for
the higher frequencies, but the error turns out to be smaller than 0.2%.
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Table 1. First three non-dimensional frequencies for beams
(constant cross-section).

P λW λG

P-P P-C

Exact Present [11] Exact Present [11]

0 0 0 8.210 8.214 8.220 10.630 10.626 10.630

24.230 24.228 24.310 25.620 25.616 25.710

41.540 41.545 41.960 42.030 42.035 42.460

0.6 3.470 3.466 3.470 7.320 7.323 7.330

19.220 19.280 19.310 20.930 20.931 21.030

35.080 35.352 35.480 35.700 35.750 36.160

0.6 π4 8.210 8.214 8.220 10.460 10.481 10.490

20.590 20.645 20.670 22.200 22.207 22.300

35.860 36.126 36.250 36.500 36.508 36.900

1 12.638 12.640 14.419 14.420

28.075 28.100 29.248 29.340

46.191 46.340 46.281 46.710

In order to study the influence of the soil parameters, let us consider, as a
first example, the pinned-pinned beam and the clamped-free (C-F) beam with
constant cross-section in the absence of axial forces. The first two frequency
parameters are given in Figs. 1, 2 and in Figs. 3, 4 for the (P-P) beam and for
the cantilever beam, respectively, where the solid lines refer to Ω1 and the dashed

Fig. 1.
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lines refer to Ω2. Two different λG values have been considered, i.e. λG = 0 (△)
and λG = 1 (2). It is worth noting that, regardless of the r value, the influence
of λG is reduced as λw increases, and the stiffening effect for large λw values
causes the coalescence of the first two vibration frequencies.

Fig. 2.

Fig. 3.
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Fig. 4.

The influence of axial load and of the taper ratio (α) on the fundamental fre-
quencies is illustrated by the graphs in Figs. 5–7. For all the boundary conditions
the frequency parameter Ω goes to zero as P/Pc → −1. Finally, the influence
of the taper ratio α seems to be relevant for the cantilever beam, whereas it is
less important for simply-supported beam and pinned-clamped beam. In Table 2
the non-dimensional critical loads are given, which have been used to obtain the
previous pictures.

Fig. 5.
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Fig. 6.

Fig. 7.

Table 2. Critical parameter (Pc) for different boundary conditions.

r = 0.1 λG = 1 λW = 0.6 π4 k = 2/3

α −1 −0.9 −0.75 −0.5 0 0.25 0.5 0.75 1 1.25

C-F 1.0255 1.0643 1.178 1.373 1.7415 1.904 2.056 2.19 2.323 2.434

P-F 1.0254 1.0665 1.1779 1.362 1.7269 1.894 2.045 2.177 2.289 2.382

P-P 1.0612 1.1463 1.3946 1.785 2.3298 2.546 2.749 2.935 3.104 3.253

P-C 1.1467 1.3443 1.5951 2.036 2.5908 2.827 3.031 3.204 3.359 3.464



VIBRATIONS OF TIMOSHENKO BEAMS ... 199

The use of BCOPs method to calculate free vibration frequencies and crit-
ical load is always influenced by trial functions, and a careful choice leads to
well approximated results. In turn, the trial functions depend on the boundary
conditions, so that it seems to be convenient to use polynomials.

5. Conclusion

In this paper, a powerful version of the Rayleigh–Ritz variational method has
been applied to the vibration analysis of Timoshenko beams on a two-parameter
elastic soil. The influence of various structural parameters on the behaviour of
the free vibration frequencies has been illustrated in various numerical examples.

The proposed approach belongs to the so-called semi-analytical methods
(SAN methods), and as such it can be considered as a useful tool in purely
numerical approaches (finite element methods, differential quadrature methods
etc.), in which all the parameters must be defined from the very beginning.

The numerical examples show the reliability of the method, and the particular
efficiency of the chosen trial functions.
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MATERIAL DESIGN OF ANISOTROPIC ELASTIC CELLULAR BODIES
WITH RESPECT TO CONTACT PROBLEM

D. J a s i ń s k a, M. J a n u s – M i c h a l s k a

Institute of Structural Mechanics
Cracow University of Technology

Warszawska 24, 31-155 Kraków, Poland

Two-dimensional contact problem formulated for anisotropic, elastic bodies is considered.
As an example of anisotropic medium, the cellular material is taken. The idea of two-scale
modeling is adopted for formulation of an equivalent continuum, on the basis of which elastic
properties can be obtained [2, 3]. Typical cellular microstructures with various types of symme-
tries are considered. Special attention is paid to cell structures giving negative Poisson’s ratio
in some directions (re-entrant cells). Application of the energy-based criterion for equivalent
continuum gives macroscopic yield condition [2, 5]. Condition for the energy coefficient defined
as a sum of weighted energies stored in elastic eigenstates ensures that the material works in
elastic state. Unilateral frictional contact problem is analyzed using FEM. Calculations are
performed for rough contact of square block subjected to normal load. Numerical solutions
show differences in deformation type and contact stress distributions for different types of
microstructures of the analyzed medium. The study enables the optimal choice of material
structure topology, which ensures the reduction of peak contact pressure and friction stress,
and applicability of anisotropic material to the given problem.

Key words: contact, friction, cellular anisotropic materials, negative Poisson’s ratio.

1. Introduction

Cellular materials, with their variety of microstructures and types of ma-
terial symmetries, adopted for contact problems, provide interesting topics for
research. Two-scale modeling let us calculate the elastic properties of equivalent
continuum on the basis of unit cell analysis. Some cell structures lead to nega-
tive Poisson’s ratio in some directions. Materials with negative Poisson’s ratio
are called auxetic due to increasing cross-section in tension. They may be useful
for a variety of applications. Among their important mechanical properties the
reduction of stress concentration in contact problems shows a new area of appli-
cations. Such problem was investigated for auxetic isotropic foam [11, 12] and
the results show essential differences compared with the solutions for conven-
tional foams. For three-dimensional isotropic body limits of acceptable Poisson’s
ratio hold −1 ≤ ν ≤ 0.5 as a result of thermodynamical considerations [7, 10].
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For anisotropic materials these bounds are wider, theoreticaly they can reach
infinity. The existence of directions with auxetic behaviour in cellular materials
is connected with high anisotropy.

2. Formulation of the contact problem

For the unilateral static contact problem of anisotropic linear elastic body
with stiff and rough obstacle, the following system of equations must be ful-
filled [3]:

(2.1) σij,j + fi = 0, σij = Sijklεkl, εij =
1

2
(ui,j + uj,i) in Ω

completed with boundary conditions

(2.2) ui = ûi on ΓD, σij · nj = ti on ΓF,

contact conditions on ΓC

(2.3) σn · (un − g) = 0, σn ≤ 0, un − g ≤ 0

and friction conditions on ΓC

(2.4) |σT | < µ |σn| ⇒ ∆uT = 0, |σT | = µ |σn| ⇒ ∃λ > 0; ∆uT = −λσT ,

where σij – Cauchy stress tensor, εij – small strain tensor, Sijkl – anisotropic
elastic stiffness matrix, ui – displacement vector, fi – body forces, ûi – prescribed
displacements on ΓD, ti – forces acting on ΓF , ni – unit normal vector, ΓD∪ΓF ∪
ΓC – boundary of the domain Ω, g – initial gap, σn = σijninj – contact pressure,
un = u ◦ n – displacement normal to the boundary, σT i = σij · nj − σn · ni –
tangential contact force, and ∆uT = ∆(u − un · n) – increment of tangential
displacement.

To solve the boundary value problem formulated above (nonlinear due to
conditions (2.3) and (2.4)), the FEM approach is used.

3. Cellular microstructure

Cellular materials, due to a variety of material structure topology, reveal dif-
ferent anisotropic properties. Microstructure of material is modeled by idealized
regular repeating pattern of unit cells. A skeleton of a cell is modeled as an
elastic beam structure with stiff joints. The following cellular plane structures
are analyzed: a) square cell structure, b) ‘honeycomb’ structure, c) equilateral
triangular structure, d) ‘reentrant’ structure (giving auxetic material).
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These structures represent a unit thickness layer cut from 3-dimensional ma-
terial working in plane strain state. Figure 1 shows the structures mentioned
above and their representative unit cells.

a) b)

c) d)

Fig. 1. Regular cellular plane structures, and their representative unit cells: a) square cell
structure, square unit cell, b) ‘honeycomb’ structure, triangle unit cell, c) equilateral
triangular structure, hexagonal unit cell, d) ‘reentrant’ structure, trapezoid unit cell.

Geometry of a representative unit cell can be described by midpoint position
vectors: b

0
i , where

∣

∣b
0
1

∣

∣ = h/2,
∣

∣b
0
i

∣

∣ = L/2, i = 1, 2, ...n. L, h, t, γ – geometric
structural parameters (for a), b), c) structures L = h). Skeleton material parame-
ters are: Young’s modulus – Es, Poisson’s ratio – νs, limit of linear elasticity – Re.

3.1. Stiffness matrices

A framework of micromechanical modeling [2, 3, 5] is used to obtain stiffness
matrices of an elastic anisotropic equivalent continuum. It starts with analyzing
uniform macrostrains over the unit cell defined as follows:

(3.1) ε = 〈εs〉V =
1

V

∑

Ai

sym (ni ⊗ ui) dS,

where ui – midpoint displacement vector, ni – unit normal to the cell boundary,
V – volume of the representative cell, Ai – area of cell wall perpendicular to
i beam.

The model assumes that macrostrains of equivalent continuum are defined by
midpoint displacements of the skeleton structure. In terms of 6-D space (Kelvin
notation), plane strain tensor is represented by vector ε =

(

εx, εy,
√

2εxy

)

and
stiffness tensor representation is a 3 × 3 matrix.
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Given uniform unit strain fields K ε̃, K = 1, 2, 3 on the unit cell, as written
below:

(3.2)1
1ε̃ = (1, 0, 0) , 2ε̃ = (0, 1, 0) , 3ε̃ =

(

0, 0,
√

2
)

,

the displacements for the midpoints i = 1, 2, ...n in skeleton structure can be
found:

(3.2)2 ∆i = ∆i(
K ε̃), i = 1, 2, ...n, K = 1, 2, 3.

Next the forces normal K F̃in and tangential K F̃iτ to each skeleton beam
are obtained with the use of the Timoshenko beam theory. For structures a),
b), and c) these are analytical solutions. For a reentrant structure d) forces are
calculated numerically (using FEM ANSYS code). These forces produce stress
field on macroscale (in equivalent continuum) σ̃, and on microscale (in skeleton
material) σ̃s.

For arbitrary uniform strain state represented by vector ε =
(

1ε,2 ε,3 ε
)

, the
forces can be calculated as linear combination of previous solutions as follows:

(3.3) Fin (ε) =

3
∑

K=1

KεK F̃in, Fiτ (ε) =

3
∑

K=1

KεK F̃iτ .

The definition of effective continuum assumed here is based on equivalence
of the strain potential for the discrete structure and the strain potential of an
equivalent continuum. It refers to averaging the strain energy density as written
below:

(3.4) ΦE = 〈sΦE〉V =
1

V

∫

Vs

(sΦE) dVs,

where strain potential of the beam skeleton may be obtained using the following
formula:

(3.5) U =

∫

Vs

(sΦE) dVs

=
3

∑

i=1





li
∫

0

(Fni)
2 dξi

2EsAs
+ µ

li
∫

0

(Fτi)
2 dξi

2GsAs
+

li
∫

0

(Fτi (li − ξi))
2 dξi

2EsJ



,

where Es, Gs – Young and shear modulus for the skeleton material, As, J – beam
cross-sectional area and moment of inertia, µ – energy cross-sectional coefficient
(for rectangular cross-section µ = 1.2).
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Due to linearity of the stress-strain relationship, the strain energy density
function is represented by the following quadratic form:

(3.6) ΦE =
1

2
ε : S : ε.

Introducing relation (3.3) to the expression of strain potential and differen-
tiating it with respect to macrostrain components as follows:

(3.7) SIJ =
1

V







∫

VS

∂2
(

SΦE

)

∂ (Iε) ∂ (Jε)
dVS






,

one obtains the formula for stiffness matrix components of an anisotropic equiv-
alent continuum.

These components can be obtained as a result of a procedure based on
Eqs. (3.1)–(3.4) and (3.6)–(3.7) [2].

3.2. Poisson’s ratio and other material properties

Typical cellular structures with honeycomb and triangular shape of skeleton
give always positive Poisson’s ratio values in each direction in plane since they
represent transversal symmetry. For isotropy in two-dimensional problems, lim-
its of acceptable Poisson’s ratio become −1 ≤ ν ≤ 1 due to thermodynamical
considerations [9]. The honeycomb structure is more compliant and Poisson’s
ratio can attain greater value, but limited by relation ν ≤ 1. The triangular
structure shape is stiff and gives lower Poisson’s ratio. The value of Poisson’s
ratio for the symmetries mentioned above is constant; it means that it is in-
dependent of the direction of tension. This constant is dependent on geometric
and material microstructural parameters as given in Appendix B. Square struc-
ture gives anisotropic material with zero Poisson’s ratio in symmetry axis. In
other directions the value is limited by relation 0 ≤ ν ≤ 1. Generally for greater
cellular material density of fixed microstructure type, the Poisson’s ratio value
is lower than for lower density. Some skeleton geometries lead to nonpositive
Poisson’s ratio. For instance, a honeycomb with inverted hexagonal cells leads
to negative Poisson’s ratio in some directions. This unusual characteristics is
achieved by forming the cells into re-entrant shape, which bulges inwards and
which unfolds under tension resulting in a lateral expansion [6]. Detailed study of
directional properties of cellular material with re-entrant honeycomb structure
in dependence on microstructural parameters is given in [2].

Graphical representation of chosen material properties for material struc-
tures a), b), c), d) with geometric and skeleton material data used for numerical
examples are given in Appendix B.
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Evaluation of cellular material properties decides on the applicability of the
material to the given problem.

3.3. Assessment of elastic range

Majority of cellular materials reveal nonlinear behavior. Although linear
analysis gives only estimation of elastic limits, it enables to predict applicability
of chosen microstructure to material design.

Matrix representation of stiffness tensor for plane structures in Kelvin’s no-
tation in 6-D space is as follows:

(3.8) S =





S11 S12 S13

S12 S22 S23

S13 S23 S33



 .

In general this matrix has three eigenvalues: λI, λII, λIII, and the correspond-
ing stiffness matrix eigenstrains:

Iε̃ =
(Iε̃x,

Iε̃y,
Iε̃xy

)

, IIε̃ =
(IIε̃x,

IIε̃y,
IIε̃xy

)

, IIIε̃ =
(IIIε̃x,

IIIε̃y,
IIIε̃xy

)

or stiffness matrix eigenstresses:

(3.9) Iσ̃ = λI
Iε̃, IIσ̃ = λII

IIε̃, IIIσ̃ = λIII
IIIε̃.

Equations (3.1)–(3.4) enable to calculate the forces in skeleton structure for
strain eigenstates and to formulate the limit condition for bending and tension
in the skeleton in the form:

(3.10) max
i

(ασs
x) = Re, α = I, II, III, i = 1, 2, ...n.

The coefficients defined as follows:

(3.11) kα :=
Re

ασ̃s
x

α = I, II, III

are obtained as a result of analytical considerations or numerical calculations.
Analytical formulae for these coefficients depending on geometric structural and
skeleton material parameters for structures a), b), c) are given in Appendix A.
For structure d) these coefficient are obtained as a result of numerical calcula-
tions.

Limit eigenstrains and eigenstresses are as follows:

(3.12) αεgr = kα
αε̃, ασgr = λα

αεgr, α = I, II, III.



MATERIAL DESIGN OF ANISOTROPIC ELASTIC CELLULAR BODIES ... 207

The analysis presented above lets us also predict deformability of the given
material in elastic range. It can be described as maximum elongation in the x, y
direction or shear angle in the xy plane, which reads as follows:

(3.13) max |εx| =
III
∑

α=1

|αεgr
x |, max |εy| =

III
∑

α=1

∣

∣

αεgry

∣

∣, max |εxy| =
III
∑

α=1

∣

∣

αεgrxy

∣

∣.

3.4. Energy-based yield criterion for anisotropic continuum

For an arbitrary anisotropic solid, the energy-based Rychlewski criterion [13]
is formulated in the form of a sum of weighted energies stored in eigenstates of
anisotropy stiffness tensor as follows:

(3.14)
III
∑

α=1

αΦE

αΦgr
E

= 1,

where αΦgr
E is the critical energy for α state, α = I, II, III.

Energy-based yield criterion is a type of energy hypothesis for cellular ma-
terial. The subject of investigation is the limit state of linear elasticity which
corresponds to the first yield point in the skeleton structure. Such an approach
was successively adopted to a cellular 3D structured material [3, 5] and foams.
It shows a good agreement with experimental data [5].

Critical energies in Eq. (3.14) can be calculated by means of the formula:

(3.15) αΦgr
E =

1

2
ασgr · αεgr =

1

2
λαk

2
α

αε̃2.

The criterion presented above gives macroscopic yield condition for arbitrary
stress state, in particular for uniaxial tension, which is important due to the fact
that it can be compared with experimental results. For the considered structures
a), b), c), the formulae depending on skeleton material parameters and geometric
parameters of skeleton structures are given in Appendix A. For structure d) these
energies are obtained numerically.

The elastic stiffness matrix (3.8), yield stresses and limit strains (3.12), (3.13)
describing deformability in the elastic range, depend on material properties of
a solid phase of the cell and topological arrangement of its structure. Detailed
study of material properties depending on structural parameters is given in [2, 3].

3.5. Material strength in arbitrary plane stress state

The considered contact problem is linearly elastic. To conform this require-
ment it is necessary to introduce a measure of material strength in arbitrary
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point of the material and give the range of this measure for elasticity. The con-
sequence of the adopted form of yield criterion is the choice of energy coefficient
defined as a sum of weighted energies stored in subsequent eigenstates as written
below:

(3.16) ϕ =
III
∑

α=1

αΦE

αΦgr
E

.

In the limit state the coefficient reaches its maximum value ϕ = 1. Critical
energies can be defined as structural parameters of the material strength.

For generality of considerations we assume arbitrary orientation of cellular
x, y axes with respect to global X, Y coordinate axes in which the contact
problem is described. This orientation is given by angle β, as shown in Fig 2.

Fig. 2. Material orientation with respect to the global coordinate system.

To evaluate the energy coefficient in arbitrary point M with stress vector:

(3.17) σ(M) =
(

σ
(M)
X , σ

(M)
Y ,

√
2σ

(M)
XY

)

it is necessary to decompose it into stress eigenstates. As a result, the stress vector
for point M can be expressed as a linear combination of limit eigenstresses as
written below:

(3.18) σ(M) = AIσgr +BIIσgr + CIIIσgr,

where coefficients of this combination are as follows:

(3.19)

A =
σ

(M)
X

IIσgr
Y − σ

(M)
Y

IIσgr
X

Iσgr
X

IIσgr
Y − IIσgr

X
Iσgr

Y

, B =
σ

(M)
Y

Iσgr
X − σ

(M)
X

Iσgr
Y

Iσgr
X

IIσgr
Y − IIσgr

X
Iσgr

Y

,

C =
σ

(M)
XY

IIIσgr
XY

.



MATERIAL DESIGN OF ANISOTROPIC ELASTIC CELLULAR BODIES ... 209

The energy coefficient is expressed by relation:

ϕ = A2 +B2 + C2 ≤ 1

which gives the following condition:

(3.20) ϕ = d1

(

σ
(M)
X

)2
+ d2

(

σ
(M)
Y

)2
+ d3

(

σ
(M)
XY

)2
+ d4

(

σ
(M)
X σ

(M)
Y

)

+ d5

(

σ
(M)
X σ

(M)
XY

)

+ d6

(

σ
(M)
Y σ

(M)
XY

)

≤ 1,

where:

d1 = 0.25

[

(

1

m1

)2

+

(

cos 2β

m2

)2

+

(

sin 2β

m3

)2
]

, d2 = d1,

d3 =

[

(

sin 2β

m2

)2

+

(

cos 2β

m3

)2
]

,

d4 = 0.5

[

(

1

m1

)2

−
(

cos 2β

m2

)2

−
(

sin 2β

m3

)2
]

,

d5 = 0.5 sin 4β

[

(

1

m2

)2

+

(

1

m3

)2
]

, d6 = −d5,

m1 = λ1k1, m2 = λ2k2, m3 = λ3k3

/√
2

and β is the angle shown in Fig. 2.

4. Numerical analysis

Calculations of stiffness matrices and energy strength coefficients (mater-
ial parameters) for the considered anisotropic materials are performed indepen-
dently on a microstructural level by considering the strain-stress relations for
a unit cell. Analytical formulae for stiffness matrices coefficients and critical ener-
gies for structures a), b), c) are obtained with application of symbolic operations
provided by the Mathcad program. For structure d) the relevant description can
be obtained numerically by means of FEM system.

Subsequently, those parameters were used in the FEM analysis (with ANSYS
software) of numerical examples presented below.

All examples deal with a rectangular prism in plane state of strain, in rough
contact with stiff flat foundation. Simple geometry and load enable to analyze
the influence of microstructure type on the deformation, contact stresses and
distribution of material strength coefficient.
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4.1. Square block made of material with different cell types under pressure

A square block of dimensions B*H=1*1 m in contact with a stiff foundation
is analysed. The contact is rough with coefficient of friction µ = 0.3. Pressure
p = 25 kN/m is applied to upper edge of the block (see Fig. 3).

Fig. 3. Geometry and load for numerical examples.

Materials of all the types of microstructure presented above are considered.
The skeleton material data are: ES = 10 GPa, νS = 0.3, Re = 10 MPa and the
geometric parameters are chosen to obtain the same relative material density
ρ = 0.1154 of anisotropic cellular media in all cases. Table 1 shows specification
of geometrical parameters for unit cells. Notation of the types of microstructures
are the same as in Fig. 1.

Table 1. Specification of unit cells.

Structure
type

Geometric parameters
of skeleton [mm]

Skeleton beam
thickness t [mm]

a) L01 = L02 = L03 = L04 = 2.6 0.15

b) L01 = L02 = L03 = L04 = L05 = L06 = 1.5 0.15

c) L01 = L02 = L03 = 4.5 0.15

d) L01 = L02 = L03 = 3.15 γ = 700 0.15

Resultant macroscopic material constants are given in Table 2.

Table 2. Anisotropic material constants for cellular materials of different cell
types.

Structure type EX [MPa] EY [MPa] νXY νY X

a) β = 0 576.92 576.92 0.0 0.0

b) 21.87 21.87 0.96 0.96

c) 385.47 385.47 0.33 0.33

d) β = 90◦ 0.13 1.95 −0.26 −3.85
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Analysis of Table 2 leads to the conclusion that macroscopic material con-
stants depend on the type of cellular structure. Resultant Young’s moduli are
the greatest for structures a) and c), smaller for honeycomb structure b) and by
several orders smaller for the re-entrant structure d). Materials of structures b)
and c) are isotropic and have positive Poisson’s ratio. Material of structure a)
has zero Poisson’s ratios and structure d) produces negative Poisson’s ratios,
when unit cell axis are placed parallel to the coordinate frame.

The contact problem with application to the described cellular solids is
solved. Figure 4 shows deformations of a square block for different materials.

a) b)

c) d)

Fig. 4. Deformation of a square block of cellular material: a) square cell (material a)
displacement scale 1500, b) honeycomb cell (material b) displacement scale 50, c) triangle

(material c) displacement scale 1000, d) re-entrant (material d) displacement scale 3.

Differences in deformation types for structures with positive, zero, and neg-
ative Poisson’s ratios can be observed.

Figures 5 and 6, show the relative contact pressure, friction stress distribution
and contact status along the contact line.

It can be clearly seen from Fig. 5 that the most advantageous contact stress
distributions correspond to a material with nonpositive Poisson’s ratio. For ma-
terial a) characterized by νXY = 0, contact pressure is constant and friction
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stress vanishes. For structure d) with νXY < 0 contact pressure is homogenous
in the centre of contact zone, and decreasing near the edges. Friction stress max-
imum appears at the point where slip begins. Figure 6 shows contact separation
at the corners for this material. Structures b) and c), characterized by positive,
constant ν, show the well-known pick contact pressure and friction force at the
corners of the contact zone. This concentration is much greater for structure b)
with ν equal to 0.96 in comparison to material with c) structure where ν attains
the value 0.3.

a)

b)

Fig. 5. Contact pressure and friction stress distribution along the contact line for different
cell types.
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Fig. 6. Contact status (stick slip and separation zones) for different cell types.

During calculations, the energy-based yield criterion (3.20) is checked to en-
sure work in elastic range. Distribution of material strength coefficient for ma-
terials with structures b), c), and d) are shown in Fig. 7. For material with
structure a) the value of this coefficient is constant (ϕ = 1.0E-5). Vanishing of

Fig. 7. Distribution of the material strength coefficient for material of structures b), c), d).
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Poisson’s ratio results in the lack of friction in this loading case. For structures
with positive Poisson’s ratio, the material strength coefficient reaches maximum
in the corners of contact surface as a result of peak contact pressure. Points with
maximum coefficient for structure d) correspond with maximum friction force.
Reduction of the material strength in the center of contact area for structures b)
and d) can be explained by energy considerations in microscale.

For the considered cellular materials, the results of numerical calculations
are summarised in Table 3. The last column of this table presents the ratio of
applied pressure to the admissible vertical load in nonfrictional case (py max) for
estimation of applicability of the chosen material to the given contact problem.

Table 3. Results for different cell types

Structure type σn max/p σt max/p ϕmax p/py max

a) 1 0 0.00001 0.004

b) 3.6 1.08 0.022 0.083

c) 1.85 0.23 0.0002 0.009

d) 1.09 0.28 0.95 0.492

4.2. Square block made of re-entrant cellular material with different location
of cell axis with respect to the contact line

Square block with geometry and contact data as in Example 4.1 with pressure
p = 4 kN/m applied to its upper edge is analyzed. The block is made of re-entrant
cell structure d) with skeleton material data and geometry of the unit cell as in
Table 1, but with different placing of the cell symmetry axis with respect to
the global coordinate system (and subsequently to body geometry, load and
contact line). Calculations were made for three chosen angle values: 0, 45, and
90 degrees (see Fig. 2). Macroscopic, anisotropic material constants for those
cases are presented in Table 4.

Table 4. Anisotropic material constants for different β angles.

β EX [MPa] EY [MPa] νXY νY X p/py max

0 1.954 0.128 −3.85 −0.26 0.31

45 0.104 0.104 0.365 0.365 0.38

90 0.128 1.954 −0.26 −3.85 0.08

Numerical results are visualized in Figs. 8–11. The greatest vertical load ca-
pacity and the smallest Poisson’s ratio νY X = −3.85 correspond to the angle
90 degrees. It causes the reduction of contact pressure, and hence of the fric-
tion stress near the ends of contact line with separation at the corners. A more
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a)

b)

Fig. 8. Contact pressure and friction stress distribution along contact line for different
reentrant cell orientation.

Fig. 9. Contact status (stick, slip, and separation zones) for different re-entrant cell
orientation.

uniform contact pressure distribution appears for the angle of 0 degrees, with
negative, but smaller absolute value of Poisson’s ratio νXY = −0.26. The skew
placement of the cell results in positive Poisson’s ratio, peak contact stresses at
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Fig. 10. Deformation of a square block made of reentrant cell microstructure for different
cell orientations: β = 0 deformation scale 3, β = 45 deformation scale 2, and β = 90

deformation scale 15.

Fig. 11. Distribution of material strength coefficient for different reentrant microstructure
orientation: β=0, β=45, and β=90.

the corners, and unsymmetric deformation despite the symmetric boundary con-
ditions, due to lack of symmetry in microstructure. For 90 degrees angle, despite
the smallest νY X = −3.85, the stick area dominates in contact zone (Fig. 9).
It is caused by domination of the resultant shear modulus over the bulk modu-
lus. Directional proportion G/K reveals dilatational properties of the considered
material and determines the relation of shear and dilatational deformation. For
0 degrees, a more uniform deformation (Fig. 10), and predominance of slip in
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contact area (Fig. 9) is observed. Distributions of material strength coefficient
are presented in Fig. 11. In all cases the reduction of material strength can be
noticed in the center of contact zone. It can be explained by considerations on
a microscale level.

4.3. Square block made of material of square cells with different locations
of cell axis with respect to contact line

For comparison with the previous example, a block with the same geometry,
load and boundary conditions, but made of material with structure a) (square
cell) with different orientations of the cell symmetry axis with respect to global
coordinate system is considered. The chosen angle values are: 0 and 45 degrees
(due to structure symmetry the results for 0 and 90 degrees agree).

Material constants are given in Table 5.

Table 5. Anisotropic material constants for different β angles.

β EX [MPa] EY [MPa] νXY νY X py/py max

0 576.92 576.92 0 0 0.0005

45 3.795 3.795 0.99 0.99 0.018

Figures 12–15 present the results of numerical calculations.

a)

b)

Fig. 12. Relative contact pressure and friction stresses distribution along the contact line for
different square cell orientations.
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Fig. 13. Contact status (stick, slip, and separation zones) for different square cell
orientations.

Fig. 14. Deformation of the body for different square cell orientations: β = 0 deformation
scale 10000, β = 45 deformation scale 50.

Fig. 15. Distribution of the material strength coefficient for square cell structure with
orientation: β = 45.

Skew placement of the cell (β = 45) resulting in high positive Poisson’s
ratio leads to peaks of normal and tangential contact stresses (Figs. 12, 13), and
concentration of the material strength (Fig. 15) in the corners of the contact
line. Directions of reduction of the material strength coefficient for this case
correspond with the maximum stiffness directions (see Appendix B). Unlike the
re-entrant cell, in Example 4.2, deformation in this case is symmetrical, due
to square structure symmetry for 45 degrees. For material orientation given by
β = 0 (νXY = νY X = 0), the contact pressure is constant, friction stress equals
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zero, and the material strength is uniform. The value of the material strength
coefficient is ϕ = 2.5E-7.

Detailed comparison of results of the numerical examples presented above
shows that stress field and contact status depend on macroscopic material prop-
erties, especially on Poisson’s ratio. This ratio for cellular materials depends
mainly on the topology of microstructure. The analysed structures of types b)
and c) give isotropic material with positive Poisson’s ratio and hence high peak
contact pressure and friction stresses.

Structure d) (re-entrant) gives a compliant material with negative Poisson’s
ratios for a broad range of angles (β ∈ (−18◦, 18◦)∪(72◦, 108◦)) (see Appendix B,
point d). So the assumption that deformation at small strains does not influence
the material properties can be adopted in this case. Such a material with proper
placement with respect to the contact line can produce advantageous contact
pressure distributions with reductions in the corners of the contact area.

Structure a), with cell symmetry axis parallel to contact line, gives a very
stiff material with zero Poisson’s ratio. It might seem to be most advantageous
for the class of contact problems presented above (with loads perpendicular to
the contact line and hence without global sliding), because it produces uniform
contact pressure and zero friction stress. However it is worth to notice that
material of structure a) has zero Poisson’s ratio, only for unit cell placed exactly
parallel to the coordinate frame. Graph of dependence of νXY on the angle of
cell orientation shows that for all angles other than 0 and 90, the Poisson’s
ratio is positive and can reach high values, even in the close neighbourhood of 0
and 90 (see Appendix B, point a). The assumption, typical for linear analysis,
that initial configuration of the structure is the reference configuration may be
inappropriate in this case. It may cause that advantageous properties of the
material can be overestimated. Real contact properties, especially for materials
with Poisson’s ratio very sensitive to cell orientation, should be obtained as
a result of full nonlinear analysis, in which anisotropic effective properties of
material are dependent on local configuration of the deformed body.

5. Conclusions

An analysis of static contact of cellular solid with rough stiff foundation is
undertaken. Micromechanical model of cellular material is applied to predict me-
chanical properties on a macroscale. The study is focused on prediction of the
stress distribution in contact zone and the material strength in the elastic range.
Cellular materials, due to a variety of structure topology, what results in different
types of material symmetry and macroscopic properties, can be tailored to special
demands of the given problem. The example of contact shows that differences in
behaviour can be essential and clearly visible. Special attention is paid to materi-
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als with anisotropic properties, especially to materials with re-entrant structure,
which give negative Poisson’s ratio in a certain range of directions. Proper choice
of microstructural geometrical parameters can determine the expected elastic
properties. These properties and the orientation of material symmetry axis with
respect to the load direction can significantly influence the contact stress distri-
bution and may play an important role in reducing the contact peak pressure.
Comparison of a material with square cells with a material of re-entrant structure
allows to point out a more advantageous type of microstructure by discussion of
the influence of directional material properties on the results of given example.

The contact mechanics of cellular materials is important for their friction and
wear behaviour and also, under static conditions, in applications as antivibrating
supports. The first topic requires consideration on a microscale and with the two-
scale modelling approach can be promising area for research. The second topic
requires analysis on a macro scale. The work on this problem started in this
paper can be developed.

Appendix A.

Stiffness matrices, Kelvin moduli, eigenstates

and critical energies

Notation: S – stiffness matrix, λα – eigenvalues of S, αε̃ – strain eigenstates,
kα – scalar multiplier for critical eigenstate, αΦgr

E – critical energies in eigenstates,
α= I, II, III. L, h, t, γ – microstructural parameters (Fig. 1), Es, vs,Re – skeleton
material parameters.
a) Square cell structure

S =













Est

L
0 0

0
Est

L
0

0 0
Est

3

L3













,

λI =
Est

2li
, λII =

Est

2li
, λIII =

Est
3

8l3i
,

Iε̃ = (1, 1, 0) , IIε̃ = (1, −1, 0) , IIIε̃ = (0, 0, 1) ,

kI =
Re

Es
, kII =

Re

Es
, kIII =
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b) honeycomb structure
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c) equilateral triangular structure
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d) Inverted honeycomb, re-entrant structure.
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S, kα, αΦgr
E – obtained numerically.

Appendix B.

Macroscopic material parameters and admissible vertical

pressure in uniaxial tension in dependence on the angle

of tension direction

Skeleton material data: ES = 10 GPa, νS = 0.3, Re = 10 MPa.
Geometrical parameters of microstructures as given in Table 1.
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a) Square cell structure (anisotropic material)
analytical formula:

E =
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3

L
[

t2
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1 − sin2 2α
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(
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,
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π

4
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=
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3
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π

4

)
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(

L2 − t2
)

L2
,

analytical formula:

pmax =
4Ret

2

L
[

4t2 (1 + cos2 2β) + 18L2 sin2 2β
]1/2

.

b) Honeycomb structure (isotropic material)
analytical formulae:

E =
4Est

3

√
3L [3t2 + L2]

= 21.87 MPa,
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ν =

(

L2 − t2
)

L2 + 3t2
= 0.96, νmax = ν

(

t

L
→ 0

)

= 1,

pmax = 0.3 MN/m.
c) Equilateral triangle cell structure (isotropic material)
analytical formulae:

E =

√
3Est

(

4L2 + t2
) (

2L2 + t2
)

4L3 [2t2 + 3L2]
= 385.47 MPa,

ν =
L2 − t2

3L2 + 2t2
= 0.33, νmax = ν

(

t

L
→ 0

)

= 0.333,

pmax = 2.77 MN/m.
d) Re-entrant structure (anisotropic material)
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CHANGES OF THE YIELD CONDITION DUE TO ACCUMULATION
OF DAMAGE OF METAL ALLOYS

G. S o c h a

Materials and Structures Research Centre
Institute of Aviation

Al. Krakowska 110/114, 02-256 Warszawa, Poland

The results of the experimental investigations of fatigue damage accumulation and redis-
tribution of residual stresses are reported in this paper. Local measurements of the inelastic
response under constant stress amplitude were used to observe two phenomena for selected
alloys. It was found that fatigue damage accumulation and redistribution of residual stress af-
fect the yield condition for the investigated materials. Yield condition with damage parameter
and the parameter representing residual stress state are proposed. The damage parameter is
calculated, basing on the definition given in the author’s previous paper. It was also found that
the yield condition and damage parameters are different for dynamic (cyclic loading) and for
static (for unloaded material) conditions. Physical interpretation for the observed experimen-
tal results is given in this paper. Fatigue damage accumulation is divided into three phases:
cyclic stabilisation, local increase of crystal defects density, formation and propagation of the
crack. Local methods of strain measurements, together with dynamic measurements of damage
parameter, were found to be crucial for proper observation of fatigue damage accumulation.

Key words: fatigue damage accumulation, yield condition, residual stress.

1. Introduction

It is widely accepted that accumulation of the fatigue damage affects mechan-
ical properties of elastic-plastic materials. Since local damage of crystal structure
and formation of material discontinuities (cracks) underlie this process, progress
of damage should be manifested by changes of the yield condition. These changes
are usually described by hardening rules. Among the parameters of this rule,
there should be at least one related to the progress of damage. If this is the case,
using well-known techniques of yield locus determination we should be able to
investigate accumulation of the fatigue damage due to service loads.

Many theoretical models have been proposed to describe the damage-introdu-
ced changes of the yield condition. Most of them assume that due to dam-
age accumulation, the plastic anisotropy is introduced into material. Damage-
introduced plastic anisotropy is a very complex phenomenon, general form of the
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equation describing yield condition of anisotropic material consists of 21 con-
stants [14]. Determination of all the constants is impossible in experimental
manner using uniaxial tests like those of tension, compression or shear. So-
phisticated complex-stress testing techniques have to be used to determine the
yield locus of anisotropic material. For this reason, simplified models of plastic
anisotropy, describing results of experiments with satisfactory accuracy are still
searched. However many propositions, usually based on nonlocal yield condition
of Drucker–Prager type, can be found in literature [15, 16] and [17], most of them
lack any experimental verification. In a few cases such verification can be also
found [18, 19] and [20]. In this paper, simple form of the yield condition taking
into account the damage-induced plastic anisotropy is proposed. Such simple,
physically motivated yield condition should be useful for investigation of dam-
age accumulation, quantifying damage and estimation fatigue life of engineering
materials subject to complex stress states and complicated loading histories.
Moreover, anisotropy parameters used in this model are easy to determine with
the use of simple tests (tension, compression or shear tests).

Many researchers still intensively investigate accumulation of the fatigue
damage due to service loads for elastic-plastic materials such as metal alloys.
Basic concepts like the SN curve and Linear Damage Rule (LDR) were formu-
lated long time ago ([1–3]), but the use of such a simple method for prediction of
the fatigue life can lead to enormous over- or underestimation. There are many
reasons for such a situation. The most important is the fact that traditional test-
ing technique is not suitable for observation of the damage progress during the
test. Usually, the number of cycles to failure at a given amplitude of test control-
ling parameter (stress, strain or others) is the only result of such a test. Having
no data concerning the damage progress, one can only assume a damage model
(the manner, in which accumulation of the fatigue damage progresses). In the en-
gineering practice, fatigue life prediction is in most cases (more than 90%) based
on the Palmgren-Miner concept of linear damage rule (LDR); in a very few cases
more complex theories are used (double-linear [4], non-linear [5]). Experimental
verification of the applied damage model is crucial for obtaining accurate and
credible fatigue life prediction. Any observation of the damage progress requires
a definition of the measurable damage parameter. Changes of this parameter
during the fatigue test can be plotted as a function of the load cycle number
or cycle ratio. Such an experimentally determined plot, usually described as the
damage curve, uniquely determines the proper damage model to be applied.

In publications, many definitions of the damage parameters can be found.
A good review of the state-of-the art was given in [6]. A brief summary of the
most popular damage quantifying parameters is shown in Table 1. Those pa-
rameters are divided into three groups: mechanical, physical and metallurgical.
Mechanical parameters are usually measured in the strength laboratory. Some of
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them, such as the elasticity modulus, strain or stress amplitude changes under
constant stress or strain amplitude, inelastic strain or strain energy, can be mea-
sured during the fatigue tests. Many attempts to investigate the fatigue damage
accumulation have been made, but consistent, sufficiently accurate and credible
data were not collected. The reason for such a situation lies in the measurement
technique and it will be discussed later. Other mechanical parameters: fatigue
limit, tensile strength, ductility, hardness, must be measured with the use of
the destructive test (e.g. static tension), so on-line observation of the damage
progress during the fatigue test using such parameters is not possible.

Table 1. Damage parameters.

Mechanical Physical Metallurgical

Elastic modulus Velocity or attenuation of
ultrasonic waves

Number of dislocations

Stress amplitude Magnetic properties Diameter of the dislocation
cell

Strain amplitude Electric potential Shear band spacing

Inelastic strain amplitude Temperature Surface density of shear
bands

Strain energy Acoustic Emission Crack front length

Others: fatigue limit, ten-
sile strength, ductility, har-
dness

Others: density, X-ray dif-
fraction, positron annihila-
tion

Crack area

However, changes of mechanical properties are undoubtedly related to the
damage progress, for most of them the damage-induced changes are very small.
Some of them are influenced by other phenomena such as strain-hardening or
residual stress redistribution. An additional disadvantage of the above-mentioned
mechanical damage parameters is that they cannot be used for inspections of real
construction components as non-destructive inspection techniques (NDI). Such
inspection techniques are usually based on measurements of physical proper-
ties. Measurement of: velocity or attenuation of ultrasonic wave, magnetic prop-
erties [21], electric conductivity, temperature, acoustic emission, density, X-ray
diffraction or positron annihilation, is widely used for detection of material phys-
ical discontinuities. There have also been attempts to use such techniques for
detection of damage accumulation in the phase preceding formation of physical
discontinuities in the investigated material ([22] and [23]). If such an indirect
damage detection technique could be considered to be credible, one has to prove
that the changes of the physical property in question are related to the fatigue
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damage accumulation. This can be achieved only by performing calibration of
this technique with the use of a set of the calibration specimens (specimens
with a known amount of damage introduced in laboratory environment). For the
preparation of such specimens it is necessary to define measurable and physically
based damage parameter, allowing accurate measurements of the accumulated
fatigue damage.

Since it is well known that accumulation of the damage results in structural
changes, direct methods of damage measurements can be based on structural
observations [24]. Among the propositions of metallurgical damage parameters
the best known are: the number of dislocations, diameter of the dislocation cell,
shear band spacing, surface density of shear bands, crack front length or sum-
mary crack area. Some of those parameters correspond to the phenomenon of
initial phase of the fatigue damage process (dislocations, shear bands) and the
remaining ones characterize physical discontinuities (cracks) propagating in the
material. However, crack is the most obvious and measurable effect of the fatigue
damage process, but it can be detected only in the final phase of the process and
sometimes it is too late to avoid disaster. Damage parameters based on the crack
size measurements are well known; probably the most popular is Kachanow’s

definition [7]. His proposition: the surface density of cracks, was well received by
theoreticians and was later developed by Murakami [8] into a second-rank ten-
sor representing damage of the material. From the practical point of view, this
proposition has two serious disadvantages: first of all, the use of this definition
is limited only to the final phase of the process, so it is useless for early damage
measurements and, what is even more important in engineering practice, it is not
measurable before the final failure of the construction component takes place.

It is well known that the stress concentration zone forms around the crack
tip under load. For the elastic-plastic material such stress concentration results
in formation of a plastic zone, even if the bulk of undamaged material is still
stressed below the yield limit. It means that for the load which should give us
theoretically an elastic response of the material, due to the local yielding at the
crack tip, this response starts to be non-linear. This phenomenon can also be
macroscopically observed as the decrease of the yield limit. For a constant stress
amplitude cyclic loading, nucleation and growth of the micro-cracks should in
this case produce the increase of local inelastic strain amplitude (hysteresis loop
width).

If the crystal structure defect such as dislocation is generated, it increases
locally the Stacking Fault Energy and lowers the energy necessary to activate
(move) the slip system. This effect can be also macroscopically observed as de-
crease of the yield stress. It is well known, that theoretical yield stress calculated
for a perfect crystal on the basis of elastic constants and geometry of the crystal
cell, is several times greater than the one observed in the case of real materials.
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This is because real materials always possess some defects of their crystal struc-
ture (under cyclic load it leads to stress-strain hysteresis, even if the maximum
stress is below the yield stress). Generation of new defects under cyclic load must
then result in a decrease of macroscopically measured yield stress. If the yield
stress for the investigated material decreases, increase of the inelastic response
(amplitude) is observed under a constant stress amplitude.

As it was mentioned before, there are two kinds of structural changes revealed
in the material due to the progress of the damage: defects of crystal structure and
physical discontinuities. A physically based damage parameter should be sensi-
tive to the increase of both the number of defects and propagation of physical
discontinuities. Proposition of such a parameter was given in author’s paper [9].
This proposition is based on the assumption, that both the mentioned kinds of
damage-induced defects result in the local decrease of yield stress. For real ma-
terials, yielding is a continuous process, it may start locally much earlier than
yielding of the material bulk takes place. Although different definitions of the
yield stress are available (offset yield limit, upper or lower yield limit), none of
them is to be regarded as the stress state separating purely elastic deformation
and material yielding. This makes accurate measurements of yielding onset very
difficult. A much better technique is based on the application of the constant
amplitude cyclic stress, with simultaneous measurement of inelastic strain am-
plitude. Increase of such an inelastic response is related to changes of the yield
stress and reflects redistribution of residual stress and progress of damage.

It is very important that the same result can be expected due to the gener-
ation of crystal defects and formation of physical discontinuities. This result –
increase of inelastic response under constant load amplitude - was successfully
detected and observed using experimental technique described in paper [10]. The
definition of damage parameter, based on analysis of the obtained data is given
below:

(1.1) D =
∆εi − ∆εi0
∆εif − ∆εi0

,

where ∆εi denotes the value of inelastic strain range for the load cycle under
consideration, ∆εi0 stands for the initial value of inelastic strain range at the
considered stress amplitude and the final value ∆εif corresponds to the instant
of material damage. It is crucial that all the parameters included in the Eq. (1.1)
must be determined with the use of local methods of strain measurements. Appli-
cation of the traditional methods requires uniform stress and strain distribution
in the specimens gauge part. If this distribution is not homogeneous, such meth-
ods fail and production of consistent results regarding damage accumulation is
impossible.



232 G. SOCHA

2. Fatigue damage of elastic-plastic material

as a three-phase process

Physical phenomena underlying accumulation of the fatigue damage are nowa-
days well recognized. Structural observations carried out by many researchers al-
lowed to conclude that in early stages, the fatigue damage results from slipping
of crystal defects. As it was mentioned in the last paragraph, even if the global
stress is below the yield limit, zones of stress concentration can be found in poly-
crystalline materials. In this zone, a local slip of crystal defects can be observed.
As the result of that local slip, new crystal defects are generated and the Stack-
ing Fault Energy increases locally. This process can finally lead to a situation
in which maximum principal service stress is greater than the local decohesion
stress. As a result, crack starter in the form of physical discontinuity is formed.
This process was observed in paper [10], with the use of inelastic response mea-
surements performed during the fatigue test. It must be recalled at this point,
that the performed tests were stress-controlled with constant amplitude. Fully
reversible stress cycle (R = −1) was applied to avoid any ratchetting behaviour.
All tests were performed in ambient temperature, the load oscillation frequency
was 20 Hz. Specimen designed according to ASTM requirements is shown in
Fig. 1. Hourglass design was used to concentrate the stress in the narrowest
cross-section. For this cross-section, the fatigue damage accumulation rate was
assumed to be the highest. Transversal extensometer was used to measure the
change of the specimen diameter. Local transversal strain ε22 was calculated for
the narrowest cross-section, and using the well-known formula:

(2.1) ε11 = −ε22
ν
,

axial strain ε11 was calculated. The value of Poisson’s ratio ν was assumed to
be −0.33 for the elastic range and −0.5 for the plastic range. The recorded data

Fig. 1. Design of the specimen. Dimensions in mm.
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(axial strain and stress) were used to plot the hysteresis loop shown in Fig. 2.
Width of such a hysteresis loop ∆εi shown in this figure, called further the local
inelastic response, was recorded for selected load cycles. Local inelastic response
was plotted in a double logarithmic frame as a function of the load cycle number.
As a result, the plot illustrating fatigue damage accumulation was obtained.

Fig. 2. Example of hysteresis loop recorded for selected cycles of load with indicated
inelastic response for 80022 load cycle.

Examples of the recorded data are shown in Fig. 3 for the steel A 336 GR5
and in Fig. 4 for A 387 GR22. In both figures, one of the data sets represents
a typical HCF test: for A 336 GR5 the stress amplitude 350 MPa is slightly
above the endurance limit (342 MPa) and similarly, for A 387 GR22 the stress
amplitude was set to 475 MPa (endurance limit 462 MPa). For such a small
stress amplitude, the process of fatigue damage accumulation can be divided
into three phases differing in the rate of inelastic response increase. During the
first phase, no progress of damage can be observed, response of the material is
quasi-elastic with constant width of the hysteresis loop – inelastic strain range
for a cycle of load remains constant. At the end of the first phase, due to local
increase of the Stacking Fault Energy new defects of crystal structure begin
to be generated. This phenomenon, the local increase of crystal defects density,
continues during the second phase of the fatigue damage process occupying about
80% of the fatigue life. As the local density of defects reaches the critical value,
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Fig. 3. Inelastic response as a function of the applied load cycle number for HCF and LCF
test – A336 GR5 steel.

Fig. 4. Inelastic response as a function of the applied load cycle number for HCF and LCF
test – A387 GR22 steel.
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the Stacking Fault Energy can be locally so high that service stress may exceed
the decohesion stress, discontinuity of the material is formed and the second
phase of the process ends. At the beginning of the third phase, coalescence of
few micro-discontinuities leads to formation of the dominant crack. This crack
propagates during that phase until it reaches the critical size, when under the
service load unstable propagation of the crack is triggered (critical value of the
stress intensity factorKc is exceeded) and final failure of construction component
takes place.

For the HCF test, the defects generation and increase of defects density is
strongly localised and the possibility of dislocation movement is limited. That
situation is different in the case of a LCF test, when the bulk of material yields
and the dislocation can move. This movement leads to redistribution of resid-
ual stress. Redistribution of residual stress can be macroscopically observed as
a transient stabilization of the material response (saturation of the hysteresis
loop). However, due to technical limitations, the initial hysteresis loops were not
recorded in the case of tests shown in Figs. 3 and 4, special tests were performed
to investigate redistribution of residual stress manifested by cyclic stabilisation.
Results of those tests will be reported in the following Sec. 3.

3. Dynamic and static balance of defected crystal structure

The test program shown in Fig. 5, was in this case simple. Constant stress
amplitude tests were performed in ambient temperature with the frequency of
1 Hz. The initially applied amplitude was selected below the endurance limit to
obtain a quasi-elastic behaviour. After 50 load cycles with continuous recording
of the stress and strain, loading was stopped for about 5 minutes, stress ampli-
tude was increased by 25 MPa in case of A336 GR5 steel (50 MPa in case of
A387 GR22) and cycling was restarted with cycle counter set to zero. All tests
were performed in a sequence, higher amplitude following the lower one after
5 minutes pause. Strain measurement technique was described in the previous
section. This procedure was repeated until the stress amplitude almost reached
the yield limit. For each recorded stress-strain loop, the inelastic strain range
was calculated. Results of the tests are shown in Figs. 6 and 7 for A336 GR5
and A387 GR22 steel respectively.

It can be seen in both figures that for low stress amplitudes (close to the
endurance limit), the material response is stable. Width of the hysteresis loop
(inelastic strain) remains almost constant. We can assume that there is no dam-
age progress at this amplitude. For higher stress amplitudes, inelastic response
starts to increase with the applied load cycles. Two phases of the process can
be observed. During the first phase, rate of this process is higher and during the
second phase, the decrease of inelastic response rate can be observed. This phe-
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Fig. 5. Test program – cyclic stabilisation and redistribution of residual stress.

Fig. 6. Inelastic response as a function of the applied load cycle number for A336 GR5 steel.
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Fig. 7. Inelastic response as a function of the applied load cycle number for A387 GR22 steel.

nomenon can be explained as follows: during the first phase, the dislocations can
move on a relatively long distance and this leads to redistribution of the residual
stress. Movement of the dislocations leads to their mutual locking and finally,
a certain quasi-stable state is achieved. Using the traditional testing method,
this phenomenon would be observed as the stabilisation of the hysteresis loop.
However, if the material response is observed locally, as in the case of the inves-
tigation presented, no saturation of the hysteresis loop (stabilisation of inelastic
response) can be detected. This is because the fatigue damage accumulation is
a localised phenomenon, and a proper (local) method of observation has to be
used to obtain credible results. If there is no cyclic stabilisation, we can assume
that the fatigue damage process in case of a LCF test starts immediately. During
the first phase of the process, those two phenomena: redistribution of residual
stress and accumulation of the fatigue damage overlap. This phase ends when
the possibility of dislocation movement is strongly limited due to their mutual
locking. Further increment of the inelastic response can be attributed to local
generation of new defects appearing in agglomeration of dislocations – the rate
of the process slows down and stabilizes.

It has to be emphasized, that each time when loading starts after a 5 minutes
pause, that kind of dynamic balance between the redistributed residual stress
and the locally increased damage of the material has to be achieved. In Figs. 6
and 7 one can observe that at the end of each LCF test, inelastic strain amplitude
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reaches some value. After a short pause (approximately 5 minutes), this value
decreases significantly – static balance between the residual stress and local
damage of the material is achieved due to diffusion of the defects. If loading of
the material is resumed with a higher stress amplitude, dynamic balance (cyclic
saturation) is achieved again.

Transition between dynamic and static balance of local damage and residual
stress was observed in one of the author’s papers [11] for aluminium alloy, called
PA6 according to Polish Standard. Simple test was repeated for a specimen cut
out from one rod of the material. The test program is shown in Fig. 8. After
stretching the specimen to 0.04 mm/mm of axial strain, direction of load was
reversed by 180 degrees in the stress space (transition to compression). Tensile
yield stress, measured for plastic offset 0.00001, 0.0001, 0.001, 0.01 mm/mm was
235.83, 236.85, 237.21 and 247.35 MPa, respectively. Subsequent compressive
loading was performed after different intervals of time elapsed from the moment
when 0.04 mm/mm of tensile strain was achieved: 0.25, 0.5, 2 and 380 hours.
In Fig. 9 change of the yield limit under compressive load is plotted as a function
of time. It can be seen that for a small offset, the yield limit changes with
time. These changes can be attributed to diffusion of defects that results in
redistribution of residual stress and leads to a new state of balance achieved
with time. This balance is different than the state before prestraining, because
during plastic flow of the material some of the defects moved to new positions.
What is even more important, new defects were generated during this process.
Movement and generation of new defects should affect the yield condition of the

Fig. 8. Test program – material recovery.
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Fig. 9. Changes of the compressive yield limit as a function of the time elapsed after initial
tensile prestrainig for PA6 aluminium alloy.

material in question. That change should be manifested by plastic anisotropy
(directional dependence of the yield limit). In a general case, for complex stress
states the yield condition is given by the following equation [12, 13]:

(3.1) F (σik − αik) = k2,

where two anisotropy parameters αik and k correspond to kinematic and isotropic
strain hardening. First of them, αik, is usually identified as a tensor representing
the residual stress state. We can assume that its changes should reflect redis-
tribution of this residual stress caused by movement of the defects. The second
anisotropy parameter k, represents increase (hardening) or decrease (softening)
of the yield surface. Generation of new defects should be in this case manifested
by the decrease of that parameter (yield limit should be smaller for all the load-
ing paths in the stress space). Of course, it will also be affected by annihilation
and diffusion of defects after unloading.

At this point we can assume (disregarding other effects such as element segre-
gation, grain boundary diffusion of phase transformations) that these two men-
tioned anisotropy parameters are related to two phenomena: redistribution of
residual stresses and accumulation of damage. For a simple case of uniaxial
loading (tension – compression) we can easily determine the changes of para-
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meters in question, with the use of tensile and compressive tests. In paper [11]
the yield condition (3.1) for uniaxial stress states was simplified to the following
form:

(3.2) σ11 − α11 = ±
√

3 · k,

where k denotes the yield stress in shear. If Y11 denotes the tensile yield stress
and Z11 denotes the compressive yield stress, we can determine the values of
anisotropy coefficients in the following form:

(3.3) α11 =
Y11 − Z11

2
, k =

Y11 + Z11

2
√

3
.

Time changes of the anisotropy parameters after 0.04 mm/mm prestraining
in tension and unloading are shown in Figs. 10 and 11.

In Fig. 10 the parameter α11 representing residual stress is shown as a func-
tion of time after prestraining. As it was mentioned, yield limit in tension and
compression was determined for four values of the plastic offset. It can be seen
that, immediately after deformation, value of residual stress is the highest for

Fig. 10. Anisotropy parameter α representing residual stress as a function of the time
elapsed after prestraining.
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Fig. 11. Anisotropy parameter k representing damage accumulation as a function of the
time elapsed after prestraining.

all the offset definitions. It decreases with time due to recovery of the material.
That recovery is performed by diffusion of defects in the field of the residual
stress. After approximately 2 hours, static balance of material is achieved.

The second one of the above-mentioned parameters k representing accumu-
lation of the damage also undergoes similar changes shown in Fig. 11. In this
case, increase of the value can be observed indicating transition from dynamic to
static balance of the material. It has to be mentioned that, in contrast with cyclic
loading, where significant amount of damage was introduced to the material, in
the case of static prestraining, mainly slips of the crystal defects took place. This
means that in case of static balance, the value of k after prestraining was close
to the one before loading. Time changes of parameter k shown in Fig. 11 can
be attributed mainly to transition from the dynamic to static balance of crystal
structure. This effect is consistent with the results obtained for A336 GR5 steel.
For dynamic balance, the observed inelastic strain was much greater than the
static one. It means that yield limit for static conditions is greater than that for
dynamic conditions. To observe the progress of damage, we shall compare static
or dynamic anisotropy parameters. However, we should be careful to avoid mix-
ing the static and dynamic parameters since in this case the inconsistent picture
of the damage accumulation would be obtained.
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4. Distribution of residual stress and local character

of damage accumulation

As it was suggested in the previous section two anisotropy parameters: α and
k can be identified with the residual stress state and with the accumulated dam-
age. The problem is that both phenomena are not uniformly distributed in the
investigated bulk of the material. This makes the measurements of the accumu-
lated damage extremely difficult. Traditional material testing technique assumes
that strain measurement is performed in the bulk of material with uniform strain
distribution – gauge part of the specimen. Using an extensometer it is possible
to measure the displacement between two points of the specimen’s gauge part
and dividing it by the extensometer gauge length (measurement base), one can
obtain the value of strain for the stressed material. This works well if the gauge
part of the specimen is uniformly deformed. Measurements of elastic constants
like Young’s modulus or Poisson’s ratio are typical examples of such measure-
ments. Moreover, initial yielding (before deformation localisation onset) exhibits
tendency to homogenise the strain field due to mutual interaction of dislocations.
Therefore, the yield limit can be properly determined using the traditional ma-
terial testing technique. Since stress is usually determined as the load divided
by the area of gauge part cross-section, we can consider all the above-mentioned
parameters as credible. The homogeneity of stress and strain distribution cannot
be assumed in case of damage accumulation. This process reveals a tendency to
localisation: if it starts at some spot of the material, it develops there. High
Stocking Fault Energy for a such spot of material facilitates generation of new
defects. It is very difficult to estimate the size of damaged area but strain dis-
tribution is obviously not uniform in the gauge part of the specimen. Additional
complication is that residual stress distribution is related to damage distribu-
tion. Balance between the two phenomena is different for static and dynamic
conditions. If we want to obtain a consistent picture of damage accumulation,
all the measurements of anisotropy parameters should be performed in a static
or dynamic manner.

Assuming that the two mentioned damage parameters were measured for sta-
tic conditions, the progress of damage would be hardly observable. For this reason
in paper [9] and [10] the value of damage parameter was measured for dynamic
conditions. In this case we can postulate the following form of the yield condition:

(4.1) F (σik − αik) = [(1 − βD) k0]
2 ,

where D stands for the damage parameter and β is a coefficient representing
reduction of the yield limit. This coefficient can be defined as follows:

(4.2) β =
kf

k0
,
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where kf stands for the yield stress in shear at material failure (formation of
crack) and k0 stands for the yield stress in shear corresponding to the virgin
(undamaged) material assuming isotropy. It has to be stressed once more that
there are two conditions necessary to obtain credible measurements results: all
the parameters have to be measured locally and mixing of static and dynamic
measurements must be avoided.

5. Conclusions

The following conclusions can be drawn from this study:

• Changes of plastic anisotropy are related to accumulation of damage and
residual stress redistribution.

• Accumulation of damage and residual stress are local phenomena. As-
suming uniform distribution of stress and strain in a Representative Vol-
ume Element of the material in order to use traditional material testing
techniques, can result in inconsistent picture of the investigated phenom-
enon.

• State of plastic anisotropy is different for static and dynamic conditions.
Transition from dynamic to static balance is achieved after load removal.
Transition from static to dynamic balance is usually observed for cyclic
loading as stabilisation of the hysteresis loop after the initial load cy-
cles. In case of local measurements of material inelastic response, decrease
of inelastic strain changes rate was observed instead of cyclic stabilisa-
tion.

• To observe accumulation of damage and distribution of residual stress, lo-
cal methods of inelastic strain measurements are necessary. Such methods
nowadays exist and can be applied in material testing. Using traditional
material testing techniques (assuming uniform stress and strain distribu-
tion for the gauge part of the specimen), results in obtaining inconsistent
picture of damage accumulation.

• To obtain consistent picture of damage accumulation, measurement of
anisotropy parameters should be performed in static or dynamic manner.
Mixing of the two kinds of measurements can lead to many misunderstand-
ings.

• To describe the damage progress, yield condition in the form given in this
paper can be used. Such condition represents local state of the material.
Measurements performed on the Representative Volume Element (RVE)
can be regarded as the averaged result. Result of such measurements de-
pend on the measurement technique (measurement base and position of
extensometer, stress distribution etc.).
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MODELLING OF THE ELECTROHYDRAULIC FULL ACTIVE
VEHICLE SUSPENSION

J. K o n i e c z n y

Department of Process Control
AGH – University of Science and Technology

Kraków, Poland

The study investigates various models of vehicle suspensions. A quarter-vehicle full active
suspension is chosen for further analysis. A mathematical model, governed by nonlinear differ-
ential equations, is proposed that takes into account dynamic properties of an electrohydraulic
actuator. The mathematical model being implemented, it was expressed in terms of the state
variables. In part two, the physical model was implemented and parametric identification pro-
cedure was applied. Phenomenological model simulation data are compared with results of
experimental testing of a full, active vehicle suspension. The final section is focused on static
and dynamic properties of an open-loop system (without a controller) determined on the basis
of obtained models.

Key words: electrohydraulic actuator, full active, suspension, servovalve, model.

Notations

A state matrix,
B input matrix,

Bv input matrix corresponding to input v,
Bw input matrix corresponding to the excitation w,
C output matrix,
D feedforward matrix,
I identity matrix,
x state vector,

Aa effective piston area; Aa = 0.765786 10−3 m2,
b1 coefficient of viscous damping in the first DOF; b1 = 72 Ns/m,
b2 coefficient of viscous damping in the second DOF; b2 = 1161.2 Ns/m,
Cd flow discharge coefficient; Cd = 0.611 [–],

Ctm leakage coefficient; Ctm = 15 · 10−12 m5/Ns,
d spool valve diameter; d = 5 · 10−3 m,
e control error,

E fluid bulk modulus; E = 1.4 · 109 Pa,
f0i i−th natural frequency,
f0 natural frequency,
Fl leakage force,
Fp force associated with flow,
fs actuator force,
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Fsc fluid compressibility force,
h cylinder stroke; h = 0.06 m,

Im(λ) imaginary part of eigenvalue λ,
k1 stiffness coefficient in the first DOF; k1 = 37412 N/m

(predicted value k1 = 44800 N/m),
k2 stiffness coefficient in the second DOF; k2 = 8652 N/m

(predicted value k2 = 8000 N/m),
ksv voltage to position conversion factor; ksv = 0.025 · 10−3 m/V,
kz stiffness coefficient of the suspension,

l spool valve perimeter; l = 15, 708 · 10−3 m,
m1 unsprung mass; m1 = 11.5 kg,
m2 sprung mass; m2 = 86 kg,
Pd pressure in the lower chamber,
Pg pressure in the upper chamber,
Pr pressure difference,
Pz actuator supply pressure adjustable in the range 1–16 MPa;

during the tests Pz = 12 MPa,
Ql volumetric rate of leakage flow,
Qz instantaneous flow rate between the unit and actuator,
R1 flow cross-section; R1 = u1l,

Re(λ) real part of eigenvalue λ,
u1 spool displacement,

u1 max spool stroke; u1 max = 0.5 · 10−3 m,
v servovalve control voltage,

Vp volume of hydraulic hose; Vp = 80.0398 · 10−6 m3,
Vt total volume of actuator cylinder chambers; Vt = 45.9458 · 10−6 m3,
w applied disturbance (displacement of an arbitrary contact point between suspen-

sion and road surface),
y output expressed in the space of state,
z displacement of the suspension in the vertical,

z1 displacement of unsprung mass,
z2 displacement of sprung mass,
α hydraulic coefficient; α = 44.4495 N/m5,
βi angle between the i-th eigenvector and the real axis,
λi i-th eigenvalue of A,
ρ fluid density; ρ = 880 Ns2/m4,
τ spool valve time constant; τ = 2.32 · 10−3 s for Pz = 12 MPa,
ξi i-th damping ratio,
Φ nonlinear part of equation governing the actuator dynamics.

1. Introduction

Modelling of vehicle suspension is of key importance at the design stage.
When active control systems are to be applied, the mathematical description
allows the study of an open-loop system and helps in the synthesis of a con-
trol system. Accuracy of a mathematical model can be verified experimentally,
by comparing the simulation and laboratory data. For that purpose, however,
a physical model is required. This model is particularly useful whilst verifying
the control algorithm for an actuator. This study refers to the synthesis and



MODELLING OF THE ELECTROHYDRAULIC ... 249

verification of a mathematical model of an active suspension, with no control
systems. Hence we consider an open-loop model, with no feedback. The model
takes into account the properties of an electrohydraulic active actuator.

Vehicle suspension is a group of elements connecting the wheels with the rest
of the vehicle, and is most difficult to design. Forces generated on the wheel-
road surface interface are conveyed to the car body via the suspension. Its main
function is to ensure the adequate comfort of the ride, vehicle stability and
handling. The key elements include springs and dampers.

Springs enable the vertical movement of the suspension. The available spring
types are: rubber springs, coil springs, leaf springs, pneumatic springs, gas-oil
elastic elements, torsion bar. A vehicle equipped with springs only, is susceptible
to oscillations when encountering an obstacle. When damping elements are used,
the up and down movements of the vehicle are limited, depending on the oscilla-
tion velocity. Shock absorbers come in the form of oil-filled telescopic cylinders
that resist sudden movements.

Suspension systems can be broadly classified into three subgroups: depen-
dent, independent and semi-independent suspension systems. Passenger cars,
where the ride comfort is a priority, are provided with independent suspensions
only.

An interesting solution of an independent suspension in passenger cars is the
McPherson strut-type suspension with simplicity of design as the major benefit.
One sub-assembly operates during the ride, springing and damping of the road
wheel vibration. A coil spring concentric with the shock absorber acts as an
elastic element in this suspension.

There is a compact and separate unit for each wheel, hence an actuator can
be employed instead of a shock absorber.

1.1. Suspension model analysis

In terms of physical representation, there are the following vehicle models
with independent suspensions:

1) full 3D model,

2) half vehicle 2D model,

3) quarter vehicle 1D model.

In the full model the vehicle mass is represented by a lumped, sprung mass
and four unsprung masses, each representing a wheel. Elements of the suspen-
sion placed between unsprung masses and the sprung mass are represented by
springs and dampers, featuring reduced stiffness coefficient and viscous damp-
ing. Tires are modelled as springs with reduced stiffness ratio. Most tire models
take into account the damping, J.A. Levitt [9] analyses the influence of a small
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but nonzero relative damping term in the tire model (ξ ≈ 0.02–0.05). Further
damping reduces the vibration acceleration in the vertical direction by nearly
30%. The considered structure has 7 DOFs and enables the modelling of suspen-
sion’s vertical displacement, pitch and roll of the vehicle body, and four vertical
displacements of each of the wheels. Actually the model describes the behaviour
of the system in all three planes. In active systems it is utilised to the synthesis
of a master controller driving the whole suspension.

A half-vehicle model with 4 DOFs is frequently employed, too. The model
takes into account longitudinal rolling, vertical displacements of the suspension
and displacements in the vertical direction of the front and rear wheels. This
model might also represent a half-suspension in the lateral direction, taking into
account pitching, vertical displacements of the suspension and displacements in
the vertical direction of the right and left wheel. No matter which plane, it will
always be a 2D model with 4 DOFs. In the case of active suspensions controlling
the vibrations of a vehicle represented by a quarter-car model, the synthesis of
the controller should take into account the swaying effect (pitching or rolling).

A quarter-vehicle model featuring 2 DOFs is shown in Fig. 1.

Fig. 1. Quarter-vehicle full active suspension.

Similarly to previous models, this model utilises the reduced stiffness coef-
ficient of the suspension k2 and the tire k1 and the reduced viscous damping:
of the suspension b2 and the tire b1. The mass m2 is a reduced mass applying
the load along one axis. It is a sprung mass and, as mentioned previously, the
main function of the suspension is to maximally reduce its vibrations. The mass
m1 is called unsprung, representing chiefly the mass of a wheel and elements of
the suspension. Variables z2, z1 and w stand for vertical displacements in the
neighbourhood of the equilibrium point of the sprung and unsprung mass, and
a given contact point between the tire and the road surface. This structure is
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widely used in testing the control algorithms and actuators for the purpose of
synthesis of active systems.

For clarity and comparability of research data, a quarter-vehicle model is
chosen for further analyses. Besides, this structure enables the data verification
in the existing laboratory setup. The model in Fig. 1 is provided with an actuator
generating an active force fs.

One can envisage several ways of placing an actuator in single-axis vibra-
tion isolation systems, yet the only structures to be employed in passenger cars
with independent suspensions are full and slow active structures. Their major
advantage is that they go on working (though in a limited degree) when an ac-
tive system should fail. The main difference lies in that actuators in full active
systems be designed such that their failure should not make them more rigid. In
the case of slow active systems, an actuator failure should make it more rigid.

Full active suspensions, referred to as broadband or parallel structures, re-
quire an actuator operating in a wide frequency range (from 0 to 10–15 Hz).
Broadband mode of the operation of the active system leads to major energy
consumption. Its main advantage, on the other hand, is that no extensions of
the suspension strut are required.

Slow active suspensions, known as narrow-band or limited-band, enables the
actuator operation in the range of the first natural frequency of the suspension
(from 0 to 3–4 Hz). It appears that this should reduce the external power de-
mand in relation to parallel systems. The main drawback of suspension systems
complete with an actuator mounted serially behind the spring is that the height
of the suspension column has to be doubled. In order to retain the same stroke
of the slow and full active suspensions, the stroke of the spring and actuator
must be equal to the designed stroke of the suspension. Another disadvantage
is that such suspensions are most sensitive to variations of the sprung mass,
which might lead to unstable operation of the system when a spring is applied
with a small stiffness coefficient. On account of low-frequency range of actuator
operation, this structure is widely used to eliminate vibrations due to pitching
(during braking or accelerating) and rolling (for example whilst cornering) [16].

That is why most active systems in vehicle suspensions have a parallel struc-
ture and this structure is analysed in this study. Physical implementation of such
suspension consists in replacing a shock absorber by an actuator.

1.2. Actuators in vehicle suspensions

Electro-fluid actuators are widely employed as active force generators in con-
cept of the active vehicle suspensions. In widespread use are hydraulic cylinders
controlled by servovalves and electro-pneumatic elements utilising the compress-
ibility of gas, which adds an extra elastic element to the system. Pneumatic
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elements act as actuators in systems with ON/OFF controllers (rigid suspension
– separated pneumatic chamber, soft suspension – added pneumatic chamber).
Of particular interest are systems with linear electromagnetic motor. However,
such actuators utilise permanent magnets and as it is necessary to generate suf-
ficient force to lift the vehicle, their mass has to be very large. Another factor
that precludes their widespread use is high cost associated with small-scale pro-
duction of such elements.

This study explores electro-hydraulic actuators as they are most popular, at
the same time satisfying the specified requirements in terms of force and stroke.
Another reason why this particular actuator was selected is easy availability of
the working medium in mechanical vehicles. The complete actuating system has
a number of interacting hydraulic, electro-hydraulic and electronic assemblies.
The main components include: a hydraulic feeder, a filtering unit, accumulator,
servovalve, protecting and correcting elements, a hydraulic cylinder and control
unit.

Fig. 2. Hydraulic cylinder with a control servovalve considered in the present study.
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A servovalve is an electrohydraulic proportional divider controlling the hy-
draulic cylinder, it interacts with the control unit and, apart from the cylinder
itself, becomes the key element that determines the dynamics of the whole elec-
trohydraulic actuator assembly. A hydraulic cylinder with the servovalve consid-
ered in this study are shown in Fig. 2.

The measurement and control circuit comprising a number of transducers,
a digital data processing unit, A/D and D/A modules and signal conditioning
modules ought to ensure the adequate rate of signal processing and acquisition,
if necessary.

The magnitude of force and displacements to be generated depends chiefly on
geometric parameters of the hydraulic cylinder. The main function of the cylinder
is to transmit mechanical energy to the suspension system in accordance with
the selected control algorithm.

Protecting and correcting elements are of major importance too, as they
prevent rapid pressure surges and associated hazards, which might lead to the
system failure.

Dynamic properties of an active vibration reduction system depend not only
on the actuators; the control system is another component that regulates the
system dynamics (and hence the vibration isolation performance) and ensures
a correct operation of the actuator.

2. Synthesis of a mathematical model

2.1. Mathematical model of an actuator

A hydraulic cylinder controlled by an electro-hydraulic servovalve is placed in
parallel to the springs and a viscous damper, between the unsprung and sprung
masses. It generates an active force fs, whose main function is to minimise the
displacement of the sprung mass m2 with respect to an external reference sys-
tem. The applied double-action cylinder with a two-sided rod is a special de-
sign. To minimise the resistance due to friction between its mobile elements,
specially chosen sealing systems are applied in the rod and pilot sleeves. It is
controlled by a double-stage four-way flow-control servovalve, 4WS2EM-type
(601X/20 Rexroth). The servovalve is made in the standard version with me-
chanical feedback and zero overlap. Equations of actuator dynamics are derived
on the basis of a diagram shown in Fig. 3.

Spool position control u1 allows the liquid stream to be supplied from the
source to one of the chambers in the cylinder and removed from the other cham-
ber to the oil reservoir. The pressure difference Pr in chambers causes the working
fluid to flow. Multiplying this pressure difference by the effective piston area Aa

yields the actuator force fs.
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In order that the model should be expressed in the simplest terms at the
same time retaining the vital properties of a real object, certain assumptions
have to be made:

• the investigated system has lumped parameters,

• due to the presence of a large reservoir of the working fluid and the applied
methodology, the effects of temperature on dynamic properties of an active
system are neglected,

• temperature of the medium supplied to the system equals that of the
medium inside the system,

• on account of the applied sealing strategy, the resistance force in a cylinder,
associated with dry friction, is neglected,

• the flow in the system is turbulent, and continuity of the stream of working
medium is maintained,

• conduits connecting the elements of the system are stiff and short and
pressure loss of the flowing medium is negligible.

Fig. 3. Schematic diagram of active hydraulic element.

The dynamics of the system is written as an equation of force equilibrium

(2.1) fs = Fp − Fsc − Fl,

where: Fp – force associated with flow, Fsc – force of fluid compressibility, Fl –
leakage force.
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To derive the equation of state of a full active quarter-vehicle model complete
with an actuator, the Eq. (2.1) is differentiated in the time domain yielding the
derivatives of force components

(2.2) ḟs = Ḟp − Ḟsc − Ḟl .

Force of compressibility is obtained directly from the following equation [11]:

(2.3)
Fsc

z2 − z1
=

4EA2
a

Vt + Vp

where: z2−z1 – piston displacement relative to the cylinder, E – fluid bulk mod-
ulus, Vt – total volume of actuator cylinder chambers, Vp – volume of hydraulic
hose.

A coefficient α =
4E

Vt + Vp
is used to describe hydraulic parameters. Accord-

ingly, we get

(2.4)
Fsc

z2 − z1
= αA2

a .

Differentiating Eq. (2.4) with respect to time yields a formula expressing the
derivative of the fluid compressibility force

(2.5) Ḟsc = αA2
a (ż2 − ż1) .

The equation of flow is written as

(2.6) Aa (ż2 − ż1) = Ql ,

where Ql – volumetric flow, governed by the formula

(2.7) Ql = CtmPr ,

where Ctm – leakage coefficient.
Directly from Eq. (2.6) and using Eq. (2.5) and (2.7), we get

(2.8) Ḟl = αAaCtmPr .

The equation of flow between a symmetrical cylinder and a four-way servo-
valve is given by formula (2.9) [15]

(2.9) Aa (ż2 − ż1) = R1Cd

√

Pz − sign (u1)Pr

ρ
,

where: u1 – spool displacement, R1 – flow cross-section, R1 = u1l (l – spool
circumference equal πd, d – spool valve diameter), Cd – flow discharge coefficient,
for turbulent flow Cd = π/π+ 2 = 0.611, Pz – supply pressure, ρ – fluid density.
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Multiplying both sides of Eq. (2.9) by the derivative of force Fp and making
use of Eq. (2.5), we get

(2.10) Ḟp = u1lαAaCd

√

Pz − sign (u1)Pr

ρ
.

Substituting Eqs. (2.5), (2.8), (2.10) into Eq. (2.2) expressing the derivative
of the control force, yields

(2.11) ḟs = u1lαAaCd

√

Pz − sign (u1)Pr

ρ
− αA2

a (ż2 − ż1) − αAaCtmPr .

Quantities u1, Pr, ż2 ż1 are time-dependent, other coefficients have constant
values given in the Nomenclature section.

A relationship is also provided between the control force and the pressure
difference, expressed by the formula

(2.12) fs = PrAa .

Spool position u1 is controlled by the current level in coils of the servovalve
motor. Hence, the spool dynamics can be approximated by a differential equation
of the first order

(2.13) τ u̇1 + u1 = ksvv ,

where: τ – time constant of the servovalve, ksv – voltage-to-position conversion
factor, v – servovalve control voltage.

This approximation appears to be sufficiently accurate for frequencies up to
50 Hz [3, 7, 14].

Equations (2.11)–(2.13) underlie the mathematical model of a vehicle sus-
pension, complete with a electro-hydraulic actuator shown in the space of
state.

2.2. Quarter-car model

Figure 1 shows a parallel quarter-car model of a vehicle, with lumped para-
meters. This is a 2 DOF model. The first DOF associated with mass m1 applies
to the part representing the wheel and tire. The mass of the wheel is unsprung.
The second DOF – associated with the mass m2 – applies to the car body mass
with passengers. This mass is referred to as sprung. The main function of the
analysed system is to minimise the vibrations of the mass m2, is spite of distur-
bances caused by road roughness.



MODELLING OF THE ELECTROHYDRAULIC ... 257

The model uses the following designations:
v – input – servovalve control voltage, which directly controls force fs,
w – input – can be treated as disturbance due to road irregularities,
z2 – displacement of the sprung mass.
Equations of motion of the unsprung mass m1 and sprung mass m2 in the

neighbourhood of a equilibrium point are written as Eqs. (2.14) and (2.15):

(2.14) m1z̈1 + b2 (ż1 − ż2) + b1 (ż1 − ẇ) + k2 (z1 − z2) + k1 (z1 − w) = −fs

(2.15) m2z̈2 + b2 (ż2 − ż1) + k2 (z2 − z1) = fs .

On account of the available capacity of the laboratory facilities, the maximal
mass to be mounted is taken to be m2 = 86 kg. The unsprung mass is taken as
small as possible: m1 = 11.5 kg, comprising a light aluminium platform (for the
purpose of assembly), guiding and fixing elements.

The ratio of unsprung to the sprung mass is roughly 0.13. Parameters of
passive elements were chosen such that natural frequencies of damped vibra-
tions should coincide with those of a real system – around 1.5 Hz and 11 Hz
[2, 5, 8, 13, 17].

2.3. Phenomenological model of a open-loop system

Underlying the synthesis of a phenomenological model are the physical laws
governing the kinematics of a suspension, and the equation of force and flow
equilibrium in a hydraulic actuator.

The model of a full active suspension is expressed in the form of state and
output equations. To derive the equation of state, recall Eqs. (2.11), (2.13)–
(2.15).

State variables are expressed in the form of Eq. (2.16):

(2.16)
x1 = z2, x2 = ż2, x3 = z2 − z1, x5 = Pr =

fs

Aa
, x6 = u1 ,

x4 =

∫ [

−
(

k2

m2
+
k2

m1

)

·(z2−z1)+
k1

m1
·(z1−w)+

(

Aa

m2
+
Aa

m1

)

· fs

Aa

]

dt .

The first three variables of state are the displacement and velocity of the
sprung mass and displacement of the sprung mass in relation to the unsprung
mass. These parameters are measurable and adequately describe the system
dynamics, hence they can be well used as feedback signals. State variable x4 is
derived after transformations of Eqs. (2.14), (2.15). This part is not utilised to
derive other state variables. Variables x5, x6 describe the actuator dynamics,
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representing the pressure difference in the chambers and spool displacement
obtained from Eq. (2.13).

A nonlinear part Φ (Eq. (2.18)) is isolated from Eq. (2.11) such that matrices
A and B in the state equations should contain linear terms only.

For thus defined variables, the state equations are written as:

(2.17)
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ẋ2

ẋ3
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, C =
[

1 0 0 0 0 0
]

, AΦ =
[

0 0 0 0 1 0
]T
,

(2.18) Φ = αlCdx6

√

Pz − sign (x6)x5

ρ
.
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Both v and w are inputs, yet the displacement w is treated as disturbance
while v is the control voltage. Accordingly, the matrix B can be transformed:

(2.19) Bv = B ·
[

1
0

]

, Bw = B ·
[

0
1

]

.

The equations of state will be rewritten as:

(2.20)
ẋ = Ax + Bvv + Bww + AΦΦ,

y = Cx,

where v and w are scalar quantities.

2.4. Linearising of the phenomenological model

The nonlinear model is approximated with the linear one in the neighbour-
hood of its working point. The method was applied whereby the nonlinear part
of the equation of state 2.20 was expanded in the Taylor series. The working
point is taken as the spool mid-position and the pressure difference (x60 , x50)
equal to zero, as in the static state the spool mid-position is associated with
pressure equilibrium in the cylinder chambers. Thus the assumed working point
does not cause the state variables to be shifted, since the value of the function
at the working point is zero.

In the low frequency range of operation of the vibration control system (up
to 20 Hz) and hence of the servovalve, an assumption is made that the negative
value of the spool position x6 corresponds to a negative pressure difference in the
chambers, the positive value of the spool position is associated with the positive
pressure difference. Assuming that the sign function is given as

sign x =







−1 for x < 0
0 for x = 0
1 for x > 0

Equation (2.18) can be rewritten as

(2.21) Φ = αlCdx6

√

Pz − |x5|
ρ

.

It is readily apparent that the function Φ is continuous at the specified work-
ing point and can be thus linearised. Accordingly, Eq. (2.21) can be expressed as

(2.22) ∆Φ =

[

∂Φ (x5, x6)

∂x5

]

x50

·∆x5 +

[

∂Φ (x5, x6)

∂x6

]

x60

·∆x6 .
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The calculations were performed:

[

∂Φ (x5, x6)

∂x5

]

x50

=









−1

2
αlCdx6

1
√

Pz − |x5|
ρ

· sign (x5)

ρ









x50

= 0,

[

∂Φ (x5, x6)

∂x6

]

x60

=

[

αlCd

√

Pz − |x5|
ρ

]

x60

= αlCd

√

Pz

ρ
.

The continuity condition of the partial derivative of the function Φ at the
working point was checked. Hence, substituting into Eq. (2.22) yields a linearised
form of Eq. (2.18)

(2.23) Φ = αlCd

√

Pz/ρ (x6 − x60) = αlCd

√

Pz/ρ x6 .

Alternatively, a numerical procedure can be applied to linearise Eq. (2.18).
Knowing the applicable range of the function of state variables x5, x6, one can
generate input data vectors x5, x6 and an output vector Φ, basing on a nonlinear
equation. The numerical data are then written as an equation of linear regression
of two input variables, which allows the nonlinear function Φ to be approximated
with a linear equation in the predetermined range of state variables. This problem
was solved using the Matlab package. Regression coefficients were found, hence
Eq. (2.18) can be replaced by function (2.24) that captures state variables in the
interval x5 = ±7 MPa and x6 = ±0.25 mm:

(2.24) Φ = −341.2 · x5 + 4.666 · 1013 · x6 .

Fig. 4. Comparison of plots Φ(x5) and Φ(x6) obtained basing on nonlinear equation and
equations linearised by the two methods.



MODELLING OF THE ELECTROHYDRAULIC ... 261

Figure 4 shows representation of a nonlinear Eq. (2.18) by linearised
Eqs. (2.23), (2.24). In order to establish how linearisation should affect the dy-
namic properties of the object’s model, amplitude-frequency characteristics were
obtained: 20log10(z2/v) and 20log10(z2/w) (Fig. 5).

Fig. 5. Comparison of amplitude-frequency characteristics of sprung mass displacement
relative to inputs to the nonlinear model and linearised model.

These confirm that representation of a nonlinear model by a linear one is
correct throughout the whole investigated frequency range.

Underlying the mathematical model are relationships defining the properties
of open-loop models, so the model can be expressed in a linear form. Synthesis
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of this model allows for finding physical relationships describing the model of
a structure. State variables were selected that well portray the dynamic proper-
ties of the investigated structure. Comparison of response times of the phenom-
enological model and that obtained in the procedure of identification against
response times of a laboratory, the physical model enables us to verify the ade-
quacy of identification procedure.

3. Identification of the parametric model

The identification method consists in finding the coefficients in the first-order
differential equations governing the system dynamics. The multi-dimensional
linear regression method is applied. During the laboratory tests the physical
model of a parallel structure was subjected to random excitations, fed to both
inputs. The registered parameters include: preset kinematic excitation w, preset
control voltage to the servovalve v, outputs: displacement of the sprung mass z2,
displacement of the unsprung mass z1, pressures in the cylinder chambers Pd, Pg,
actuator supply pressure Pz, instantaneous flow rates Qz between the supplying
unit and actuator. The acquired registered signals were pre-processed, which
involved re-scaling, trend removal and elimination of high-frequency components.
Derivatives of the acquired signals were obtained, too.

Basing on the created phenomenological model and other models available
in the literature on the subject [5–7, 17–20], the following physical variables are
selected as state vectors that describe the investigated object: x1 = z2, x2 = ż2,
x3 = z1, x4 = ż1, x5 = Pr = Pd−Pg. The sixth variable of state is the derivative
of work performed by the unit supplying the actuator x6 = PzQz. Hence, x6

becomes the measure of power absorbed from the unit. Thus the defined variables
form a matrix X, containing measured time series of state variables and time
series of control variables v, w. The vector of parameters is estimated using the
least square method, given by Eq. (3.1)

(3.1) β̂ =
(

X
T
X

)−1
X

T ẋn ,

where n = 1, 2, ..., 6.
The procedure of identification of the parameters vector utilises a dedicated

computer program developed in Matlab. The parametric model of a quarter-
vehicle suspension obtained from identification is governed by the equations:

(3.2)
ẋ = Ax+ B

[

v
w

]

,

y = Cx,
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where

A =

















0 1 0 0 0 0
−231 −46 23 40 2504 −401800

0 0 0 1 0 0
305 50 −1248 −77 −3493 596600
2 −1 −6 1 −53 10220
0 0 0 0 0 −1

















, B =

















0 0
4442 212

0 0
−6879 949

47 4
0 0

















,

C =
[

1 0 0 0 0 0
]

.

3.1. Model verification in the laboratory setup

The mathematical model was verified in the laboratory setup. The duly im-
plemented of the suspension was subjected to kinematic excitations of square
wave-form. Sine signal of frequency linearly increasing in time from 0.063 to
40 Hz was fed to the other input (voltage driving the actuator servovalve). The
transition from the initial to the final frequency lasted 40 s. Input signals of dif-
ferent amplitudes were applied in the experiments, both input and output signals
(displacement of sprung mass) were acquired. Figure 6 shows the time histories
collected for the amplitude of excitations ±10 mm, control voltage amplitude
±3 V and response times of the phenomenological model and that estimated for
the predetermined displacement w and voltage v.

Fig. 6. Comparison of time responses of the: laboratory, phenomenological and estimated
model for the set value of the displacement w and voltage v.

Both the phenomenological and estimated models well emulate the shape of
the output signal from the object. The phenomenological model performance in
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the high frequency range seems to be inferior. This model could be optimised
through the tuning of parameters such as servovalve amplification gain, leakage
between the chambers and geometric parameters of the spool. Since the model
was used only to verify the estimated model and to find the process variables
that control the object’s dynamics, the test results are taken as satisfactory.
The estimated model agrees better with the laboratory model and it takes into
account the power consumed by the actuator. On account of above advantage,
this model was selected for the synthesis of the control system.

Similar correspondence is obtained when simultaneous random excitations
are applied on the inputs w, v. Utmost care must be taken to ensure that these
signals should be non-correlated.

4. Dynamic properties of the open loop model

Dynamic properties of the open loop model of a full active structure can be
determined on the basis of the model obtained from identification. Similarly to
the synthesis of a phenomenological model, the control matrix B in the identified
model has two components: Bv, Bw, corresponding to two inputs to the system:
control input v and excitation w. Equation (3.2) can be rewritten as:

(4.1)
ẋ = Ax + Bvv + Bww,

y = Cx.

Figure 7 shows a block diagram of quarter-vehicle suspension model associ-
ated with Eq. (4.1).

Fig. 7. Block diagram of the vehicle suspension model.

Characteristic equation for the matrix A is derived from the formula

(4.2)
|sI − A| = 0 ,

s6+177s5+15713s4+300095s3+6612388s2+14887015s+8559185=0 .
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Solving Eq. (4.2) yields the eigenvalues of the matrix A:

λ1 = −1, λ2 = −1.439,

λ3 = −7.495 + j20.570, λ4 = −7.495 − j20.570,

λ5 = −79.786 + j77.775, λ6 = −79.786 − j77.775.

Eigenvalues placement on the complex plane is shown in Fig. 8.

Fig. 8. Eigenvalues placement on the complex plane.

For each eigenvalue the natural frequency f0 and the damping ratios coeffi-
cient ξ are derived from Eqs. (4.3) and (4.4):

f0i =
|λi|
2π

=

√

Re2 (λi) + Im2 (λi)

2π
,(4.3)

ξi = cos (βi) ,(4.4)

where βi denotes the angle between the eigenvector and the real axis in the co-

ordinate system. It is obtained from the formula βi = arctg

(

Im (λi)

Re (λi)

)

. Natural

frequencies and damping ratios coefficients computed for the eigenvalues of the
matrix A are:

f01 = 0.15915 Hz, ξ1 = 1,

f02 = 0.22894 Hz, ξ2 = 1,

f03 = f04 = 3.4843 Hz, ξ3 = ξ4 = 0.34234,

f05 = f06 = 17.733 Hz, ξ5 = ξ6 = 0.71607.
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Fig. 9. Suspension step response (0.1 m) without controller.

Figure 9 shows the response of an open-loop system to a step of 0.1 m, Fig. 10
shows the amplitude-frequency characteristics in relation to the excitation w.
This is an equivalent of the transfer function defined as the ratio of vibration
amplitudes at the output y = z2 to that at the input w, expressed in dB, for the
frequency range 0.1–100 Hz.

Fig. 10. Vibration displacement transmissibility in the function of frequency.

Characteristics (Figs. 9, 10) are based on the simulations of the identified
model under the actuator control voltage equal to zero (v = 0). The designed
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controller should reduce the vibration amplification in the neighbourhood of res-
onance frequency f0 = 3.4843 Hz and reduce their displacement transmissibility
in the whole frequency range.

From the standpoint of vibration control performance, the transmissibility
characteristics is the key measure of quality of the vibration control system.
The amplitude-frequency characteristic of the output z2 in relation to the input
v (servovalve control) agrees well with that obtained for the phenomenological
model shown in Fig. 5.

5. Conclusions

Properties of actuators generating active force in vibration reduction sys-
tems in vehicles are neglected in most models used for the synthesis of control
systems. These properties are often assumed to be those of a proportional el-
ement. However, taking them into account in a suspension model allows us to
evaluate nonlinear features introduced by this very element. In the case of an
electrohydraulic actuator, linearisation of the suspension model (in the effective
range of state vector variations) does not bring about any major changes that
would preclude its use. Both the phenomenological model and that obtained
from identification correctly portray the static and dynamic properties of the in-
vestigated object. The estimated model agrees better with the laboratory model,
furthermore it enables us to evaluate the power consumption by the actuator.
The component of the state vector in this model is defined as the power absorbed
by an actuator from the supply source. In this approach, power consumption by
an actuator and vibration isolation performance can be determined already at
the stage of design of the control system. It is a well-established fact that high
energy consumption in active vibration control system is the key reason why
these systems are rarely employed, so the model proposed by the author might
be used in synthesis of a system with lower demands for external power.
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This year in June, the Swiss Association of Material Testing for Technology
(Schweiz. Verband für die Materialprüfungen der Technik) arranged two inter-
esting lectures about material effort and buckling. Even the sole course of the
discussion speaks for topical interest of both problems; it is enough to say that it
proceeded for over five hours in a tightly filled Auditorium I of the Zurich Poly-
technic (Eidgenössische Technische Hochschule). The chairman was Prof. Dr.
Eng. h.c. M. Roš, the director of the Confederate Material Testing Laboratory
(Eidgenössische Materialprüfungsanstalt – EMPA).

Personally, I was more interested in the first lecture “Theoretical foundations
of the investigations carried out at EMPA to elucidate the question of risk of
fracture” (Die theoretische Grundlagen zu den Versuchen der EMPA zur Klärung
der Frage der Bruchgefahr), delivered by a scientist associated with the said lab-
oratory, Eng. A. Eichinger. We can find the content of the lecture in the Chapters
I and IV, published respectively in EMPA Bericht : No. 28 from 1928 and No 34.
from 1929. The whole content can be summarized in the following way. Critical
material effort of a large number of plastic metals obeys quantitatively the Huber-
von Mises-Hencky hypothesis. The behaviour of all other materials is relatively
best explained, even though not precisely, by Mohr’s hypothesis. The idea inherent
in the Huber-Hencky theory had until now a hypothetical character; only EMPA
has managed – but still with the conservation of Mohr’s main idea – to conduct
a clear (plausible), convincing and exact proof of rightness of the hypothesis. As
a result, the theory of constant critical energy of distortion is nothing else but
a generalization of Mohr’s concept of an envelope.

It cannot be denied that the four-year-long series of fine experiments on elu-
cidating the enigma of material effort, conducted with great expenditure of work
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and money, has a considerable significance. However, it cannot be denied also
that the interpretation of the obtained results, used by EMPA, leaves much to
be desired. The idea inherent in the Mohr theory is outdated and what even
worse – erroneous; there exists a general hypothesis which in the right way and
with satisfactory exactness comprises the results of all, without exception, ex-
periments done by the Laboratories in Zürich and Göttingen as well as by many
other groups interested in the discussed problem. Similarly, the theoretical ef-
forts of the researches in EMPA went the wrong way. The pride of EMPA, the
meticulous conversion of the Huber-Hencky theory to the area of Mohr’s con-
cept, underlined by Roš and Eichinger on nearly every page of the said bulletin,
contains a series of errors in the principal matter.

In reply to Eng. Eichinger’s lecture I addressed the meeting and in an over
one-hour-long speech I tried to explain my view on this question. In the speech
I kept, above all, to the outline marked by the title of the preceding speaker’s
lecture. In the first place then, I explained the theoretical side of the hypotheses of
material effort, leaving the experimental aspect of the matter in the background.
Referring to the present state of affairs, I limited myself, of necessity, to discuss
problems of local and static material effort only.

Foreign countries do not know most of the critical arguments known in
Poland, as I had learned on the occasion of delivering a similar lecture in Göt-
tingen. The hypotheses of material effort are treated there – to a certain degree
even rightly – only as hypotheses; all novelties in this field, are often studied
in laboratories straightaway, without prior insight into elementary theoretical
details. Owing to this fact, every couple of years there arises the need for a new
general hypothesis, since the old one fails. In such state of affairs only the cal-
culus of probability can tell, by examining all the existing typical groupings of
components, how many new and useless theories we will be seeing.

Coming back to the said lecture, I have to admit with satisfaction that it
met with a great interest, which reflected at least in Professor Roš’s request for
a written copy of it; surely, a relevant article will soon appear in German in print,
edited by EMPA1). Before it happens though, it will be good to acquaint Polish
readers with this topical question. The present article extends the mentioned
speech by 25%.

Questions of applied mechanics seldom have such a rich history to their credit
as the theories of material effort do2). The question started in Galileo3) and
Leibniz4) times, it outlived Coulomb5) and Navier6) as well as de Saint

Venant7) and Rankine8), Clebsch9) and Beltrami10), and went through the
hands of many later, distinguished scholars and in the present day – the time
of competition between reliability and economics – it is, next to the problem of
buckling, the most topical scientific issue in the theory of elasticity as well as
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in the very popular plasticity and, finally, in the strength of materials. Rarely
can one meet with so many different views and inconsistencies as in this field.
The hypotheses of material effort were first transferred from their birthplace –
the domain of stress – to the ground of strain theories wherefrom, after not very
good results, they were moved to their last resort – the energy-based approach,
in the state of which they have been remaining till the present day; however,
their mathematical form does not guarantee any general reliable theory and
clearly does not satisfy the needs and interest of practice. But even though, such
divergence of views has never before produced so much benefit as in this field.
A thorough review of the existing material allows one to criticize it, to judge its
bad and good parts, reject the first and use the latter; in consequence, it leads
to a general hypothesis which has a very good chance of success. For a better
understanding of its sense and, in case of need, quality, I will give at first a brief
list of parameters of calculation of the discussed matter and also a critical draft
of the existing hypotheses.

The material effort of a certain point of a body is a physical state closely
related to the state of stress of this point, or its strain. The value of the material
effort is described, irrespectively of the choice of a coordinate system, by six
components of the state of strain εx, εy, εz, 1

2γx, 1
2γy, 1

2γz or equivalently –
by six components of the state of stress11) σx, σy, σz, τx, τy, τz. The effects of
material effort, especially the manner of passing through the characteristic limits
(the proportional limit, the limit of elasticity, the yield point and the ultimate
strength), the pace of passing from one limit to the next and changes of behaviour
in-between, depend on individual properties of the body. Material efforts of two
points subjected to two different states of strain or stress are equal when their
physical effects are equal; the function

(1) f

(

εx, εy, εz,
1

2
γx,

1

2
γy,

1

2
γz

)

= a

or equivalently

(2) g (σx, σy, σz, τx, τy, τz) = b,

expresses mathematically the consistency of the effects.
We assume that the sets of critical components (as we are going to call them

hereafter), which cause equal material effort, change in a continuous manner;
we demand the same from the above equations. It is basically guaranteed by
the continuity of the material considered; in case of its lack, even the simplest
considerations fail in the area of strain as well as of stress.

The highlighted above independence of the material effort of a certain point
upon the chosen frame of reference at this point, allows one to simplify the
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functions f and g. The mechanics of continuum allows, to one’s considerable
advantage, replace a set of six arbitrary components by the three principal ones.
Their values ε1, ε2, ε3 or σ1, σ2, σ3 result from the cubic equation:

(3) ε3 − 3π1ε
2 + 3

(

π2
1 − 1

2
π2

2

)

ε− π3
3 = 0

or accordingly

(4) σ3 − 3ω1σ
2 + 3

(

ω2
1 − 1

2
ω2

2

)

σ − ω3
3 = 0,

where the homogeneous expressions

(5)

π1 =
1

3
(εx + εy + εz) ,

π2
2 =

1

9

[

(εy − εz)
2 + (εz − εx)2 + (εx − εy)

2 +
3

2

(

γ2
x + γ2

y + γ2
z

)

]

,

π3
3 = εxεyεz +

1

4
γxγyγz −

1

4

(

εxγ
2
x + εyγ

2
y + εzγ

2
z

)

,

or accordingly

(6)

ω1 =
1

3
(σx + σy + σz) ,

ω2
2 =

1

9

[

(σy − σz)
2 + (σz − σx)2 + (σx − σy)

2 +
3

2

(

τ2
x + τ2

y + τ2
z

)

]

,

ω3
3 = σxσyσz +

1

2
τxτyτz −

(

σxτ
2
x + σyτ

2
y + σzτ

2
z

)

are evidently independent of the choice of the six groups of components. They
are also mutually independent invariants of the state of stress or strain. The
simplest way to calculate their values is to reject the shear (tangent) components
and replace the normal components with the principal ones.

If we know the principal components, we can easily define the components
ε, 1

2γ or σ, τ , for the directions φ, χ, ψ referred to the orthogonal coordinate
system (ε1, ε2, ε3) or (σ1, σ2, σ3), by the formulae:

(7)

ε = ε1 cos2 φ+ ε2 cos2 χ+ ε3 cos2 ψ,
(

1

2
γ

)2

= (ε2 − ε3)
2 cos2 χ cos2 ψ + (ε3 − ε1)

2 cos2 ψ cos2 φ

+ (ε1 − ε2)
2 cos2 φ cos2 χ
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or

(8)

σ = σ1 cos2 φ+ σ2 cos2 χ+ σ3 cos2 ψ,

τ2 = (σ2 − σ3)
2 cos2 χ cos2 ψ + (σ3 − σ1)

2 cos2 ψ cos2 φ

+ (σ1 − σ2)
2 cos2 φ cos2 χ .

There is only one condition demanded for the existence of these formu-
lae – the material continuity. The orientations φ = ψ = π

4 , χ = π
2 , and

φ = χ = ψ = arccos 1√
3

are worthy of consideration. We obtain successively

(9)

ε = εII =
ε1 + ε3

2
,

1

2
γ =

1

2
γII =

ε1 − ε3
2

,

or

(10)
σ = σII =

σ1 + σ3

2
,

τ = τII =
σ1 − σ3

2
,

for them; moreover:

(11)

ε =
1

3
(ε1 + ε2 + ε3) = π1,

1

2
γ =

1

3

√

(ε2 − ε3)
2 + (ε3 − ε1)

2 + (ε1 − ε2)
2 = π2,

or

(12)

σ =
1

3
(σ1 + σ2 + σ3) = ω1,

τ =
1

3

√

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2 = ω2.

For arbitrary directions the formulae for ε, 1
2γ or σ, τ can be represented

in a very fair, developed by Mohr12) and well-known graphical form of circles
for strains and stresses. A system of three circles for strains is homothetic to
a system of three circles for stresses; it occurs not only in elastic regions but also
in plastic ones.

The following facts deserve notice: the sum of circumferences of three prin-
cipal circles, on the assumption that ε1 > ε2 > ε3 or σ1 > σ2 > σ3, is equal
to

(13) Uε = 2π (ε1 − ε3) = 2πγII or Uσ = 2π (σ1 − σ3) = 2πτII .
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Similarly, the total area of these circles is equal to

(14)

Fε =
π

4

[

(ε2 − ε3)
2 + (ε3 − ε1)

2 + (ε1 − ε2)
2
]

=
9π

4
π2

2,

or

Fσ =
π

4

[

(σ2 − σ3)
2 + (σ3 − σ1)

2 + (σ1 − σ2)
2
]

=
9π

4
ω2

2.

When the principal components are used, the critical material effort is defined
by the functions

(15) f (ε1, ε2, ε3) = a

or

(16) g (σ1, σ2, σ3) = b.

The functions f and g in the earlier introduced, general forms as well as in the
above particular ones are mutually dependent, since there exist close correlations
between the components of strain and the components of stress.

Nowadays we hear more and more often that the study of material effort has
to be necessarily based on investigation of the critical values of strain as well as
stress; this opinion is quite right; however, only from the experimental point of
view, since a properly constructed hypothesis serves its turn equally well on the
ground of strain as on the ground of stress. In the first case, function f plays the
role of the third equation, which in a correlation with an a priori assumed double
proportion ε1 : ε2 : ε3 allows one to calculate the critical values ε1, ε2, ε3. On
the other hand, the function g plays equivalently the unique role for a sequential
ratio σ1 : σ2 : σ3. On this occasion we have additionally defined a mathemat-
ical role of hypotheses of material effort: they are supposed to enable one to
calculate correctly the limit (allowable, critical) values of components for their
assumed ratio. If only a so-called inhomogeneity of matter could be defined pre-
cisely each time, the inhomogeneity would not constitute much difficulty in the
interpretation of experimental results and in additional correction of the theories
of material effort. However, this is not true in the real terms; facing this fact we
have to assume that technically important materials are perfectly homogenous
and that the hypotheses of material effort are developed for such materials. It
partly explains the deviations between experiment and theory. The lack of uni-
formity of a strain state, or a state of stress, during laboratory tests, becomes
an equally important factor; to obtain uniformity is practically impossible.

In this way, the interpretation of the experimental results presents immense
difficulties for the theory; hence, we are being forced to mingle two notions:
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the total and the local material effort. All theoretical calculations are based on
the material effort of a point (e.g. an outer fibre of a beam in the intersection
where a maximum bending moment occurs), while all the experimental data
come from the material effort of a certain volume of continuum. This is the
next cause of the deviations between the theory and the experiments. However,
the most important factor is unquestionably the isotropy – or the quasi-isotropy
(in the meaning established by Voigt13)) – of materials. We are compelled to
decide against a great number of all the various types of anisotropy (defined by
21 elastic constants in a general case; however, still in a quite narrow range).
We assume, of necessity, that the investigated materials are isotropic; in a large
number of cases we cannot guarantee the latter or determine the corresponding
deviations in a precise manner (vibrating of concrete, rolling of steel, internal
stresses – to some extent, repeated loading and so on).

The isotropy is expressed in a particularly simple, though highly restricted
in its application case: the linear Hooke’s law:

(17)
σx,y,z = 2G

(

εx,y,z +
µe

1 − 2µ

)

,

τx,y,z = Gγx,y,z

or

(18)
εx,y,z =

1

E
[(1 + µ)σx,y,z − µs] ,

γx,y,z =
1

G
τx,y,z,

where E, G, µ are commonly known elastic constants; additionally: e = 3π1,
s = 3ω1. The usage of the principal components eliminates the shear ones; for
the normal components the indices 1, 2, 3 should be used instead of the x, y, z.

The relation between the components of both states has a secondary charac-
ter; the energy of strain, or elasticity, of an assumed unit of volume

(19) Φ = Φv + Φf

has the primary significance in this aspect, though still with the identical re-
strictions. The first term Φv stands for the energy due to the change of volume,
the other term Φf – for the energy due to the change of shape; they are shortly
expressed by:

(20)

Φv =
3

2

E

1 − 2µ
π2

1 =
3

2

1 − 2µ

E
ω2

1,

Φf = 3Gπ2
2 =

3

4G
ω2

2.
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Here, the components of one state are partial derivatives of the energy Φ
with respect to the components of the other state. The energy Φ expressed in
such way has an approximate character, since it consists of the first terms of
a general expansion in power series. Basing on the Stickelberg theorem on the
structure of an rational integer function, which is independent of the choice of
a reference system, we can easily give a general expression for the energy Φ. This
is, in general, a series formed from the terms: π1, π2

1, π
2
2; π

3
1, π1π

2
2, π

3
3; π

4
1, π

2
1π

2
2,

π1π
3
3, π

4
2;.... and an appropriate number of elastic constants m as coefficients.

A similar series can be formed from the three invariants ω1, ω2
2, ω

3
3. In the above

expansion, the free term and the term of the first grade is disregarded due to the
commonly known reasons. The terms π3

3; π
4
1, π1π

3
3, π

4
2;.... are disregarded owing

to the unique dependence between the components of strain and stress states;
then the invariant π3

3, does not play any essential role in the theory of elasticity.
The described above decomposition of the energy Φ into the two parts Φv and

Φf , done by Stokes14) for the first time and a little later by Helmholtz15), is
in this particular case right; however, in general, a linear superposition does not
simply lead to a superposition of squares. There arises a thought that this par-
ticular feature generally characterizes isotropic bodies (enabling the possibility
of transition from solids to liquids). Supposing then the possibility of splitting
the energy into the two characteristic parts also in the case considered here, we
see that in the general expansion the mixed terms, namely π1, π2

1, π
2
1π

2
2,...., are

disregarded. Finally, we obtain the result (19), where

(22)
Φv = m2vπ

2
1 +m3vπ

3
1 +m4vπ

4
1 + ... ,

Φf = m2fπ
2
2 +m4fπ

4
2 + ... .

The series written above are of course convergent; their sums indeed present the
energies Φv and Φf .

We obtain the components of the state of stress by differentiating Φ with
respect to the components of the strain state. Using them, and even in a general
case, that is without reducing the energy terms, one can easily prove that the
invariants of one state are functions of the invariants of the other state. In general
then, we have

(24) πi = πi (ω1, ω2, ω3) and in reverse ωi = ωi (π1, π2, π3) ,

where i = 1, 2, 3.
In this way we have finished reviewing the theoretical means used in devel-

oping the hypotheses of material effort. Let us now look closely at the arduous
way they had to go. The whole effort and wit of the authors of the hypotheses of
material effort were focused on producing from the six components of strain or
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stress states a single mathematical expression that would experimentally char-
acterize itself with constancy or at least possibly simple, definable variability.
That moment there arose an idea that one handles three components more eas-
ily than six. Basing on this, the principal components were introduced. This
smooth simplification caused a new necessity: to introduce the inconvenient in-
equality ε1 ≥ ε2 ≥ ε3, or σ1 ≥ σ2 ≥ σ3. We do not realize in general what
a great disadvantage in hypotheses of material effort this inequality presents.
Let us suppose that one uses such a hypothesis in a certain particular case. The
theory of elasticity or the science of strength of materials provides us with the
solution of the particular problem by giving six components as functions of spa-
tial coordinates; external loads and dimensions of the investigated element play
the role of parameters while the elastic constants are coefficients. We obtain the
three principal components from the cubic Eqs. (3) or (4); since, in general, these
components are different and real, the solution must be obtained with the use of
transcendental functions: in such a solution all the details of calculation are lost.
Finally, to crown it all, one has to fix the order ε1 > ε2 > ε3 or σ1 > σ2 > σ3,
which is simply impossible; the hypothesis is of no general use. That these details
escape the common notice is due to the fact that we have accustomed ourselves
to simplifying some problems to their two-dimensional form, where the above
difficulties cancel to a considerable degree.

In search for a possibly simple combination of components defining the ma-
terial effort, primitive means were initially used. In this way the hypothesis of
a constant tension σ1 disregarded the two remaining principal stresses σ2 and σ3

and, respectively, the hypothesis of a constant elongation ε1 neglected the two
principal strains ε2 and ε3. Astonishing! The stress hypothesis was quickly de-
nied acceptance in favour of the strain hypothesis; an exact physical justification
was being seen in the expression: a system of stresses which causes the greatest
elongation is a measure of critical material effort (18). If the stress hypothesis
had been put into the following words: a system of strains which causes the great-
est tension (17) is a measure of critical material effort, such hypothesis would
certainly linger till nowadays in various textbooks and almanacs, just like its ri-
val. But still they are both asymmetrical and both of them are erroneous. Later
corrections, that is lower limits introduced with the help of constant pressure σ3

or constant contraction ε3, are not worthy much more. A properly constructed
hypothesis should express itself with the same groupings of components on both
grounds; while here the equalities ε1 = a1, ε3 = a3 are not corresponded by
σ1 = b1, σ3 = b3 and the same in the reverse way (17), (18). All attempts of
further resort in this direction failed; the dubious worth of Bach’s coefficient
α0 is at present widely known16).

Employing single components did not cause the desired result, so the use of
simple sets of groupings of strains or stresses was introduced. The hypothesis of



278 W. BURZYŃSKI

constant shear stress τII (10) (Coulomb5), Guest17))has indisputably a fun-
damental significance in the development of the study of material effort18); only
very precise experiments proved its very good, though approximate character. It
is the effect of the mathematical form of the hypothesis; one should pay careful
attention to the fact that the equality τII = b corresponds to by the equality
1
2γII = a and the same in the reverse direction (17), (18). The substance of the
hypothesis is then independent of the choice of the units of measurement. Its
minor errors are caused by the absence of the intermediate component. That
these errors did not go far beyond the practical limit is only due to the fact that
the range of application of this hypothesis is very narrow; viz. it refers only to
materials whose behaviour in critical tension kt and compression kc is expressed
by the equality kt = kc = k.

The matter with the Duguet19) and Mohr20) theory presents itself a bit
worse. This hypothesis in the general form:

(25) g (σII , τII) = b

makes a clear progress in the development of the study of material effort. A gen-
eralisation inherent in the theory (25) can be even to a certain degree well ex-
plained, since the stresses σII and τII belong to the same orientation; on a pic-
torial scheme the three stress circles move along the σ axis and change their
total perimeter (13) in a continuous manner. But this interpretation fails in the
ground of strain, since, even though τII corresponds with the magnitude 1

2γII ,
the stress σII is not corresponded by εII but by (in a linear approximation):

εII +
µe

1 − 2µ
=
ε1 + 2µε2 + ε3

2 (1 − 2µ)
(17). It is similar in a reversed procedure. The

hypothesis is then asymmetrical; in the ground of stress it expresses itself differ-
ently than in the ground of strain.

As for the details, one should take both perspectives – from Duguet’s position
and from Mohr’s position. The first one was calculating, the other one was draw-
ing – both nearly in the same time; the stranger it seems then, that the first one
was forgotten so quickly. Duguet puts Coulomb’s premises into a mathematical
form; he assumes that the critical effects occur as a result of overcoming friction
(of the coefficient f = tanβ) and cohesion d, namely, in such a two-dimensional
orientation ξ, η, ζ for which the left-hand side of the equation τ + fσ = d
reaches its maximum; σ and τ are defined by the formulae (8). I am not sure if
it is commonly known that the intermediate stress σ2 is cancelled from Duguet’s
calculation only due to a mathematical coincidence, since the critical orientation
turned out to be the direction ξ = π

4 − β
2 , η = π

2 , ζ = π
4 + β

2 . Mohr proceeds
inversely and incorrectly; he assumes in advance and without appropriate justi-
fication, the independence of material effort of the intermediate stress σ2 and,
disregarding the two stress circles, he surrounds the series of circles (σ1, σ3) by
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an envelope and in consequence, with the help of the consideration of not the
material effort itself but the geometrical features of the pictorial scheme of the
stress circles, he comes to the same critical orientation and the same scheme of
envelope as the one (but not called this name) found by Duguet. These details
have been overlooked in the literature; Mohr’s unquestionably justified authority
weighed here more than his theory of material effort.

This theory is then unfit for a general use for the reasons explained above
(the inconvenient inequality) and incorrect due to the proved asymmetry. Also
experiments do not support it completely; envelopes for different groupings of
components do not and cannot mutually cover; the influence of the intermediate
stress σ2 cannot be omitted. And even if such a particular envelope existed,
it would not suit characterizing material effort in this case; the experimental
details as well as the mathematical arguments and to some extent – even the
hypothesis itself, demand and prove that Mohr’s envelope does not surround
all possible critical circles, since some of them are hidden inside the envelope
without touching it.

This detail in the case of existence of the said envelope does not prove fun-
damentally the incorrectness of the Duguet-Mohr theory; it only indicates that
the coordinate system (σ, τ) is inadequate for expressing the substance of this
hypothesis. The appropriate system for this hypothesis would be the system
(σII , τII), in which all the critical states find their place in the form of the
points (σII , τII). This subtlety has also escaped notice, which can be proved
by the graphical schemes found in the immense number in various publications
and drawn exactly due to Mohr’s recipe. Meanwhile, it is clear that it is easier
to put the point in the system (σII , τII) than to draw a circle with the center
coordinates (σII , 0) and the radius τII in the system (σ, τ). As for the angles –
a simple relation sinβ = tanα between the slope of the tangent β = arctan f
in the system (σ, τ) and α in the system (σII , τII) (α, β measured from the
negative sense of the axis of abscissae) has also escaped notice. The whole mis-
understanding lies in the fact that it is commonly assumed that the envelope is
the essence of Mohr’s hypothesis while it is untrue: the essence of the hypothesis
is the assumption of existence of the function (25).

There is no need for proving that every hypothesis can be graphically illus-
trated by a single-parameter set of envelopes; it is enough to make this parameter
(c) dependent on the value σ2 in the following way:

(26) σ2 =
1 + c

2
σ1 +

1 − c

2
σ3 = σII + cτII ,

where c is limited by the inequality −1 ≤ c ≤ 1; each c corresponds one envelope.
This can be clearly seen in the illustrations to experiments on brittle materials
for which, due to technical difficulties, laboratories apply the two extreme cases
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c = −1, c = 1, or rarely c = 0. These envelopes – as I have mentioned – are not
identical. In this way, the general incorrectness of all hypotheses which disregard
the intermediate stress σ2, and in particular the Duguet-Mohr one, is being
stated.

The attempt at mathematical justification of the theory of material effort
made by Duguet, close to correctness and the only one known in the literature,
failed. This attempt shows clearly that there exist no theories of material effort,
there are only hypotheses of material effort. In this field one must not prove but
should only verify.

With passing of time, the failures, which I have presented, have forced one to
a considerable carefulness in formulating hypotheses. The generality of the hy-
pothesis discussed above is already a proof of this fact. Hertz21) went even fur-
ther. He suggested namely to represent each of the three components by a point
in the coordinate system (σ1, σ2, σ3) and to obtain the equation of the surface
constructed in this manner as the desired function. If we look closely at Hertz’s
concept, we see that there is a lot of – let us say – practical sense in it, but noth-
ing more. Hertz did not know really what to think about the material effort.
Haigh22), an Englishman, took up Hertz’s suggestion (independently of him, it
seems) and developed it with reference to all hypotheses known by himself; we
did not witness any significant progress in the field of material effort due to this
fact.

In the meantime, the needs of theory and practice were insistently demand-
ing some plausible hypothesis. Sometimes this pressure caused desperate actions.
Becker23), an American, overlapped (in the exact meaning of this word) the
hypothesis τII = b on the hypothesis ε1 = a1, ε3 = a3. Then, he multiplied the
first one by 1.2 (Bach’s 1.3 reminds itself) and, finally, in the system (σ1, σ3)
he obtained for plane states a decagon whose outline agreed with the experi-
ments. Westergaard24) drew this outline along the line σ1 = σ2 = σ3 and has
obtained in the Hertz-Haigh system a prism deceptively similar to the Huber-
Mises-Hencky cylinder; their cross-sections differed only by 8 per cent. To use
such hypothesis is simply impossible.

The hypothesis developed in the doctor’s dissertation (TH Stuttgart) by
Sandel25) is more demanding in this aspect; it is a classic example of . . . a false
theory. According to this hypothesis, in case when κ = kc

kt
> 3 (and we know

technical materials for which κ reaches even the value 20), the three following
states should be considered to be equal in terms of material effort σ1 = −∞,
σ2 = −∞, σ3 = −∞; σ1 = 0, σ2 = −∞, σ3 = −∞; σ1 = +∞, σ2 = −∞,
σ3 = −∞; it is completely sufficient to demonstrate the value of this theory.
However, the example of Sandels hypothesis is very worthy. His theory relates
linearly maximum shear strain 1

2γII with a volumetric strain e = 3π1; it is then
symmetrical since in terms of stress the above expressions (18) correspond to
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magnitudes τII and s = 3ω1 constructed in an analogous way. Where to search
for the cause of the incorrectness? The answer is simple: the magnitudes 1

2γII and
π1 are not connected (9), (11); similarly to τII and ω1 (10), (12). Since the first
ones are the tangent components of the orientation φ = π

4 = ψ, χ = π
2 , the other

ones express the normal components of the orientation φ = χ = ψ = arccos 1√
3
,

that is of a totally different one. It is – as we see – a case opposite to the
Duguet-Mohr’s one, where the referred expressions were used, but moving from
one system of units (variables – ed. note) to the other induced the asymmetric
results. A correctly constructed hypothesis should satisfy both conditions.

I have noticed with surprise (EMPA Diskussionsbericht Nr. 28 ) that Sandel,
without explaining reasons, abandoned the theory he had been previously work-
ing on and privately informed about the development of a new one about the
constant “resultant” strain ε21 + ε22 + ε23 = a2. This hypothesis has a much nar-
rower range of application, namely only for the cases where κ = 1; it does not
lead then to so many distinct contradictions as the former one. However, it is
still incorrect: the sum of squares of principal components does not have any
known significance. The hypothesis is asymmetrical: the expression ε21 + ε22 + ε23
corresponds, according to Hooke’s law (18), to a more extent expression in stress

components: σ2
1 +σ2

2 +σ2
3 +

2µ (1 − 2µ)

1 + 3µ− µ2
(σ2σ3 + σ3σ1 + σ1σ2), which reduces to

the symmetrical hypothesis expressed in stress components only for the theoret-
ical value µ = 1

2 , possible in materials with κ = 1 only in plastic regions. One
cannot develop every couple of years any new, completely different hypotheses
without exposing oneself to suspicion that one has recognized the former one as
incorrect.

It will not be irrelevant here to state a certain general remark induced by
the review of all the known hypotheses: all theories involving Poisson’s ratio
µ in their mathematical form are more or less incorrect. For, elastic constants
have nothing in common with the material effort or, more precisely: it is not the
material effort that depends on them, but they depend on the material effort.
If we are considering the dimensions of a bar in tension, we do not think of the
constant E or µ, but of the allowable stress σ1 = kt; if we are designing a twisted
shaft, we do not ask about the constant G or µ but about the admissible effort,
whose measure is τII = ks. It must be similar in a general three-axial case.
Calibrating the empirical facts by the constant µ completely misses the point
and is only an unfortunate burden to the form of the theory of material effort.
It is a detail which, apart from other facts, speaks against Sandel’s new concept.

A great step forward in the development of the hypotheses was assuming by

Beltrami8), Huber26) and Haigh22) the energy Φ =
3

2

1 − 2µ

E
ω2

1 +
3

4G
ω2

2 (19),

(20), (21) as a measure of critical material effort. The energy-based theories have
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a lot of characteristics of being probable. Material effort is a directionless magni-
tude (by the assumption of material isotropy – ed. note) – a scalar, and energy is
also a scalar. The energy is the expression of independence of the state of strain,
or stress, of our fancy of choosing directions of reference; material effort is also
independent of the choice of a coordinate system. A change of units of calculation
(variables - ed. note) does not reflect on the shape of the theories, since we also

have: Φ =
3

2

E

1 − 2µ
π2

1 + 3Gπ2
2 (19), (20), (21). The hypothesis expresses itself

in the most general way by six components; conversion to principal components
consists in deleting the tangent ones. The inequality, which was used in other
hypotheses precluding their further discussion and application, here cancels out
from the calculation completely. The magnitudes π1, π2 or equivalently ω1, ω2,
are not in conflict with each other; they hold distinct positions on the field of
strain as well as stress (11), (12).

It was difficult at first to find any better means. And, in spite of all, there
was a great need to find such, since the new hypothesis – even in the narrow
range of its application – did not satisfy our demands for exactness. If we look
closer at the essence of this failure, we see that there is only one reason for this
failure. The hypothesis was burdened with the presence of Poisson’s ratio µ;
as I have mentioned above, it is a rather general cause of the incorrectness of
a considerable number of hypotheses.

There exists in the literature a faint, probably unconscious, attempt to re-
move this constant. From Wehage’s27) theory (1905) it follows that he considers
the expression σ2

1 +σ2
2 +σ2

3 = b2 as a measure of material effort; it is nothing else
but Beltrami’s hypothesis for µ = 0. Sandel’s new approach then consists only
in replacing the units σ with ε. One can advance identical critical arguments
against Wehage’s theory.

Only Huber26) (1904) gave the matter a favorable turn by taking under
consideration the decomposition of energy introduced by Stokes12) and Helm-

holtz13). His hypothesis, set in a letter to Föppl28), contains an unusual idea.
This hypothesis has all the advantages of the theory discussed before and apart
from that, it gives a certain generalization by introducing two critical regions:
ω1 ≥ 0 and ω1 ≤ 0. Unfortunately, the range of the hypothesis still remains
narrow: 1 ≤ κ ≤ 1.225, owing to the incomplete omission of the constant µ.
Apart from that, the hypothesis comes from one region to the other one in
a discontinuous manner.

According to the above reasons, only the second part of the Huber hypothesis
Φf = 3

4Gω
2
2 = b2, and without the restrictions concerning ω1, has been accepted

in the literature. Tests in the first place and Hencky’s papers29) from the field of
theory of plasticity in the second case contributed to this fact. Mises’s30) (1913)
solely graphical argument of a sphere as a surface of critical states in the system
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of tangent principal components had a considerably smaller influence. Based
on erroneous mathematical and logical premises, Roš and Eichinger’s efforts to
present the hypothesis as a general expansion of Mohr’s idea have completely no
meaning. It is enough to say that the referred proof describes the strain state
of a body with the help of only three, and moreover – tangent components,
and that it neglects difference between a vector and a tensor (by introducing
a geometrical summation of components of strain state without regard to their
respective two-dimensional orientation) and that, finally, as a consequence of the
above mistakes, it describes isotropy by the material constants characterizing
material that depend on the direction. On the other hand, among experiments,
one should put Roš and Eichinger’s31) tests on the first place. From a whole
series of facts stated in EMPA, one fact demands a special attention; Roš proved
empirically the mathematical equality Φf = 3

4Gω
2
2 = 3Gπ2

2 (21) in the meaning
that one can use ω2 equally well as π2 as a measure of material effort of plastic
materials κ = 1. It clearly confirms my supposition that the change of variables
should not reflect in any way on the form of a hypothesis.

Huber-Hencky’s theory discredited a whole series of other hypotheses at one
go. Final accounts with a very near Coulomb-Guest’s theory were made easier
to settle by Roš31), Ensslin, Lode32) and many other researchers’ great exper-
iments. Presently, no one doubts its truthfulness for plastic metals characterized
by κ = 1. In this area the question of material effort has been definitely solved.
If further, verifying tests are being performed, it is only due to extend the inter-
val of its validity with respect to the types of stress states, namely to possibly
advance the two border limits: hydrostatic uniform tension on the one hand and
the corresponding pressure on the other.

However, the matter has not been settled in general; there remain all the
materials κ > 1, that is a great majority of technically important materials.
There were attempts to solve this difficult task, yet still simplified by a large
amount of the existing material. A careful reader guesses at once what such
a theory should look like in its general shape. It should relate to Huber-Hencky
theory like the Duguet-Mohr hypothesis relates to Coulomb-Guest hypothesis.
One should be a generalization of the other; from the more general one, there
should follow a more specific one as a particular case.

Unfortunately, this direction has not been exactly followed. Schleicher33)

(and Mises at the same time, it seems) picked up Huber’s general idea; instead
of – as primarily Huber had done – dividing the critical groupings into the two
regions ω1 ≥ 0 and ω1 ≤ 0, he made a division into an infinitely large number
of infinitesimally small areas, he fixed a different measure of material effort in
each of them and moved on to a limit in a purely mathematical sense. To get
rid of the suspicion of the deciding meaning of the energy – based idea or maybe
to attain originality, he did not introduce into the calculation the essential com-
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ponents of Huber’s general theory, that is Φv and Φf , but ω1 =

√

2EΦv

3 (1 − 2µ)

and σ0 =
√

2EΦ, which are still in a close relation to the latter. And this was
the critical mistake of his theory g (ω1, σ0) = b, since in this manner it lost the
influence of the energy of distortion Φf and shut itself the way to transition to
Huber-Hencky hypothesis in a specific case κ = 1. This hypothesis flashed up
for a moment and then vanished dumped by. . . its author (Bauingenieur, 1928 );
for, on the occasion of calibration of elementary experiments on shear, the hy-
pothesis demanded for concrete µ = 2.8 or 5.4, which was too far beyond the
possibility 0 ≤ µ ≤ 0.5. The number µ led the hypothesis to catastrophe. The
curve g (ω1, σ0) = b, assumed by Schleicher to be typical exclusively for plastic
materials, can be obtained from his theory for brittle materials, as marble, and
inversely. A comprehensive critics of the discussed hypothesis can be found in
my article1). One should not be surprised then that Schleicher abandoned his
theory, for the sake of the rests of appearances he introduced a new hypoth-
esis only under the name of a different mathematical form. The error lies in
the false assumption of the relation between Φ and Φf , that is – the relation
which is never fulfilled by brittle materials and by plastic ones – only approxi-
mately.

The review of the above remarks allows one to judge the mistakes in the exist-
ing hypotheses and draw conclusions concerning the correctness of the theoretical
construction of hypotheses of local material effort. They can be summarized in
the following way:

1. A mathematical form of a hypothesis of material effort should be charac-
terized by continuity and simplicity.

2. The hypothesis should be expressed in general by six components.

3. The choice of units of calculation (variables – sci. ed. note) should not
influence the substance of the hypothesis.

4. The use of principal components should not be restricted by any numerical
sequence of them.

5. Single terms built from the components must have a mechanical sense
(from the point of view of continuum mechanics).

6. Sets of such terms must have a distinct and concrete meaning.

7. Such set cannot be calibrated by elastic constants (as e.g. µ).

8. In the particular case of plastic materials of the characteristic kt = kc = k,
that is κ = kc

kt
= 1, the hypothesis should transform to the Huber-Hencky’s

theory.

9. The number of parameters like kt, kc, ks,... should be possibly small.

10. The hypothesis should correspond with the experiments.
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I tried to settle a hypothesis that would meet all the requirements listed. It
can be generally formulated in the following way:

I. The local material effort of isotropic bodies is expressed by a function created
from three invariants of strain state, that is:

(27) F (π1, π2, π3) = A.

II. The local material effort of isotropic bodies is fully described by three invari-
ants of stress state in the form:

(28) G (ω1, ω2, ω3) = B.

These two hypotheses, though expressed by different variables, are not differ-
ent, as it could seem to be after our experience with a great number of previous
hypotheses; on account of the relations (24) they are identical.

In the above statements we give, apart from a new, very general hypoth-
esis, also a new way of presenting all hypotheses in the orthogonal reference
system (π1, π2, π3) or equivalently (ω1, ω2, ω3). All critical states, e.g. plane
states, are referred by points lying on the plane (π1, π2) or equivalently (ω1, ω2);
uniform hydrostatic states find their representation here in points lying on the
plane (π1, π3) or (ω1, ω3). The Huber-Hencky hypothesis is here illustrated by
a plane parallel to the plane (π1, π3) or (ω1, ω3). If particular points (π1, π2, π3)
or (ω1, ω2, ω3) in a particular series of experiments generate a surface with
two finite curvatures, the hypothesis should remain valid and should be ap-
plied in the general form (27) and (28). Though, one should expect that the
invariant π3 or equivalently ω3, does not play any prominent role in defining
the material effort. It would be represented by a cylindrical surface of gen-
erators parallel to the direction π3 or equivalently ω3, or by simplified equa-
tions

F (π1, π2) = A,(29)

G (ω1, ω2) = B.(30)

The simplification implies the following suppositions:

III. Energy of distortion and certain part of energy of volumetric strain, which
depends on the strain state and individual characteristics of a body, are measures
of the material effort.

As we have mentioned above, the invariant π3 of necessity cancels out from
the energy term. Moving on to the other variables, we can express the State-
ment III in the following manner:
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IV. About material effort decides the function built from the energy of elasticity
in general shear and hydrostatic uniform stress, namely – the Eq. (30).

The two seemingly different definitions due to (24) are also convergent here.
The statements III and IV have a certain disadvantage; they use the word “en-
ergy” taken from the grounds of elasticity. Whereas, the presented hypothe-
sis should be valid in all regions of material effort – of course, at the cost
of the appropriate change of numerical parameters characterizing the mater-
ial in each region. It is, to some extent, a disadvantage common for all the
energy-based hypotheses. To avoid the above, we come to the following defini-
tion:

V. Critical material effort depends quantitatively on strains of the orientation
φ = χ = ψ = arccos 1√

3
referred to principal directions.

As I have mentioned – those are the normal strains π1 and the tangent ones
π2 (11). In this way we come again to the form (29) without exposing ourselves
to the blame for limited validity of the hypothesis.

Statement V demands a small explanation. If we assume that the material
effort is really caused by components of a certain direction then, on the as-
sumption of isotropy of the body, it is clear that there can be only one such
orientation which is neutral regarding the principal directions and it is the only
one assumed above. I lay strong emphasis on the fact that one comes to this ori-
entation exclusively in the way shown here, that is in the way of logical reasoning
and assumption. The attempt existing in the literature (Roš and Eichinger) at
arithmetical proof of the choice of exactly this direction among all the others, is
false from the very foundations; in the science of material effort nothing can be
proved, one can only experimentally verify the accuracy of some logical assump-
tions.

The hypothesis V can be transferred to the ground of stress, namely:

VI. Critical material effort is produced by stresses in the neutral orientation
φ = χ = ψ = arccos 1√

3
.

It is mathematically expressed by the Eq. (30). Presently, this orientation is
being suspected to be a slip-plane. The above justification is a generalization of
the Huber-Hencky theory in the sense of stress (similarly as Duguet-Mohr relates
to Coulomb-Guest).

In the literature on material effort there are sometimes graphical proofs of
the hypotheses given (Mohr, v. Mises). Let us also present one here:

VII. In critical states, a system of three strain circles moves along the axis of
abscissae changing its total area in a continuous manner, due to its position.

As we have proved, this surface it proportional to π2
2 (14), by introducing π1

as the coordinate of the position of the complex of circles we come again to (29).
Just as well we can agree for the following statement:
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VIII. The manner of change of the magnitude of the surface and position of the
three stress circles of critical states changes, that is the relation (30) is a measure
of material effort.

Both graphical explanations are identical since the system of three strain cir-
cles is – independently of the existence of Hooke’s law or the quality of the
investigated critical state – always homothetic to the complex of stress cir-
cles.

In this manner, the discussed hypothesis has been explained in eight different
ways; in particular: in a purely mathematical way (the invariants) on the grounds
of strain, stress or energy and, finally, in a graphical scheme. All these ways lead
to one result, what cannot be said about all the other hypotheses, known to us.
The presented theory belongs to all the hitherto known groups and at the same
time to none.

The above hypothesis in the incomplete form II and in the complete ones IV
and VI. As well as VIII (with a great number of details, not given here due to the
space restrictions) I have developed in 1927 and published in my dissertation “A
study on hypotheses of material effort” (issued by Academy of Technical Sciences
– Lwów, Jan. 7, 1928)1). After myself, on the basis of an erroneous assumption,
Schleicher33) (Bauingenieur, 1928) derived the form IV from his primary hy-
pothesis. Generalization of the so-called degree of reliability given by him can
be found also in my work.

The presented theory satisfies all the recently listed conditions. The actual
presence of uniformity of material and state of strain (stress) and additionally –
the isotropy of a body, are guarantee of the laboratory success of the theory. If
the above conditions are not fulfilled, the theory has in the highlighted sense only
an approximate meaning; and speaking precisely – the verifying tests have an
approximate sense in this case. But even then the author’s hypothesis will differ
from the presently launched Duguet-Mohr theory – and will differ significantly,
since it will satisfy in an exact manner a whole series of remaining conditions,
which cannot be stated with respect to the competitive theory.

Apart from this, deviations from the experiments here can be removed in
a relatively simple way. I performed such an attempt in the work referred above;
it has led to – as it will turn out – most favorable results. However, before I shall
speak about this, it will not be irrelevant to discuss first some practical details
concerning the conditions 9 and 10, which have been not discussed as yet.

The question of the number of constant parameters in the mathematical form
of the hypothesis has not been discussed comprehensively in the literature as yet.
One cannot precisely state what number of the simplest facts like:
(i) uniaxial tension σ1 = kt, σ2 = 0, σ3 = 0,
(ii) uniaxial compression σ1 = 0, σ2 = 0, σ3 = kc,
(iii) simple shear σ1 = ks, σ2 = 0, σ3 = −ks
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and so forth, the construction of the functions of material effort should be based
on. This matter should be elucidated. In all publications known to myself one
can see a silent suggestion of two parameters. It reveals itself evidently in the
efforts to state the relation ks = f (kt, kc). But has a unique relation been
found? Is it possible to infer the whole shape of the critical surface exclusively
from the traces of coordinate axes? Is it enough to know only the behaviour of
a body in one, the most simple case ω1 > 0 (c = −1) and in another, equally
simple one ω1 < 0 (c = 1)? Should not one of the critical states from the range
ω1 = 0 (c = 0) be also taken under consideration?

The answer can be delivered by a whole series of not too complicated ex-
periments on various materials conducted only for the three first states (i), (ii)
and (iii). The following, rather general formulae

ks = sa
kt + kc

2
√

3
, ks = sg

√

ktkc

3
, ks = sb

2√
3

ktkc

kt + kc

or other, similar to these, could be used as the basis of an arithmetical verifica-
tion. It is worthy of notice that the harmonic formula results mainly from linear
hypotheses and the geometrical one - from square hypotheses; the arithmetical
one has the least prospects for success. It is obvious that the numerical coefficient
s cannot be kept absolutely constant. Maybe in can be put in the form of a func-
tion s = s (κ ); but if it would be unique, it is hard to say. However, in general, it
seems that developing the hypotheses with two constants is incorrect; they can
have an approximate meaning, limited to a certain range. Three constant stress
parameters in general could be a starting point.
(Sci. ed. note: In the doctoral dissertation of Burzyński, op. cit.2) pp. 111–114,
the discussed above statements of material effort hypothesis are formulated in an
equivalent way as an energy-based hypothesis, called by the Author the hypothe-
sis of variable volumetric – distortional limit energy, expressed by the following
equation:

(N1) Φf + η (p)Φv = K,

where η = w+ δ
p , 0 ≤ η ≤ 1, p ≡ ω1, is a certain material function accounting for

a particular material properties and the diminishing pressure sensitivity, while K
is a limit material constant. The core of Burzyński’s formulation of the energy-
based material effort hypothesis is the exchange of three material parameters w,
δ, K appearing in (N1) with the discussed above three material constants: kt, kc,
ks, or with the triplet kt, kc, ν, accomplished by means of the replacements:

1 − 2µ

1 + µ
w =

1 − 2ν

1 + ν
,

1 − 2µ

1 + µ
δ =

3 (kc − kr)

1 + ν
, ν =

kckr

2k2
s

− 1,

12GK =
3kckr

1 + ν
, σ2

f
= 12GΦf ,
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what results in the following formula:

(N2)
1 + ν

3
σ2

f + 3 (1 − 2ν) p2 + 3 (kc − kr) p− kckr = 0,

where ν is the so-called “plasticity coefficient” describing the degree of material
ductility. For hard and brittle materials ν < 1

2 , for hard but ductile materials
ν = 1

2 and for soft (plastic) materials ν > 1
2 , and it is assumed that 0 ≤ ν ≤ 1.

Consequently, Equation (N2) can be transformed as follows:

(N3)
1 + ν

3
σ2

f + 3 (1 − 2ν)
(

p+ σ′
)2

= k
′2,

where σ′ =
kc − kt

2 (1 − 2ν)
, k

′2 = kckt +
3

4

(kc − kt)
2

1 − 2ν
.

Generally it is assumed that ks ≥
2√
3

ktkc

kt + kc
, due to this the required transition:

kt = kc = k,
√

3 ks = k is provided. Equation (N3) describes in the plane (p, σf )
curves of the second degree. In particular:

(i) for ν < 1
2 , i.e. if ks ≥

√

kskr

3
, 1 − 2ν > 0 and k

′2 > 0 we get an ellipse,

(ii) for ν < 1
2 and kc

kt
> 1 equation (N3) describes a parabola of the second degree,

while for kc

kt
= 1 two lines parallel to the axis p are obtained,

(iii) for ν > 1
2 , i.e. if

2√
3

kckt

kc + kt
< ks <

√

kckt

3
we have 1 − 2ν < 0 and

k
′2 < 0, Equation (N3) describes a hyperbola, only one branch of which has

a physical meaning.

(iv) in particular for ks =
2√
3

kckt

kc + kt
, the hyperbola degenerates into two straight

lines intersecting on the axis p.).
The author’s theory can be adjusted to experiments in general by means of

three parameters, in specific cases – by two, and finally – by one parameter. This
cannot be said about the Duguet-Mohr theory, since, if we assume that one of
the arbitrarily chosen experimental envelopes can also be represented by three
parameters, we have to express all the remaining envelopes with the help of the
shape set in such way. Although experiments indicate that these are homothetic
curves, they at the same time prove that they are translated and rotated; then,
there are at least two additional parameters (due to the symmetry of envelopes,
the translation occurs only along the σ axis) required for calibration. Meanwhile,
the same experiments teach that the author’s theory uses none or only one
additional parameter. In this way, the point 9 would speak in favor of the new
hypothesis.
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A couple of words about uniformity of material. A simple experiment on
compression demands for brittle materials 4–6 tests, since particular results differ
from each other sometimes even by 20 per cent. What to say then about complex
experiments, in which the ratio σ1 : σ2 : σ3 assumes an arbitrary value? Can we
regard a datum resulting from one such test as reliable? Besides, can one succeed
in repeating this test? For, most often in laboratory devices, due to technical
difficulties, the directions σ1, σ2, σ3 are not associated and the preservation of
the assumed ratio σ1 : σ2 : σ3 cannot be simply realized. And there are a lot of
such measurements, either for the reason of the mentioned difficulties or for the
reason of economy. What absolute value do the resulting numbers have?

And what about the uniformity of the state of stress? Again, the simple
experiment of uniaxial compression teaches that realization of a uniform distrib-
ution of stresses in a whole body is simply impossible. However, it seemed until
now that the state obtained in these conditions was at least axially symmet-
rical. Whereas, we learn (a private conversation with prof. Roš) that it is out
of the question: careful measurements on a compressed rectangular prism show
that to obtain equal stresses along four edges of a specimen, an external resul-
tant must be placed eccentrically. Material heterogeneity causes inhomogeneity
of the stress state. And if the material does not hold any flaw, a large influence
is found on the side of the technical devices. It is commonly known that different
machines are used for different types of stress states. Each of them causes certain
experimental deviation, while moving from one device to another the deviations
change not only their values but, what is worse, maybe even their signs. However
what in the theory of compensation would be an advantage, here is absolutely
none, since the corresponding series of points on a graph are not distributed
in an arbitrary manner. One series of them goes in a continuous manner along
one curve, and another series – along another curve, and so forth. And can the
results of experiments be assumed as exactly certain?

Finally – the isotropy. This is absolutely out of the question, there is in fact
no isotropy. So perhaps quasi-isotropy, mathematically established in Voigt’s
beautiful work? It could be generally taken under consideration if the dimen-
sions of crystalline structures would be small in comparison to the dimensions
of a body. Then, due to the immense quantity of them, the disorder in orienta-
tions of particular individual ones would not distinguish any direction. To obtain
such a situation, the dimensions of specimens would have to be adequately large
in comparison to the dimensions of crystalline structures; but, in this manner
we would give way to heterogeneity of the material and additionally we would
demand very precise technical devices. And still, experimental results are depen-
dent on the size of the investigated body, which is a kind of a proof of the above.
If only the anisotropy could be theoretically defined, just like for all the known
crystals! Unfortunately, in the technical materials used these are impalpable in-
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fluences. And again we have to ask ourselves – how big are the deviations that
our measurements are burdened with?

One must always take into account the most unfavourable possibilities. Let
us assume that all the briefly described effects do not mutually cancel – on
the contrary: let us assume that they sum up, that they exist. The theoretical
hypothesis can be in this case corrected – as I have mentioned – by one additional
parameter, which unfortunately quite considerably ruins the previous harmony;
we are forced in advance to assume the inequality σ1 ≥ σ2 ≥ σ3. The correction
can be introduced in two ways, namely IV or VI and still with the same result.
The first is more arduous one for it requires longer considerations of energy
of isotropic bodies; here we will confine ourselves to use the second manner
only.

We assume that presence of the calculated deviations will make the material
effort dependent on stresses of orientation slightly different from the one used
till now φ = χ = ψ = arccos 1√

3
, and in particular that it will distinguish

one of the principal cases e.g. σ2. For this purpose, assuming generally: φ∗ =

arccos

√

λ

1 + λ
= ψ∗, χ∗ = arccos

√

1 − λ

1 + λ
, we obtain from formulae (8) the

expressions for components of this direction

(31)

σ =
λσ1 + (1 − λ)σ2 + λσ3

1 + λ
= ω∗

1

τ =

√
λ

1 + λ

√

(1 − λ) (σ2 − σ3)
2 + λ (σ3 − σ1)

2 + (1 − λ) (σ1 − σ2)
2 = ω∗

2.

The corrected hypothesis presently reads:

(32) G (ω∗
1, ω

∗
2) = B.

The additional parameter λ is limited by the theoretical inequality 0 ≥ λ ≥ 1.
The lower limit λ = 0 is – as it seems – of no significance, the upper limit
λ = 1 reduces the expressions (31) to formulae (10) and in consequence of the
theory (32) we obtain the hypothesis (25). The Duguet-Mohr theory is then
comprised in the correction (32) as a specific case. We obtain a correct theory
for isotropic bodies for a middle case λ = 1

2 . Experiments seem to teach that
deviations which have been discussed, require a correction inherent generally in
a narrower interval 1

2 ≤ λ ≤ 1. The values λ > 1 are theoretically impossible;
their presence could be explained only by basic numerical incorrectness of the
experimentally indicated stresses; this fact is possible in the case of presence of
primary stresses (internal stresses – sci. ed. note).

The bigger is the influence of inhomogeneity of material and stress state, of
experimental devices and of anisotropy is, the more λ deviates from values of
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the range: 0.5 to 1.0 – that is the more the author’s hypothesis (32) gets closer
to the Duguet-Mohr theory (25). Experimental results do not confirm the latter
one; but even though, there exists presently a tendency to apply this theory –
due to the absence of any better one. It is a wrong opinion. Let us suppose for
example that the parameter λ = 0.75, lying in the middle between 0.5 and 1.0 is
needed for the adjustment. In this case, the deviations of tests from the theories
of the author (without correcting λ) and Duguet and Mohr have practically
the same value; they are both from the experimental point of view to the same
degree wrong and they both – apparently – have equal rights to be used as an
approximate application. However, while one will be still able to raise, apart
from the approximate character, a whole series of critical arguments comprised
in the points 1–8 against the hypothesis (25), there will be only the argument
of approximation speaking against the hypothesis (29) or (30); and it will still
meet the theoretical application and simplicity requirements. These arguments
have such a dominant significance that they settle the matter in favor of the
author’s hypothesis (29) or (30), even when λ > 0.75. And regarding a complete
adjustment of the theory to the research results, it can be performed – as I have
mentioned – in the discussed hypothesis by means of one additional parameter λ
in Duguet-Mohr theory there are required at least two of them. This argument
also speaks strongly against the theory of envelopes.

As I have highlighted in the introduction, the aim of this paper is, above all,
to define the theoretical foundations of hypotheses of the material effort. For this
reason I confine the illustration of the point (10) only to a couple of interesting
experiments.

Beautiful tests on Carrara marble indisputably belong to this account. They
deserve attention even for the sole reason that they were conducted in different
laboratories and by different researchers. For the reason of the already marked
difficulties, these tests were hitherto conducted for two extreme types of load-
ing (26): σ1 < σ2 = σ3 (c = −1) or σ1 = σ2 > σ3 (c = 1). (Results from
Böker34) tests on twist performed on solid samples should be regarded as un-
certain.) Figures 1 and 2 present in the systems (σII , τII)or (ω∗

1, ω
∗
2) the results

of these experiments, conducted on three different sorts of marble by Kármán,
Böker and Roš and Eichinger. The hollow circular points (c = −1) lie due to the
Duguet-Mohr theory on a curve which is here always above the curve of solid cir-
cular points. The corresponding corrections λ = 0.73, 0.87, 0.75 (obtained not
by means of fitting, but from brief considerations) get both of the two different
types of experiments to a one common, gently bent curve in the author’s system.
It is possible that the value of the parameter λ is dependent on the crystalline
structure of a material; however, in this case λ should be common for all the
cited experiments. One should suspect rather that accidental effects, mentioned
earlier, decide on the value of this parameter.
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Fig. 1. The results of the tests on Carrara marble (marmur kararyjski), in the system
(σII , τII) corresponding to the Duguet-Mohr theory, performed on three different sorts of

marble (marmur) by Kármán, Böker and Roš and Eichinger35).

Experiments, also performed by Roš and Eichinger, on china, pure cement
and cement mortar, cannot be used for a comprehensive discussion or comparison
of hypotheses for the reason of very small number of tests (two or three pairs of
points c = ±1).

Further experiments with artificial resin, though, deserve notice. It is an
exceptionally uniform and certainly isotropic material. Unfortunately, we may
suppose that it is burdened to a considerable degree with primary stresses (i.e.
internal stresses – sci. ed. note), like all artificial preparations of this kind. We are
confirmed with this supposition by the fact that it was required to assume λ > 1,
namely λ ∼= 1.32 to adjust the experimental results to author’s theory (32).
Results of the experiments are shown in Figs. 3 and 4, that is in the system
(σII , τII) corresponding to the Duguet-Mohr theory and the author’s corrected
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Fig. 2. The results of the tests on Carrara marble (marmur kararyjski), in the author’s
corrected system (ω∗

1 , ω∗

2), performed on three different sorts of marble (marmur) by
Kármán, Böker and Roš and Eichinger35).

system (ω∗
1, ω

∗
2). As we can see, we have to do here with a completely opposite

case; the points c = −1 go beneath the points c = 1 by Mohr, while in the
author’s illustration these differences vanish.

Fig. 3. The results of the experiments with artificial resin (sztuczna żywica) in the system
(σII , τII) corresponding to the Duguet-Mohr theory35).
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Fig. 4. The results of the experiments with artificial resin (sztuczna żywica) in the author’s
corrected system (ω∗

1 , ω∗

2)35).

From the experiments on ‘brittle’ metals we take into consideration the exper-
iments by EMPA on cast iron (Elektroguss EK50 ) and (Maschinenguss HS50 ).
They are in a much more general tone than the ones cited hitherto, for they take
into account the three following types of stress states: c ∼= −1.0, 0.0, 0.3, 0.8C
(as shown in Fig. 5 and Fig. 6). But unfortunately there are on the average only
three points for each of these types, which is not quite enough for a relatively
broad interval of stresses. And in particular it is difficult to recognize what cor-
rection λ should be assumed. For this reason it has been disregarded (or more
precisely: the theoretical value λ = 0.5 has been kept) and the results have been

Fig. 5. The results of the experiments on “brittle” metals: experiments by EMPA on the cast
iron (żeliwo) – (Elektroguss EK50 ) and (Maschinenguss HS50 ) in the system (σII , τII)

corresponding to the Duguet-Mohr theory35).
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Fig. 6. The results of the experiments on “brittle” metals: experiments by EMPA on the cast
iron (żeliwo) – (Elektroguss EK50 ) and (Maschinenguss HS50 ) in the author’s corrected

system (ω∗

1 , ω∗

2)35).

presented in the theoretical system (ω1, ω2). However, even this is enough to
recognize the superiority of the invariants theory over the one of envelopes. First
of all it can be clearly seen that experimental points in the system (σII , τII)
(Fig. 5) are spread more widely than in the system (ω1, ω2) (Fig. 6). Apart from
this, it is worthy of notice that in the second system almost all experimental
results lie on straight line, while by Duguet and Mohr they lie along a curve or
more precisely – curves, since here, as well as in general, one curve is out of the

question. In other words, the relation ks =
2√
3

ktkc

kt + kc
is precisely fulfilled for

cast iron. Finally, it would be good to underline one more detail, namely group-
ing of points in the area σII > 0 or ω1 > 0. Evidently there is a confusion in
this matter in the Duguet-Mohr theory; it is not known how to lead the assumed
curve. Whereas the author’s theory sorts the data in a clear manner due to the
value c and arranges it in a clear continuous curve; in other words, it estimates
the influence of the medium stress σ2 (cf. Eq. (26) – sci. ed. note), which cannot
be said about the competitive theory.
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Finally, let us add a couple of remarks concerning tests on plastic materials.
The author’s theory transforms then into the Huber-Hencky theory or other,
similar to it if we assume λ 6= 0.5; in other words, the veracity of the hypothesis
of energy of distortion is supported by correctness of the theory of invariants;
and possible shortcomings of the energy-based theory can be removed in the
theory (32) by means of the parameter λ.

As it is known, the Huber-Hencky theory refers only to plastic materials of
a characteristic kt = kc = k. In this case we can use instead of the systems
(σII , τII) and (ω1, ω2), a common one. In general there is namely:

(33)

ω1 = σII +
c

3
τII ,

ω2 =

√

2 (c2 + 3)

3
τII .

The dependence of τII on σII disappears in the case of the discussed materi-
als in the Coulomb-Guest theory τII = k

2 (that is – the simplified Duguet-Mohr

theory); the Huber-Hencky theory ω2 =
√

2
3 k is totally independent of the influ-

ence of ω1. Regarding this fact and (33), at the same time we can write both
hypotheses in the form of equations:

(34)

τII =
1

2
,

τII

k
=

1√
c2 + 3

.

A corresponding author’s correction, that is (32), can be analogically pre-
sented in the form:

(35)
τII

k
=

1
√

2 (1 + λ) + 2c2 (1 − λ)
.

The Eqs. (34) and (35) can be easily presented in the system
(

c, τII

k

)

. Let us
notice at the same moment that for the abscissa c = ±1 we obtain one and the
same ordinate, namely τII

k = 0.5, from all the three equations.
In the contemporary literature, the Roš and Eichinger experiments on Sie-

mens-Martin’s cast steel are considered to be the foundations of the Huber-
Hencky theory. The numerical values of stress in the moment of going beyond
the upper yield point confirm this hypothesis most exactly and it was taken
under consideration. The results of these experiments are presented in Fig. 7;
we have assumed k = 2615 kg/cm2 as the mean value of all measurements
of kt and kc. The experimental data indeed fall symmetrically according to
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Huber-Hencky curve, disregarding the line resulting from the Coulomb-Guest
theory (Duguet-Mohr). The experiments on annealed cast steel conducted by
Roš and Eichinger to reinforce the hypothesis of energy of distortion have, un-
fortunately, hardly any value; 25 among the 32 tests were performed for c = ±1,
and 3 of the remaining 7 tests are in favor of the Coulomb-Guest theory, while 4
– support the Huber-Hencky theory. The same Fig. 6 explains it clearly.

Fig. 7. The Roš and Eichinger experiments on Siemens-Martin cast steel (stal lana) , with
assumed k = 2615 kg/cm2 as the mean value of all measurements of kt and kc, and the

experiments on annealed cast steel (stal zlewna)35).

As for the selection of types of critical stress states, Lode experiments on
cast iron, nickel and copper look very well in this respect; they are presented in
Fig. 8; the parameter c runs here through many more values than those by Roš
and Eichinger. Unfortunately, one and the same specimen was used several times
in these experiments which, of course, were reflected in the results and, owing to
this reason, these are less suitable for stating validity of the Huber-Hencky theory.
The experiments can be best calibrated by the parameter c = 0.6, numerically
very close to the theoretical value c = 0.5, supporting in this way the author’s
theory.

Fig. 8. The results of the Lode experiments on cast iron (żeliwo), nickel (nikiel) and copper
(miedź )35).



THEORETICAL FOUNDATIONS OF THE HYPOTHESES. . . 299

Roš and Eichinger tests on aluminum, copper and tombac cannot automat-
ically confirm the validity of the hypothesis of distortion energy, because it has
been found that kt 6= kc for these materials. Apart from this, the mentioned
experiments were conducted only for three simple states: (i), (ii) and (iii), so
they are off the general, comparative considerations.

The experimental results state, as it turns out, that the author’s theory with
the correction λ is suitable for mathematical adjusting all former experiments;
it performs this adjustment in a unique way. The parameter λ gets closer to
the limit λ = 0.5 as the qualitative conditions of tests and in particular of the
material itself get better. Disregarding the defects of material and all accidental
sources of errors, we have to assume λ = 0.5 in (32) and in this way to ac-
cept the theory in its fundamental form (27) and (28) or (29) and (30), which
shows the advantages alien to Duguet-Mohr theory. The assumption λ = 0.5 is
more admissible since because brittle materials, for which the experience shows
experimental value λ > 0.5, find their application in technology in dimensions
much larger than those used in laboratories. In these conditions secondary effects
such as inhomogeneity, incomplete isotropy, etc., lose to one’s advantage their
disturbing character following in the consequence the author’s theory.

Some final remarks should be devoted to the so-called slip surfaces. This
matter does not have any fundamental meaning for the material effort; it is
only a certain side-effect, which gains significance in specific fields (problems of
theory of plasticity, expert opinions in construction disasters, partially a problem
of equilibrium of slopes, etc.)

Measurement of the angle ϑ between two planes of slip is a riddle, which –
I honestly admit – I do not understand. This measurement should be made –
strictly speaking – in one body point; since it is impossible, finite dimensions
are being used. However, there is a non-uniform stress state in the range of
these; so the slip does not occur on a plane but on a surface and moreover,
on a non-cylindrical one. Why then slip planes are being considered, and why
two of them and not three or four? What is regarded as the discussed angle in
a measurement?

Without engaging closer in understanding and probability of the discussed
problems and considering only the numerical results, we can state anyway that
the Duguet-Mohr theory does not correspond with the measured data; the acute
angle

(36) ϑ =
π

2
− β,

that is the angle between a tangent to an envelope and the axis τ , is a bit too
small in the range of states c > 0 (in fact c = 1), and immeasurably large when
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c < 0 (c = −1 in current tests). At the same time we see that the argument
of impossibility of existence of an envelope which envelopes all circles of critical
states, succeeds also at this place; since for the hydrostatic – let us say – tension,
this angle obviously has to be indefinite; the referred point cannot have any
definite tangent – hence, it cannot lie on the envelope of the remaining states.

More precise determination of the angle ϑ according to Mohr’s recipe is im-
possible with the use of other hypotheses; indeed, as I have mentioned, each of
them can be represented by a group of envelopes depending on the parameter
c (σ2), but exactly for this reason there arises a serious problem, namely – can
one in this case measure that angle from the tangent to the axis τ , or should it be
measured each time to some other direction depending on the numerical value
of c? Actions performed currently in laboratories are now being questionable.
With reference to the author’s theory the following fact can be noted: the angle
ϑ calculated from the equation

(37) cosϑ = cot δ

has the same degree of approximation to the laboratory data as the angle ϑ
taken from particular envelopes; δ means in the coordinate system (ω1, ω2) or
(

ω∗
1
, ω∗

2

)

, the acute angle between a tangent and the direction ω2 or ω∗
2
. In the

determination of δ it disappears the ambiguity present by the group of envelopes.
I do not consider the angle δcalculated in this way as a fully correct solution,
similarly as it happens in Mohr’s case.

There still arise doubts and even more serious than the previous ones. The
angle δ has a secondary meaning; the orientations of slip surfaces have the pri-
mary meaning, since only from these the value δ should be calculated. Mohr’s
concept was a kind of a stroke of genius assuming the axis σ2 as the line of in-
tersection of two slip planes (which was also mathematically proved by Duguet
on the basis of the hypothesis of internal friction). Mohr prevented his followers
from using his theory as a starting point for attempts to generalize or modify
his stand. It is obvious that if we reject Mohr’s assumption or Duguet’s results,
we face the difficult riddle. Let us pay attention to the following by the Duguet
and Mohr theory: the direction σ2 has a geometric meaning – it is the axis of
symmetry. If this direction would be highlighted so much (and not ignored, as
others say), indeed two slip planes should be assumed in the coordinate system

of principal directions. Their normals make angles ±
(

π
4 − β

2

)

and ±
(

π
4 + β

2

)

with the directions σ1 and σ3 or – in other words – planes of the systems σ1σ2 or
σ2σ3 are planes of symmetry with respect to slip. The orientations ±π

4 , π
2 , ±π

4
or ±π

4 , π
2 , ∓π

4 have a significant meaning in this theory, since the Duguet-Mohr
hypothesis uses the stresses (10) of these very directions. The normals of the slip
planes are rotated with respect to the latter by the angle β

2 ; the direction σ2
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is then a kind of axis of rotation. Finally, this direction is perpendicular to the
components σII , τII of the diagonal orientations described above. We see that so
many various points of view are connected with the theories of slip planes (25);
by Duguet and Mohr they all lead to one result and it is only thanks to the fact
of giving σ2 a privileged though unjustified position.

If we disregard this position – and, of course, we have to do that – each of
the points of view described above will lead to different results. If we assume
the existence of one arbitrary slip plane, we do not know how to reach the other
one at all. Assumption a simultaneous symmetry to two planes of coordinate
system fails, because in this way again one of the directions would be privileged.
Assuming symmetry with respect to one of the system planes leads to a number of
slip planes larger than two due to equivalence of each of the principal directions;
but, if we assume only two of them a priori, the question arises how to define
their edge of intersection. This question – at least by now – we cannot solve.

However, regardless of this, certain details of the Duguet-Mohr theory can
be generalized in reference to one slip orientation. First of all, with respect to
the remarks presented on the occasion of explaining our theory, we will assume
a plane indifferent to all principal directions i.e. φ = χ = ψ = arccos 1√

3
(8) or

its experimentally corrected form φ∗ = ψ∗ 6= χ∗ (31), instead of unreliable plane
φ = π

4 = ψ, χ = π
2 . We will assume – similarly to Duguet and Mohr – that

the slip plane is inclined to the above one by the angle β
2 , but – as it has been

mentioned above (36), (37) – there is: sinβ = cosϑ = cot δ. In this assumption
we leave the previous meaning of δ, but we lose the previous meaning of ϑ due
to introducing the new stress orientation as a starting point for calculation; the
angle δ or β is here only a measure of deviation of the slip plane with respect
to the one used for calculation. Having calculated this one with the help of δ,
taken from a graphical scheme or calculated from the function of material effort
(

cot δ = −dω2
dω1

)

, we are facing a simple analytical problem, which, unfortunately,

can have two solutions, depending on our further considerations.
Assuming that the calculated plane due to material effort has been rotated

round the axis σ2 (as by Mohr) by the angle β
2 , we obtain the following expres-

sions as direction cosines of the searched slip orientation (ξ, η, ζ):

(38)

cos ξ =

√

2λ

1 + λ
cos

(

π

4
− β

2

)

,

cosχ =

√

1 − λ

1 + λ
,

cos ζ =

√

2λ

1 + λ
cos

(

π

4
+
β

2

)

.
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from which in particular for λ = 1 we obtain ξ = π
4 − β

2 , η = π
2 , ζ = π

4 + β
2

as in Duguet-Mohr theory, which fact, of course, was easy to be predicted. The
data obtained in this manner satisfy certain elementary experimental demands.
Among other things, they e.g. confirm the result that a normal to a slip plane
makes a smaller angle with the algebraically greater stress; for, one should re-
member that the present considerations are valid for the case σ1 > σ2 > σ3.
However, a serious argument speaks against the above formulae: the direction
σ2 again has played a privileged role.

In view of the above we can act in a different way: namely, let us assume
that the calculated plane as the result of process has been rotated by the angle
β
2 round the axis perpendicular to the stresses ω∗

1
and ω∗

2
(σII and τII by Duguet).

In this way we will obtain the direction cosines of the desired orientation(ξ, η, ζ):

(39)

cos ξ =

√

λ

1 + λ

[

cos
β

2
+
σ1 − ω∗

1

ω∗
2

sin
β

2

]

,

cos η =

√

1 − λ

1 + λ

[

cos
β

2
+
σ2 − ω∗

1

ω∗
2

sin
β

2

]

,

cos ζ =

√

λ

1 + λ

[

cos
β

2
+
σ3 − ω∗

1

ω∗
2

sin
β

2

]

.

The obtained expressions are very probable. The experimental fact of de-
pendence of the position of a slip plane upon an algebraic value of principal
components is here clearly confirmed. And here also – as previously – for λ = 1
we come to orientations described by the Duguet-Mohr hypothesis. Two addi-
tional facts deserve notice. The orientation (ξ, η, ζ) depends on material effort
in two ways; firstly through the angle β, and secondly directly through the com-
ponents σ1, σ2, σ3. This seems to be right; for, it can (or rather: has to) happen
that in the graph (ω∗

1, ω
∗
2) two points belonging to two different types of loadings

(e.g. c = 1 and c = −1) will overlap; then angle β will be common for both of
them, but (ξ, η, ζ) will be not. In this way the serious shortcoming of Mohr’s
relations would be removed. The other fact is the indeterminacy of (ξ, η, ζ) in
the case when σ1 = σ2 = σ3, since then the numerator and the denominator
of the multiplier of sin β

2 simultaneously become zero; obviously, it is clear and
convincing. Apart from this, the denominator ω∗

2 can never be zero, so the given
formulae do not contain any contradictions in themselves.

As I have stressed two times, the formulae (38) and (39) have been derived
from two important assumptions; the first one consists in assuming the angle δ
as the measure of deviation of the slip plane with respect to the plane of stresses
which decide on critical material effort; and the other – in the possibility of
transition of the defined orientations (ξ, η, ζ) onto the Duguet-Mohr directions
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in case when λ = 1. Both assumptions are of course hypothetical; the first
implies the shape of the graphs (ω∗

1, ω
∗
2) or – for λ = 0.5 – the curve (ω1, ω2);

the other is probable inasmuch as it is based on a general – quoted several
times – numerical dependence of the Duguet-Mohr theory (25) on the author’s
theory (32) provided with the correction λ. As far as I know, the formulae (38)
and (39) are the only ones known in the literature attempts of this kind (of
course apart from Duguet’s calculation or Mohr’s graphical solution). I do not
attribute any distinct significance to it, anyway, not to the degree as I do in my
general theory of material effort (27) and (28) or the simplification (29) and (30).
The theory (32) has the meaning of a laboratory correction.

Zürich-Lwów, 1929
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