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PROFESSOR JAN ODERFELD

The Laudatio speech delivered during the ceremony
of awarding Prof. Jan Oderfdeld an honorary doctorate

by Warsaw University of Technology
and on the occasion of his 100th birthday

I have a great honour of presenting a portrait of Professor Jan Oderfeld
in all aspects of his scientific activity; i.e., as engineer, researcher, university
teacher, promoter of scientific activity both in Poland and within international
co-operation , doyen of the staff of Warsaw University of Technology (WUT),
and a distinguished senior of Polish aviation.

Professor Jan Oderfeld is an extraordinary man. It is impossible to present
in brief all his important achievements in a variety of fields he has been dealing
with. One of his most distinctive characteristics consists in the fact that despite
undertaking many different tasks at the same time and taking on many duties,
he always executed and fulfilled them in excess, earning his places in all fields of
his activity.

Professor Jan Oderfeld was born in Częstochowa on February 19th 1908. In
1924 he passed his school leaving exams in the Henryk Sienkiewicz Public Sec-
ondary School in Częstochowa. On August 31st, 1930 he obtained a Warsaw
University of Technology diploma, after graduating at the Faculty of Mechan-
ical Engineering. As early as in the course of studying he started coping with
industrial problems of his interest; i.e., he got a job in the well-known machine-
production plant “Pioneer” in Warsaw. After doing his military service he had
built a team of engineers who undertook a very challenging task of construct-
ing a turbine jet engine. In 1931, thanks to a private financial support they
had managed to construct two prototypes of the engine that then underwent
successfully their tests. In 1932, on the premises of Experimental Workshop of
the Public Engineering Production Plant “Ursus” near Warsaw, the team con-
structed also a pulsatory jet engine intended for using in unmanned aerial vehi-
cles. The pioneering work of young Polish engineers – Jan Oderfeld, Władysław
Bernardzikiewicz and Józef Sachs was stopped in 1933 due to the lack of funds.
A model of the jet engine designed that time can still be seen at the Museum of
Technology in Warsaw. From 1932 to the beginning of World War II, engineer
Jan Oderfeld was working for the Engine Production Plant “Skoda” – PZL in



96 K. KĘDZIOR

Warsaw, at first as a production engineer and then, from 1936, as a design team
head. He contributed actively to the design process and supervised testing of
the aircraft piston engine “Foka” (Seal) that was mounted in the aircraft “Wilk”
(Wolf) in 1938. Together with his team he had also constructed a gas turbine
that could be assembled with the piston engine Cirrus. The turbine underwent
its tests successfully in 1938. At the same time, i.e., from 1937 to 1939 he was en-
gaged also in his individual engineering activity; e.g., he converted a carburettor
aircraft engine into the injection one, which those days was really a novelty.

Those days, starting from 1937 he had launched his teaching activity and
delivered a course in aircraft engines at the Air-Force Officer Cadet School in
Warsaw. About seventy of his students fought in the Battle of Britain, many
died.

Under German occupation within 1940–1945 engineer Jan Oderfeld worked in
Skierniewice (a small town near Warsaw) running the cooperative machine-shop
“Rolnik” (Farmer). Under his effective supervision, a small repair shop with few
workers became a large production plant manufacturing agricultural machinery,
nowadays known as the Mechanization Shop for Horti- and Agriculture, Limited
Liability Company.

Immediately after the war had ended, starting with the academic year
1945/46, engineer Jan Oderfeld began to work for the Hipolit Wawelberg and
Stanisław Rotwand High Engineering School, where in a position of temporary
professor he lectured on engineering mechanics, aircraft engines and statistical
quality inspection. At the same time, starting from 1945, he worked for the
Polish Committee for Standardisation (PKN),where he made a significant con-
tribution to restoring and completing of the standardisation achievements the
interwar period had brought forth in Poland. He also initiated the statistical
quality inspection in Poland achieving its successful implementation in both the
industry and army. In the PKN at first he got the position of Standard Editing
Department Head, becoming then the General Secretary and finally in 1948 he
was appointed to the position of General Executive Officer, holding the post
till 1951. The research he conducted in co-operation with Professor Hugo Stein-
haus, a famous mathematician, was of crucial importance for standardisation and
production inspection in the field of conformity assessment. Among many math-
ematical papers published that time by engineer Jan Oderfeld it is worthwhile to
note those on the so-called principle of duality, that had created a basis for the
Ph.D. Thesis on Statistical set of products classified according to the alternative,
he defended successfully at the Wrocław University and Wrocław University of
Technology (that time it was one academic centre) in 1951 (his supervisor was
Professor Hugo Steinhaus). In co-operation with Professor Zdzisław Rytel he de-
veloped the Classification Scheme of Standards that in Poland has only recently
been replaced with the International Classification of Standards (ICS). Within
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the years 1951–1974 he pursued his activities in the field of applied mathematics
heading the Group of Statistical Quality Inspection at the Mathematical Insti-
tute (now, the Industrial Application Department at the Institute of Mathemat-
ics of the Polish Academy of Sciences). The research conducted there covered
a broad scope of mathematical apparatus applications; i.e., in machine-building,
rubber and military industries, as well as in medicine, biology and pharmacol-
ogy. Moreover, within the years 1951–1954 he gave lectures on statistical quality
inspection at the Central School of Planning and Statistics (before World War
II and at present known as the Warsaw School of Economics).

Professor Jan Oderfeld pursued his activity in many different fields devel-
oping co-operation with a variety of scientific and industrial centres. However,
since 1949 he joined the staff of Warsaw University of Technology, his Alma
Mater, where at first he took a temporary professor position, then in 1955 he
was appointed an associate professor and in 1961 he became a full professor.
Within the years 1949–1955 he headed the Chair of Aircraft Engines, while since
1955 till his retirement in 1978 he was heading the Chair of Theory of Machines
and Mechanisms (at present: the Department of Machine and Robot Theory
at the Faculty of Power and Aeronautical Engineering WUT). It was the first
TMM chair in Poland, and it was founded by Professor Jan Oderfeld. In first
several years of its activity the chair staff taught the subject at all faculties
of the Warsaw University of Technology. Professor Jan Oderfeld had created
a material base on which the chair pursued its activities, including laboratory,
workshop and library. Soon after founding the Chair he developed the teaching
course in the Theory of Machines and Mechanisms (TMM) and wrote several
first handbooks on the subject in Poland. Within the years 1964–1966 he served
as a Dean at the Faculty of Power and Aeronautical Engineering WUT. It was
upon his recommendation that, later on, the teaching courses at all mechanical
faculties of WUT were changed accordingly, including the following subjects:
fundamentals of control engineering, dynamical metrology and fundamentals of
experiment planning. He also forced through the idea of introducing numerical
methods into both teaching and research.

Since his first paper published in 1933 Professor Jan Odelrfeld has prepared
over 200 works in a broad scope of fields (over forty of them were published after
his retirement), including 15 books and course books. One can never separate
his magnificent scientific achievements from the expert knowledge he gained in
practice. Due to the fact that his interests were always many-sided, it is very
difficult to classify his works into particular fields. One can only attempt at
dividing his activity into three intervals, that overlap each other to a large extent.

The first one, the origins of which date back before the war lasted over 30
years and covered the field of aircraft engines. As it was mentioned before,
Professor Oderfeld was one of those who constructed the first Polish jet engines.
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He dealt also with piston engines, mainly in the aspects of their cooling, timing
gear and balance. After World War II he co-operated with the well-known Polish
aircraft engine designer Wiktor Narkiewicz, dealing with the timing gear system
design (including cams), optimal balance of crankshafts and combustion prob-
lems in the engines known in Poland as the WN – type ones. His contribution
towards the success of those engines was significant (they were used in Polish
aircraft; e.g., of the Bies (Demon) type).

The second interval of his activity that lasted over 30 years, was devoted
to applied mathematics, mainly in the fields of standardisation and quality
inspection. Among his significant achievements one should mention the results
he obtained when solving the problems of concentrations in distribution, sign
autocorrelogram, dimensional functions in standardisation and similarity of em-
pirical curves. As a good example of his interdisciplinary interests may serve the
research into biological system behaviour, conducted with the use of statistical
mathematics apparatus.

A significant role Professor Jan Oderfeld played in struggling for standard-
isation of the system of units, and putting it into order should be emphasized
as well. That issue was very important to him, he always claimed that from the
engineering point of view, mathematics did not consist only in relations between
dimensionless numbers. From the very beginning of his activity professor Jan
Oderfeld has been far-sighted; for instance, against many prominent scientists
he was in favour of the {kg, m,s} unit system. In the years 1946–1960 he had
defended his viewpoint against the opponents within the international activity
of ISO, which contributed significantly towards the world-wide implementation
of SI system of units.

In the third interval lasting over 50 years the Professor has been dealing with
the theory of machines and mechanisms, in its broad meaning, i.e., including
metrology, control engineering, robotics and biomechanics. It has always been the
main field of his activity. One should mention here the research he conducted into
the engine balance and the timing gear cams he designed before the war. Later on,
the Professor engaged, in a most creative way, into the development of theory of
machines and mechanisms, especially in the aspects of classification, kinematics
and precision of mechanisms, as well as dynamical similarity, fundamentals of
experiments in mechanics of machines and optimisation in machine design. Being
the world pioneer in engineering applications of optimisation he became a big
name in the last of the aforementioned fields. His first approach to the problem
was published as early as in 1954 within the context of economical machine design
analysis. Later on, Professor Oderfeld established his scientific school in the field,
based on the application of linear and non-linear programming to optimal design
of machines and mechanisms. Many algorithms and methods the Professor had
developed were implemented into the design practice of complex machines and
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mechanisms; e.g., optimisation methods were employed in the design process of
many well-known Polish jib cranes.

An original design of magnetic memory drum he patented together with
Wiktor Narkiewicz should also be mentioned among his most significant achieve-
ments implemented on a large scale. For many years, those drums (produced by
ELWRO Wrocław) were part of standard computer equipment in the countries
of Eastern Europe, members of the former Council for Mutual Economic Assis-
tance.

For several dozen of years, Professor Jan Oderfeld has pursued an intense
activity within the frameworks of different national and international scientific
and technical organisations; he was a member of the Committee of Machine
Design of the Polish Academy of Sciences, worked for groups and committees
of the Polish Federation of Engineering Associations, engaged into the activities
of International Standard Organisation, being also a member of the Warsaw
Scientific Society.

In 1969, when Professor Jan Oderfeld had served as the President of the
Polish Committee for Theory of Machines and Mechanisms, he chaired the or-
ganising and scientific committee of the 2nd World Congress on the Theory of
Machines and Mechanisms in Zakopane, Poland. During the Congress, represen-
tatives of 16 countries founded the International Federation for the Theory of
Machines and Mechanisms (IFToMM) (at present: the International Federation
for the Promotion of Mechanism and Machine Science). Professor Jan Oderfeld
was one of the founding fathers of the organisation and served for ten years
in its governing boards. Nowadays, the IFToMM association comprises several
dozens of National Committees of TMM. The Professor was a tutor of many
Polish scientists who have nowadays performed many prestigious duties within
authorities, committees and working groups of the federation, proving the fact
that the Polish School of TMM established by Professor Jan Oderfeld has become
highly appreciated. Up to now, the Professor has maintained a close co-operation
with both the Polish Committee of TMM (being its Honorary President) and
IFToMM.

In 1953 Jan Oderfeld was among those who founded the Journal “Appli-
cationes Mathematicae”. Within the years 1954–1991 he was a member of the
Editorial Board of scientific journal “Archives of Machine Design”.

His accomplishments should be also recognised for his over thirty-year-activity
within the framework of very popular in Poland Technical Knowledge Contests
for secondary school pupils, he was one of the founders and organisers.

His remarkable achievements in the fields of science and teaching as well as
his organizational activities, have brought him about many state decorations and
medals, including a Commander’s Cross of the Order of the Rebirth of Poland
(1964), and a Commission of National Education Medal (1976). He was also
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awarded many times by Polish and foreign authorities; e.g., Ministry of Higher
Educations (including individual awards of the first degree in 1963 and 1978),
Polish Society of Mathematics (1974) and other institutions. He was awarded
a Gold Badge of Merit issued by the National Federation for Engineering As-
sociations (NOT), was conferred with the rank of Honorary Member of Polish
Society of Theoretical and Applied Mechanics, and received a “Pulaski Wings”
award granted by the Aviation Chapter of Polish Association of Mechanical En-
gineers. During the 9th International Congress of IFToMM (Milan, 1995) he was
conferred with the rank of Honorary Member of the Federation and Honorary
Member of the Editorial Board of the journal “Mechanism and Machine The-
ory” published by the IFToMM. Recognizing his accomplishments in working
for his Alma Mater, the Warsaw University of Technology awarded him a Medal
of Merit.

The achievements of Professor Jan Oderfeld outlined above have proved that
he can definitely be recognized as an eminent scientist of versatile mind, creative
engineer, talented and effective initiator and supervisor of many organizations
and various undertakings. For many followers of Professor Jan Oderfeld, includ-
ing me, he is first of all a magnificent well-respected Teacher who has always been
demanding and fair. For over fifty years of his teaching activity he educated a few
classes of Air Force officers, many classes of engineers and ten doctors in technical
sciences.

The following three rules constitute the motto he has always emphasized and
recommended:

• the theory cannot be separated from the engineering practice,
they both must combine forming the engineering art;

• each experimental result obtained needs the error estimation;
• any detail may occur important for an engineer.

Now, these rules we recommend to our students.
In view of the above, it is unquestionable that Professor Jan Oderfeld ren-

dered a great service to both the academic community of Warsaw University
of Technology as well as Polish and international academic communities. This
fully justifies the decision taken by the WUT Senate and supported by the Sen-
ates of Universities of Technology in Łódź, Cracow and Gdańsk of awarding the
Honorary Doctorate of WUT to Professor Jan Oderfeld.

Prof. Krzysztof Kędziora
Warsaw University of Technology
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M. M a s s e n z i o, S. P a s h a h, E. J a c q u e l i n, A. B e n n a n i

Université de Lyon, Lyon, F-69003, France
Université Lyon 1, UMRT9406, LBMC, IUT B
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This paper is concerned with systems consisting of components colliding with each other.
In particular, a high velocity adiabatic impact cutoff machine is investigated. For general
understanding of the impact dynamics (affected by a large number of parameters), the mech-
anisms are modelled in a simplified and accurate manner. Two simple models are developed:
the energy-balance model and the spring-mass model. The energy-balance model is based on
the principle of total energy conservation. It provides only the punch minimum kinetic energy
required for efficient cutting. Concerning the spring-mass model, the different components are
represented by rigid masses and their deformations are modelled by springs (linear or non-
linear in the case of contact stiffness). The resulting non-linear equations are solved using
the Newmark numerical technique. The impact force, velocity, displacement and acceleration
histories are calculated what makes possible a fine description of the cutoff cycle steps. The
two models are helpful for both the design and tuning of the mechanisms involving impacts
between their components.

Key words: impact, rigid body, adiabatic cutoff, spring-mass model, energy-balance model.

1. Introduction

A wide variety of engineering applications concern components colliding with
each other. This is particularly the case in mechanisms including clearances or
gaps. In most cases the principle of operation is based on repeated impacts: im-
pact hammers, high velocity adiabatic impact cutoff, blanking or powder com-
paction machines, impact-forming machines, etc. On the other hand, impacts
may be unwanted because they may prove to be harmful to the reliability of the
equipment: rotors with bearing clearance, gears, wheel-rail interaction of high-
speed trains, etc. The theoretical models presented in this paper are concerned
with high-velocity adiabatic impact cutoff machines. Although similar to con-
ventional presses, high-velocity adiabatic impact presses use high-speed punch
motion to carry out the cutting operation. The tool velocity is generally between
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10 m/s to almost 100 m/s, whereas in the case of conventional presses, the ve-
locity is about 0.3 m/s and a static approach is satisfactory. When sufficient
kinetic energy is imparted to the cutting tool, the material being cut cannot
dissipate heat fast enough. The temperature increases adiabatically due to the
extremely short time and energy concentration in the local area identified as the
“adiabatic zone” [2–4, 7, 10, 11, 14]. The material softens instantly (adiabatic
softening) and the moving die separates the material into two parts. The main
benefits of adiabatic cutting are high quality end cuts, tight length or volume
tolerances, square ends and high production rates. However, the key factor in the
success of this technology depends both on creating sufficient energy to reliably
reproduce the adiabatic softening phenomenon and on controlling the required
energy. The former is a matter of technology, but the latter is associated with
complex dynamic phenomena and is of interest for researchers [8]. The process
exhibits a cutting tool thrusted by a ram. A clearance allows the tool to accel-
erate and reach the required velocity before hitting the material. The adiabatic
softening completes the cut-off and a die base is needed to stop the tool. This
process involves a large number of impacts between the various components of
the machine.

Each machine component can be modelled as a nearly rigid body. The phe-
nomena linked to two colliding bodies have been widely studied in the litera-
ture [13]. Impact initiates when two bodies move close to each other with relative
velocity. The incidence occurs when a single contact point appears on the surface
of each body. After incidence, the contact pressure in the small contact area pre-
vents the interpenetration of the bodies. During the impact, the pressure in the
contact area produces local deformations and indentations, and has a resultant
action that acts on the colliding bodies in opposite directions. Initially, the force
increases with increasing indentation and it reduces the relative velocity at which
the bodies move close to each other. After a time, the work done by the contact
force is sufficient to bring the relative velocity to zero. Subsequently, the elastic
energy stored during compression drives the two bodies apart until finally they
separate with a acertain relative velocity. As regards the impact between solid
bodies, the contact force which acts during the collision, is the result of local
deformations that are required for the surfaces of the two bodies to conform
in the contact area. The local deformations can be elastic or plastic and vary
according to the relative incident velocity and to the hardness of the colliding
bodies. In addition to local deformations, there are also global deformations of
the bodies. These global deformations mainly depend on the impact velocity,
the mass ratio, the boundary conditions and the geometry of the bodies. The
physical process during impact is strongly non-linear and discontinuous. A fine
numerical analysis of the system is an alternative to tackle the problem (i.e.
the finite – elements model). But, it is difficult to understand the phenomena



RIGID BODY ASSEMBLY IMPACT MODELS ... 103

and to identify the leading parameters, which are required for the fine tuning
of the machine. Some simplified models are available in the literature to study
impact dynamics. Generally, the models are classified according to the dynamic
response of the structure: impact on a half-space, quasi-static approach and com-
plete models [13]. With the first two approaches, energy balance models can be
used to predict the maximum contact force and the contact duration [1, 12].
However, the energy balance model is restricted to two free bodies with no ex-
ternal forces. It is not suitable to multi-body impact, and to the impact with an
external force applied to the bodies.

In order to enable the design and fine tuning of the high velocity adiabatic
impact cutoff machines, appropriate models need to be developed. The objective
of this article is to study two models available to analyze the multi-impact dy-
namics: the energy balance model and the spring-mass model. Section 2 presents
the analytical and numerical aspects of the spring-mass model developed for the
purpose of the study. An example of a high velocity adiabatic impact cutoff ma-
chine is presented in Sec. 3. Sections 3.2 and 3.3 deal with the spring-mass and
the energy-balance model results respectively. The two analyses are compared
with each other and the relevances of each model are discussed.

2. Spring-mass model

2.1. Equations of motion

A general spring-mass model with n degrees of freedom is considered as shown
in Fig. 1. The springs are non-linear and the behaviour law is written as:

(2.1) P = k · xp

where P is the spring force, k is the contact stiffness parameter and p depends
on the non-linear effect.

Considering a particular mass “i”, the equation of motion is defined as the
non-linear differential equation (Fig. 2):

(2.2)

mi · ẍi + λ1 · ki · |xi − xi−1|pi + ci · (ẋi − ẋi−1)
+λ2 · ki+1 · |xi − xi+1|pi+1 + ci+1 · (ẋi − ẋi+1) = Fi

where
λ1 = 1 for xi > xi−1 else − 1
λ2 = 1 for xi > xi+1 else − 1,

which may be expressed as

(2.3) [m] · [ẍ] + [c] · [ẋ] + [P (x)] = [F ]
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for the complete system, where the mass matrix [m] and the viscous damping
matrix [c] are given by:

[m] =




m1 0 . . . 0

0 m2
...

...
. . .

0 . . . mn




,

[c] =




c1 + c2 −c2 0 . . . 0

−c2 c2 + c3 −c3
...

0 −c3
. . .

...
0 . . . 0 −cn cn + cn+1




.

(2.4)

[P (x)] is the non-linear forces vector and it is given by:

(2.5) [P (x)] =




k1 · xp1
1 + k1 · (x1 − x2)p2

k2 · (x2 − x1)p2 + k3 · (x2 − x3)p3

...
kn · (xn − xn−1)pn + kn+1 · xpn+1

n


 .

Fig. 1. Non-linear spring-mass system with n degrees of freedom.

Fig. 2. Notation for the mass “i”.
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The velocity vector [ẋ], acceleration vector [ẍ] and external forces vector [F ]
are defined as:

(2.6) [ẋ] =




ẋ1(t)
ẋ2(t)
...

ẋn(t)


 , [ẍ] =




ẍ1(t)
ẍ2(t)
...

ẍn(t)


 , [F ] =




F1(t)
F2(t)
...

Fn(t)


 .

2.2. Numerical integration

The Newmark numerical technique [9] is used to calculate the displacement
vector [x] from Eq. (2.3). First, the time duration of impact T is subdivided into
q equal steps 4t, so that 4t = T/q. Considering that the displacement vector
(xi), the velocity vector (ẋi) and the acceleration vector (ẍi) are known for time
step (ti = i ·4t), the method uses an approximation to calculate the value of the
three vectors at the time step ti+1. The non-linear equations of motion have to
be linearized in order to suit the method. Assuming that the solution is known
at time step ti, the equation at time step ti+1 is given by:

(2.7) [m] · [ẍi+1] + [c] · [ẋi+1] + [P (xi+1)] = [Fi+1]

[P (xi+1)] is expressed as:

(2.8) [P (xi+1)] = [P (xi)] + [Ki] · [4xi]

where [4xi] = [xi+1]−[xi] and [Ki] is the stiffness tangent matrix at time step ti.
Equation (2.7) and Eq. (2.8) give:

(2.9) [m] · [ẍi+1] + [c] · [ẋi+1] + [Ki] · [xi+1] = [F i+1]

with

(2.10) [F i+1] = [Fi+1]− [P (xi)] + [Ki] · [xi].

Since the right-hand side of Eq. (2.10) is completely known, this equation can
be solved for xi+1, using the Newmark method. The xi+1 found is only an ap-
proximate vector, due to the linearization process used in Eq. (2.10). To improve
the accuracy of the solution and to avoid the development of numerical instabil-
ities, an iterative process can be used within the current time step (e.g. Newton
Raphson).

For the linearization approximation of Eq. (2.10), the tangent matrix stiffness
is calculated. This is obtained by differentiating the vector of non-linear forces
[P (x)] with respect to the displacement vector [x], i.e.:

(2.11) [K] =
∂

∂[x]
[P (x)].
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From Eq. (2.5), one obtains:

(2.12) [K] =




(
p1 k1 xp1−1

1

+ p2 k1 (x1 − x2)p2−1

) ( −p2 k1 (x1 − x2)p2−1
)

( −p2 k1 (x1 − x2)p2−1
) (

p2 k2 (x2 − x1)p2−1

+ p3 k3 (x2 − x3)p3−1

)

...

0 . . .

. . . 0

...

. . .

(
pn kn (xn − xn−1)pn−1

+ pn+1 kn+1 xpn
n

)




.

3. Modelling of a simplified cutting machine

3.1. The model

Figure 3 (left) shows the simplified adiabatic cutting machine to be modelled
(i.e. only the main parts of the actual machine are taken into account). The
metal sheet lies on the cutting-off die which is assumed to be linked to the iner-
tia reference frame, i.e. the suspension is not considered. The punch is moved by
a hydraulic actuator (cylinder is not represented). Figure 4 a shows the cylinder
force. The force is initially zero. It becomes constant for 0.1 s (37 000 N) and
eventually returns to zero. A Haversine function is used to represent the smooth
transitions between zero and 37 000 N. The transition duration is 2 ms. After
the cutting phase, the punch is stopped by the die base. The spring-mass model
associated is shown in Fig. 3 (right). The punch and the die base are represented
by two rigid masses m1 and m2 respectively. The two masses are connected
through a Hertzian spring that represents the contact load-deformation char-
acteristics and the initial gap (K12) [15], and the die base is attached to the
reference frame through a linear spring (K22). The metal sheet is represented
by the relationship between the force and the displacement [5, 6] including the
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material’s properties, the thickness and the cutting perimeter of the sheet. This
relationship and the initial gap are represented by the non-linear stiffness K11,
given in Fig. 4 b (with no gap). The initial gap of spring K11 is one of the tuning
parameters of the machine. The distance between the punch and the metal sheet
enables the punch to reach the required cutting velocity. The initial gap of spring
K12 is the sum of the initial gap of spring K11, of the metal sheet thickness and
of a supplementary gap to assure that the metal sheet is completely cut before
the punch impacts the die base. Numerical values of mass and stiffness are given
in Table 1.

The numerical integration is performed as presented in Sec. 2.2, with a time
step of 10−5 s and a time duration of 0.2 s. Four different initial gaps between
the punch and the metal sheet are tested : no gap, 9 mm, 10 mm and 43 mm.

Fig. 3. The model (left: the simplified machine, right: the spring-mass model).

Fig. 4. Force applied to the punch (a); relationship between the force
and the displacement (b).
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Table 1. Numerical data of the two-degrees-of-freedom model.

Mass Stiffness
m1 40 kg K11 initial gap – 4 values tested: 0, 9, 10 & 43 mm

& cutting force-displacement relationship (Fig. 4 b)

m2 100 kg K12 initial gap = initial gap of K11 + metal sheet
thickness (2.8 mm) + supplementary gap (0.2 mm)
& contact law : P = 1013 · x2,2 (x is the indentation)

K22 2.108 N/m

3.2. The spring-mass model

Figures 5, 6 and 7 show the punch and the die base displacement, velocity
and acceleration history respectively, for the four initial gaps (0, 9, 10 & 43 mm).
On a single plot, Fig. 8 shows the punch displacement relative to the metal sheet
(synthesis of the above results). Figure 9 shows the force history between the
punch and the metal sheet.

Fig. 5. The displacement history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).
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Fig. 6. The velocity history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).

Fig. 7. The acceleration history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).
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Fig. 8. The displacement relative to the metal sheet
(no gap – gap 9 mm – gap 10 mm – gap 43 mm).

Fig. 9. The force history (no gap – gap 9 mm – gap 10 mm – gap 43 mm).

The results with no gap are typical of a system with one degree of freedom
with Heaviside excitation (the punch is the mass and the metal sheet is the
spring). The displacements are very small: between −0.204 mm and 0.164 mm
within the range 0− 0.1 s. This means that the metal sheet is slightly indented.
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After 0.1 s (i.e. no more ram force), the response oscillates between −0.065 mm
and 0.052 mm, corresponding to the free vibrations of a one-degree-of-freedom
system. With an indentation below 0.320 mm, the relationship between the
force and the displacement is linear (Fig. 4 b). The corresponding stiffness is
K11 = 4.58.108 N/m. The eigenfrequency of the one-degree-of-freedom system
can be expressed as:

(3.1) f =
1
2π

√
K11

m1

leading to the value of 538 Hz. In Fig. 5, the 53.5 oscillations within the range
0−0.1 s lead to the same eigenfrequency value. The velocity of the punch is also
limited to very small values (less than 0.25 m/s), so as the acceleration (less than
900 m/s2). Both results show that the dynamic effects are insignificant in the
no-gap case. Furthermore, there is no loss of contact as shown by the harmonic
behaviour of the acceleration. As the metal sheet is not cut, the die base remains
at rest. Note that the model does not take into account the effect of repeated
damage on the metal sheet, whereas the actual cutting process can lead to final
cutting. Anyway, the adiabatic cutting process is efficient only if the first impact
leads to complete cutting. If not, the quality of the surface condition is of no
interest. The present model is not devised to take these effects into account.

With a gap of 9 mm, the metal sheet is not cut either. Figure 5 shows a maxi-
mum displacement of 11.5 mm. The indentation of the metal sheet is then 2.5 mm
(lower than the thickness 2.8 mm, Fig. 8). In comparison with the case with no
gap the mechanisms are different. The amplitude of the velocity and acceleration
are higher: the maximum velocity is 4.09 m/s, and the maximum acceleration is
4426 m/s2. Consequently, in Fig. 6 and 7 one can observe successive rebounds
of the punch on the metal sheet.

The metal sheet is cut with an initial gap of 10 mm, as shown in Fig. 5. During
the first impact, the displacement reached the value of 13.4 mm, corresponding
to an “indentation” of 3.4 mm – larger than the thickness: 2.8 mm (Fig. 8). After
the cutoff, the punch is stopped by the die base, and several punch impacts
on the die base are observed until the external force returns to zero (0.1 s).
Then, the punch has a uniform movement and the die base oscillates such as
a one-degree-of-freedom system. Hence, the minimum velocity for the cutoff is
4.32 m/s. With a gap of 43 mm, the cutoff is similar to the latter case, with
higher values for the displacement, velocity and acceleration.

Focusing only on the results for the initial gap of 43 mm, the cutting work
can be divided into 4 steps as shown in Fig. 10.

• Step #1 is the acceleration of the punch. The leading parameters of this
step are the cylinder force, the initial gap and the mass of the punch (m1)
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(Fig. 10 – 1). After 10 ms of free run, the punch impacts the metal sheet
(Fig. 10 – 2 start).

• Step #2 is the cutting of the metal sheet, both influenced by the cylinder
force (which is still active) and by the initial velocity (8.93 m/s). The
duration of cutting is 0.33 ms (whereas it is about 3 ms with a conventional
press). At the end of step #2 (Fig. 10 – 2 end), the punch velocity is
still high: (7.9 m/s). During this step, the maximum acceleration of the
punch is 4424 m/s2, equal to the difference between the acceleration of the
punch (37000/40 = 925 m/s2) and the resistance force of the metal sheet
(Fig. 4 b).

• Step #3 starts just after cutting as the punch impacts the die base (Fig. 10 –
3). Oscillations of the punch are due to successive rebounds on the die base
under the action of the cylinder. These successive shocks induce free oscil-
lations of the die base (behaving as a one-degree-of-freedom system). As
the velocity of the punch is still high, the accelerations of the punch can
reach very high values (73000 m/s2); this result is of importance for the
actual machine parts design). Step #3 lasts until the cylinder stops acting
on the punch.

• In step #4, the free oscillations of the die base have to be treated by specific
dampers. The uniform movement of the punch has to be clamped for the
next cutting (Fig. 10 – 4). This step is of no interest for the present study
and the results are not discussed in this paper.

Fig. 10. The 4 steps of cutting.
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It is clear from Fig. 8 that the minimum initial gap required for the cutting
is 10 mm. In the no-gap case, step #1 is not possible and therefore there is no
kinetic energy stored before contact for the cutting. The force of the punch on
the metal sheet reaches the maximum value of 72 800 N (Fig. 9), which is higher
than the force produced by the rams (37 000 N) due to dynamic effects, but less
than the maximum force required for cutting (Fig. 4 b). The maximum forces
for the three different gaps: 9 mm, 10 mm, 43 mm are approximately the same:
214 000 N. This is higher than the maximum force from the cutting relationship
between the force and the displacement: 189 00 N (Fig. 4 b). Yet, with a 9 mm
gap, the kinetic energy stored during step #1 is not sufficient and therefore
step #2 is not fully completed.

Table 2. Results for the four gaps (spring-mass model).

before cutting
(step #1)

during cutting
(step #2)Gap

(mm)
Cutting?

Velocity
(m/s)

Kinetic energy
(J)

duration
(ms)

Max acceleration
(m/s2)

0 no 0 0 – 896 (oscillations)
9 no 4.09 335 – 4426 (rebounds)
10 yes 4.32 373 1.07 8043
43 yes 8.93 1594 0.33 69800

Table 2 shows a synthesis of the main data required to analyze the cutting:
velocity before impact and the corresponding kinetic energy, cutting duration
and maximum acceleration of the punch. The data will be compared to the
results from the energy-balance model as follows.

3.3. The energy-balance model

The force of the cylinder acting on the punch is 37 000 N. In the case of
a static process (conventional press), the force required for cutting of the metal
sheet is at least 1.89 105 N (see relationship between the force and the displace-
ment in Fig. 4 b). It is then the kinetic energy stored by the punch during the
step #1 that controls the cutting.

The energy-balance model is based on the principle of conservation of total
energy of the punch-metal sheet system. Assuming that the structure behaves

quasi-statically, the kinetic energy of the impacting punch (Ecin =
1
2
.m1.v

2
1 at

the end of step #1) is equated to the energy required for the metal sheet cutting
(Ecut – step #2):

(3.2) Ecin = Ecut.
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The constant force of the ram on the punch, essential during the step #1,
is neglected during impact (step #2). Moreover, the energy losses from friction
between parts, material damping and vibrations are neglected.

The required cutting energy (step #2) is the integral of the product of the
force acting on the metal sheet (Fcut) and the deformation (x):

(3.3) Ecut =

e∫

0

Fcut.dx,

where e is the thickness of the metal sheet, and Fcut is derived from the rela-
tionship between the force and the displacement (Fig. 4 b). For the present case,
Ecut = 436 J.

During step #1, Newton’s second law of motion applied to the punch led to:

(3.4) F = m1.γ1,

where F is the ram’s force that can be considered constant, and γ1 is the punch
acceleration. From Eq. (3.4) the punch acceleration is constant and equal to
925 m/s2. As the initial velocity and displacement are zero, one can obtain the
velocity and displacement functions:

v1 = γ1 · t,(3.5)

x1 =
1
2
· γ1 · t2.(3.6)

From Eq. (3.6), equating the displacement to the initial gap, one can solve
the time of impact and consequently, the velocity and the kinetic energy before
impact. The results (Table 3) agree with the spring-mass model (Table 2 – note
that only the acceleration step #1 is concerned). Comparing the kinetic energy
before impact and the result of Eq. (3.3): Ecut = 436 J, the energy-balance model
does not predict complete cutoff with a 10 mm gap.

Table 3. Results for the four gaps (energy-balance model).

Gap Acceleration Time of impact Impact velocity Kinetic energy
(mm) (m/s2) (ms) (m/s) (J)

0 925 0 0 0
9 925 4.41 4.08 333

10 925 4.65 4.30 370
43 925 9.64 8.92 1591

Equating the minimum kinetic energy with the cutting energy from Eq. (3.3),
the minimum impact velocity for cutting is:

(3.7) v1 =
√

2.Ecut

m1
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which gives a velocity of 4.67 m/s. With Eqs. (3.4), (3.5) and (3.6), the minimum
gap (xgap) is:

(3.8) xgap =
Ecut

F

which gives a minimum gap of 11.8 mm. The minimum gap calculated by means
of the energy-balance model agrees reasonably well with the results from the
spring-mass model (minimum gap between 9 to 10 mm – Table 2).

4. Conclusions

This paper has presented two simple models, the energy-balance model and
the spring-mass model, to describe the dynamics of mechanisms involving clear-
ances or gap and featuring repeated impacts. Both models are applied to a high
velocity adiabatic impact cutoff machine. The energy-balance model is based
on the principle of total energy conservation: the impacting component kinetic
energy is equated to the impacted component deformation energy. The spring-
mass model uses the assumption that the components are rigid enough to be
modelled by masses, and that the masses are connected by linear or non-linear
springs. Both models include contact stiffness between the components by the
use of non-linear springs.

The energy-balance model is able to predict the minimum kinetic energy
required for the metal sheet cutoff. The model is simple for use, and the results
provided are useful for tuning of one essential parameter of the machine: the
value of the initial gap between the punch and the metal sheet. However, the
model is limited to systems with only two components.

The development of the spring-mass model is more complex, and particu-
larly a numerical integration of displacements is needed (Newmark numerical
technique). Unlike the energy-balance model, it can be applied to systems with
more than two components. The minimum kinetic energy calculated with the
energy-balance model agrees reasonably well with the spring-mass model predic-
tion. Moreover, the spring-mass model predicts the displacement, the velocity,
the acceleration and the contact force history for each mass. Accurate analysis
of the cutoff process shows that the kinetic energy of the punch before impact is
the leading parameter, and that the force of the ram has a small influence during
the cutoff. This fact can explain accurately why the energy-balance is efficient.

The two models presented in this paper can be applied to other vibratory
machinery and equipment, featuring multi-degree-of-freedom oscillators with col-
liding components.
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The aim of the paper is to determine the phenomenological model to characterize the
stress-strain relation and to simulate the behaviour of solid polyurethane (PUR) rubbers used
in civil engineering, as well as to present the process of identification of model parameters for
such materials. For the material studied the strain energy density function was established
and a general constitutive relationship for the second-order tensor of Piola–Kirchhoff stress for
elasticity is determined. Constitutive relationships for engineering stress in terms of the princi-
pal stretches are also specified. The paper presents the method of identification of parameters
for constitutive models of hyperelasticity and hypoelasticity for the accessible experimental
data. The applied identification procedure is based on the feature of two-phase structure of
polyurethane material and is supported by the experimental data from uniaxial quasi-static
tension and compression tests. In the analysis, the material behaviour was considered both
for the case of incompressible deformation and also for the case of slightly compressible, non-
linearly elastic materials that are homogeneous and isotropic. The change of volume was ad-
mitted too, in range of large deformations in a tension and compression test. The attempt of
description of stress-softening phenomenon was undertaken in rubber-like materials, for a given
level of strain, under unloading (the Mullins effect) caused by the damage of microstructure
of this material. Different descriptions of the stress-softening phenomenon were already pro-
posed in the literature but they fail to give fully satisfactory conformity of experimental data
with theoretical predictions. The phenomenological model by Elias–Zúñiga and Beatty,
A new phenomenological model for stress-softening in elastomers, ZAMP, 53, 794–814, 2002,
for such materials was modified by different softening functions and a simplified version of this
model was identified, based on the experimental data. In the proposed model, the damage of
microstructure was described by a new exponential function, which depends on the current
magnitude of intensity of strain and its earlier maximum value during the process of material
loading. In this paper, a suitable analysis of existent models and their verification based on
experimental data for polyurethane rubber is presented for uniaxial experiments. It is shown
that the magnitude of stress-softening varies with strain and this phenomenon increases with
the magnitude of the pre-strain and the type of loading: monotonic tension, compression or
cyclic loading. The obtained results are presented graphically for uniaxial tension and com-
pression.

Key words: rubber-like material, hyperelastic constitutive model, damage of polyurethane
rubber.
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1. Introduction

Polyurethane (PUR) materials, among other polymers and elastomers, ex-
hibit high elasticity combined with high friction resistance what results in a wide
array of applications, e.g. as engine mounts, bump stoppers or flexible seismic iso-
lator pads. Polyurethanes are randomly segmented copolymers (Qi and Boyce
[45], Król [46]), composed of hard and soft segments forming a two-phase mi-
crostructure. The hard domains are immersed in a rubbery soft segment ma-
trix (Król [46]) and, depending on the hard segment content, the morphology
of the hard domains changes from one of the isolated domains to one of the
interconnected domains. Phase separation occurs in most PUR due to the in-
trinsic incompatibility between the hard segments and soft segments: the hard
segments, composed of polar materials, can form carbonyl to amino-hydrogen
bonds and thus, tend to cluster or aggregate into ordered hard domains, whereas
the soft segments form the amorphous domains. The presence of hard domains
in segmented polyurethanes is very important for their mechanical properties.
In segmented polyurethanes, hard domains act as physical crosslinks, playing
a role similar to chemical crosslinks in vulcanizates and imparting the material’s
elastomeric behaviour. Since hard domains also occupy significant volume and
are stiffer than the soft domains, they also play the role of effective nano-scale
fillers and render a material behaviour similar to that of a composite (Król
[46]). At room temperature, soft domains are above their glass transition tem-
perature and impart the material its rubber-like behaviour; hard domains are
below their glassy or melting transition temperature and are supposed to govern
permanent deformation, high modulus and tensile strength. The domain struc-
ture also imparts PUR’s versatility in mechanical properties. A wide variety of
property combinations can be achieved by varying the molecular weight of the
hard and soft segments, their ratio and chemical type. At present, polyurethane
materials form an important group of products because of their advantage in
chemical resistance and excellent mechanical properties.

It is well known that rubber-like materials exhibit a strongly non-linear be-
haviour, characterized by large strain and a non-linear stress-strain behaviour
under static conditions. Under cyclic loading conditions the stress-softening phe-
nomena are observed. The stress-softening phenomenon, also called the Mullins
effect, is characterized by an important loss of stiffness during the first cycles
of fatigue experiments. More precisely, the Mullins effect is defined as a strain-
induced stress-softening of the material, that takes place after the first monotonic
loading path of loading cycles. Most of the hyperelastic models of elastomers as-
sume that the Mullins effect takes place during the first cycle of loading and
that it depends only on the maximum strain endured previously by the mater-
ial. These prerequisites are quite acceptable in view of experimental observations.
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As the physical foundations of the phenomenon are not well established, a ma-
jority of studies propose phenomenological constitutive equations. Many authors
use the thermodynamical framework of Continuum Damage Mechanics (CDM),
which was extended to the case of elastomers in order to simulate the Mullins
effect.

The general three-dimensional case on the subject is due to Simo [22] who
derived a large-strain viscoelastic constitutive equation with damage for rubber-
like materials. This model was improved by introducing microscopic concepts
by Govindjee and Simo [23]. More recently, several authors developed phe-
nomenological hyperelastic models with damage to describe the Mullins effect
in engineering applications (De Souza Neto et al. [11]; Miehe [27]; Miehe
and Keck [47]; De Simone et al. [39]). Another approach used to develop con-
stitutive equations for the Mullins effect is based on the two-phase model of
Mullins and Tobin [24]. These concepts postulate that the polymer network
evolves under deformation; they assume that parts of the network are broken
and others are deformed during loading. In this approach, the stress should be
corrected by a scalar deformation function that depends on the given measure
of deformation, expressed as a scalar function of the principal invariants of the
left Cauchy–Green tensor.

Similarly, Beatty and Krishnaswamy [16] derived a constitutive equation
that generalized the previous papers by Johnson and Beatty [15] on partic-
ular deformation states. In this work, the two-phase theory of Mullins and
Tobin [24] is considered, and the transformation of hard regions into soft re-
gions is entirely controlled by a stress-softening function, that depends on the
maximum strain previously endured by the material. This function corrects the
strain-energy function under loading; a different form of it was recently pro-
posed by Elias–Zúñiga and Beatty [17]. The paper presented by Ogden
and Roxburgh [19] applied an approach which differs from the aforementioned
theories because the stress-softening function (that depends on the maximum
strain energy endured by the material) is activated only on unloading paths.
This theory greatly simplifies the identification of material parameters, but it
does not respect the physical phenomenon of network changes during loading.
The constitutive equations based on network evolution are more specific for
polymers than CDM, but the corresponding thermodynamical framework is not
well-defined. Nevertheless, it appears that the constitutive equations obtained
by the two approaches, i.e. CDM and the network evolution, are similar. More
complex models based on viscoelasto-plastic theories have been also proposed
as, for example, in the papers by Lion [40], Septanika and Ernst [41] and
Andrieux and Saanouni [42].

There is no general agreement on the explanation of the microscopic and
mesoscopic origins of the Mullins effect. Mullins [26] suggested that stress soft-
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ening in two-phase elastomers is due to the breakdown of interactions between
the filler particles and the rubber matrix. The mesoscopic properties of real
materials, however, are not uniform, and the polymerization process generates
non-uniformity in the distances between the filler particles. The interactions be-
tween the phases suggests that after the primary loading, the material structure
must be more complex than in the virgin state in which the chains are short. This
condition is a necessary condition for prediction of the stress softening. It is not,
however, a special feature of the Mullins [26] or Elias–Zúñiga and Beatty
[17] models, and it must also hold for any model with limited chain extensibility.
For example, the model used by Marckmann et al. [43] based on the eight-
chain Arruda–Boyce model exhibits the same effect. The model presented by
Horgan et al. [12] suggests that during the primary loading, degradation of the
material occurs. It is possible that as degradation continues, a rearrangement of
the network, involving displacement of network junctions, may also take place.

The main objective of this paper is to identify the phenomenological model
of the polyurethane elastomer materials used in the civil engineering and rail-
way industry. Here, the emphasis is laid on models that can be implemented in
finite-element software and used for engineering applications. The mechanical
behaviour of a representative PUR material is studied in a series of uniaxial ten-
sion and compression tests, investigating cyclic loading effects on the large-strain
deformation behaviour. A constitutive model for the observed stress-strain be-
haviour is then developed and compared directly to experimental data. Both the
monotonic uniaxial tension loading and uniaxial compression and subsequent
unloading curves are examined. The experimental data presented recently by
Kwiecień and Zając [20] and Kwiecień at al. [21], exhibit a non-monotonic
variation of stress softening with the extent of deformation. The analysis of
experimental results has also shown that the property of stress softening in
polyurethane elastomer strongly depends on the magnitude of pre-strain. Uni-
axial tension and compression examples are presented in order to highlight the
influence of the loading path on the material behaviour. The identification of
material parameters for uniaxial monotonic loading leads to a good qualitative
agreement for both the uniaxial tensile and compression conditions. As most of
the phenomenological models developed for the Mullins effect are based on the
microstructural damage of the Jonhson and Beatty [15] theory, it is of great
importance to rationalize its use and to exhibit its advantages and limitations
in this context.

This paper is restricted to hyperelasticity with isotropic damage. Cyclic com-
pression experimental data are used to construct the evolution equation of the
stress-softening variable and to exhibit some limitations of this approach. The
emphasis is laid on the restrictions of the damage theory as applied to the Mullins
effect with respect to physical phenomena, and on the choice of the damage soft-
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ening function and criterion. The corresponding analysis for different forms of
softening functions appearing in constitutive models are considered and the re-
sults for the axial tests are presented. The new forms of the softening function
assumed in our model of the Mullins effect aim to explain the difficulties in fit-
ting the data by models which were formulated by Ogden and Roxburgh [19],
Elias–Zúñiga and Beatty [17], Qi and Boyce [45] and others.

We begin in Sec. 2 with a brief description of physical aspects of the in-
ternal damage of rubber-like materials with micro-phase separation. In Sec. 3,
the constitutive framework is presented. The emphasis is laid on the uniaxial
tension and compression. Section 4 is devoted to the experimental results for
polyurethane elastomers. The parameters identification process, as the integral
part of constitutive modelling, are presented and discussed in Sec. 5 and the con-
ventionally represented uniaxial experimental data are reanalysed in a manner
consistent with the theory.

The numerical part of the identification work for uniaxial cycle loading with
Mullins effect is presented in figures in Sec. 6. We concentrate on the Mullins
effect and we are not concerned with hysteresis, residual strain, thermal and
viscoelastic effects. The proposed model is purely phenomenological and does not
take into account the physical structure of the material; hence it can be applied
to any material exhibiting the Mullins effect. We assume that the virgin material
is isotropic with respect to an undeformed and unstressed state. In Sec. 6.1 we
define the terms damage function, which depends on the principal stretches, and
damage point, which depends on the principal directions and the history of the
right stretch tensor. Finally, the concluding remarks are given in Sec. 7.

2. Physical aspects of internal damage of rubber

2.1. Micro-phase separation in polyurethane elastomers

The specific structural feature of high-molecular weight polyurethane elas-
tomers, is their segmented structure. The PUR chain is composed of hard seg-
ments and soft segments arranged alternately. The structure of the segmented
PUR was already schematically presented and such schemes are presented in
[28–30, 42]. The structure of a PUR macro-molecule results from the spatial
arrangement of polymer chains in the condensed phase, i.e. after the polymeri-
sation process and possibly after cross-linking. Considerable structural diversi-
fication of PUR chains gives rise to strong interactions, both within individual
macro-molecules and between different macro-molecules. The hard segments can
interact with each other. That phase is hardly miscible with the soft phase which
has been formed with the use of much less polar, soft segments. If the hard
phase and soft phase within a PUR become completely immiscible, two separate
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phase transition points can be frequently observed as two clearly different glassy
temperatures for soft segments and for hard segments. That is specific just for
segmented PUR elastomers.

In some cases, additional crystalline phases can form within each of those
phases. The interactions through hydrogen bonds can also create separate hard
domains within the soft phase or separate soft domains within the hard phase.
That certainly produces a multi-phase system in which usually the continuous
soft phase makes the matrix. The matrix is penetrated through by some part
of the hard phase or by the whole of it. Alternatively, the hard phase can be
dispersed in the matrix. Separation of micro-phases is not precise, however, and
some hard segments are dispersed within the domains of soft segments and the
intermediate phase is thus formed. The degree of phase separation in PURs is
controlled by numerous factors: chemical structure of PUR chains, polarity of
their structural fragments, sizes of hard segments and soft segments, molecular
weights and molecular weight distribution in PURs, the method employed to
shape the final PUR product (bulk, foil, fibre) and process parameters adopted
for that method (temperature, melt cooling rate, solvent evaporation rate, possi-
ble presence or absence of mechanical stresses). From the theoretical viewpoint,
phase separation can be controlled by the thermodynamic factors which result
from differences in the structures of hard segments and soft segments, and by
kinetic factors which for example promote separation of some segments due to
their higher mobility, and thus with lower viscosity of the reaction mixture which
is just polymerizing. The micro-phase separation is generally more prominent in
polyurethanes due to stronger interactions between ester groups and urethane
groups than between ether groups and urethane groups.

2.2. Intermolecular interactions. Elastomer phase structure

The fundamental static properties for PUR elastomers materials are defined
by Young’s modulus E, shear modulus G and by unit elongation and Poisson’s
ratio ν = 0.3 − 0.5. The static properties also involve hardness resistance. The
mechanical properties of the parent material will be decided by the structures of
PUR chains and by the phase structures of PURs. That problem has been exten-
sively described in literature since mechanical properties affect directly the range
of applicability of PUR elastomers and PUR coatings. Polyurethane materials be-
haviour under quasi-static loads is determined by the elastomer phase structure,
and that in turn is controlled by the organisation of its segments. In polyurethane
materials, the mechanical properties make the resultant of structural factors and
physical chemical interactions such as like size and flexibility of hard and soft
segments, ability to form hydrogen bonds, van der Waals force, entanglement
of chains, orientation of segments, cross-linking bonds, micro-phase separation
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and content of crystalline phase. The most important contribution comes from
the chemical structure and from the size and structure of hard and soft segment
resulting from this.

The sizes of hard segments increase when the number of those segment in-
creases. Initially, they form a system of separate islands which do not contact
each other and are dispersed within the matrix of soft segments. Above a certain
limit number, some of them start to touch each other, what forms the system
of hard domains. Further increase in the number of hard segments favours their
association and the roles of phases become opposite. Both the cohesion energy
and hydrogen bonds in hard domains are higher than in soft domains. Hence,
the role of hard domains is sometimes compared to that of a filler material
which is used to reinforce the elastomer structure and to improve its mechanical
properties: in particular, its strength and hardness. On the other hand, higher
elasticity is favourable for intermolecular interactions. In contrast to mechanical
strength, which is controlled first of all by the structure of hard segments, elastic-
ity is affected mainly by soft segments. The capacity for crystallisation of phases,
which is conditioned by the structural regularity, contents of individual segments
and efficient phase separation, is favourable for higher tensile strength, tearing
strength, hardness and higher stresses at the predefined elongation levels. The
mechanical properties of PURs can be also considerably affected by the method
adopted for the final treatment of the product, like soaking or racking. That
increases the phase separation and orderly arrangement of elastomer within its
crystalline structures, i.e. elastomer strength is advantageously improved in that
way (see Pompe et al. [48]).

2.3. The role of a damage parameter

Although rubbery-like materials may be regarded as purely elastic, damaging
does take place due to straining. The internal degradation in this case is mainly
characterized by rupture of the molecular bonds, concentrated in regions contain-
ing impurities and defects. In general, the damage response of such materials is
predominantly brittle. In rubber-like materials, even at very small overall strain-
ing, damage can occur in the form of progressive breakage of shorter polymer
chains. In Sec. 6.2 we have shown that it is convenient to introduce a damage pa-
rameter to describe the evolution of alteration of the network. This can be done
in a purely empirical way, and this is the approach used by Beatty and co-workers
in several publications (Beatty and Krishnaswamy [16]; Elias–Zúñiga and
Beatty [17] and references contained therein) and also by Marckmann et al.
[43]. First of all, it is possible to use the theory of pseudo-elasticity as proposed
by Ogden and Roxburgh [19]. In this theory it is assumed that the material
response of the body can be described in terms of a pseudo-energy function,
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defined per unit volume, of the form W (f(I), α), where α is a damage parame-
ter and f(I) is a function of invariants I1, I2 and I3 of the deformation tensor.
(The role of α here is somewhat different from that of the damage parameter α
introduced in Sec. 6.2). In this case it is no longer appropriate to regard W as
a stored energy because, through α, irreversible effects are accounted for.

It is often convenient to regard shear modulus for the ith-cycle loads µi as
functions of a damage parameter, here denoted by α, such that α ∈ [0, 1], where
0 is associated with the original material and 1 with the fully damaged material
(this is a normalization of the scale). The fully damaged material corresponds
to an asymptotic state in which no further damage is caused by stress-strain
cycling with increasing number i.

3. Constitutive models for rubber elasticity

The elastic properties of rubber-like materials are usually represented in
terms of a strain-energy function, denoted by W and defined per unit reference
volume (see, for example, Beatty and Krishnaswamy [16]; Ogden [6–8]).
The state of strain in the material is characterized by a tensor measure of defor-
mation, such as the left Cauchy–Green deformation tensor B. Several forms for
the strain energy function of rubber-like materials have been proposed since 1940
in the literature. These can be grouped into these dealing with incompressible
materials and those extended to deal with compressibility. They can further be
split, depending on the material group being modelled, whether for example the
material under consideration is rubber, polymer or foam. The most widely cited
strain energy expressions are the Mooney–Rivlin, Ogden [cf. 6–7] and Blatz and
Ko (see e.g. Krishnaswamy and Beatty [31]) models. However, for different
strain energy functions, mainly two different kinds of models can be identified.

The first kind is based on experimental observations and phenomenological
considerations. The corresponding models are both mathematically simple and
quite efficient (Ogden [6, 7]). The second group of models were developed by
considering the physics of the elastomer network. First, conformations of a sin-
gle polymer chain are determined; then, the behaviour of the whole network
is derived using statistical developments. For small and moderate strains, the
neo-Hookean (Treloar [52]) and the phantom (James and Guth [53]) mod-
els can be mentioned. For large strains, the stretching limit of chains is taken
into account and non-Gaussian statistics are employed (Treloar and Riding
[54]; Arruda and Boyce [55]; Wu and van der Giessen [56]). The use of
these models reduces the number of relevant material parameters because of
their physical foundations, but their mathematical derivations are more com-
plicated than those of phenomenological constitutive equations. For a complete
review of the constitutive models for rubber elasticity, the reader can be referred
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to Ogden et al. [34], Lambert–Diani and Rey [1] or Boyce and Arruda
[57]. It has to be mentioned that the present approach can be easily applied
to every form of the strain energy function. In the present study, the emphasis
is laid on identification of the model with stress-softening phenomenon for the
available macroscopic uniaxial loading experimental data only, so that a simple
phenomenological strain energy function is chosen.

3.1. The strain energy function for rubber

The hyperelastic materials are described under assumption of existence of
the potential of energy of strain W (λ), by which the stored strain energy on unit
initial volume fraction as a function of strains is defined in the material. In lit-
erature, different forms of strain energy potentials are proposed, depending on
the form of constitutive model, e.g. Mooney–Rivlin or Ogden. The strain energy
function W can be expressed as a function of invariants of a deformation tensor
I1, I2 and I3. If the left Cauchy–Green deformation tensor B is employed as the
deformation tensor, the deformation invariants can be rewritten in terms of the
principal stretches λi (i = 1, 2, 3),

I1 = trB = λ2
1 + λ2

2 + λ2
3,

I2 =
1
2
{(trB)2 − tr(BB)} = (λ1λ2)

2 + (λ2λ3)
2 + ( λ3λ1)

2 ,

I3 = det(B) = J2 = (λ1λ2λ3)
2 .

(3.1)

When the material is incompressible, the third invariant I3 = 1, and W is rep-
resented as a function of I1 and I2 only, W = W (I1, I2). In the case of isotropic
elastic incompressible virgin materials, W = W0 and the general expansion of
W0 is considered in the form:

(3.2) W0 = Cij(I1 − 3)(I2 − 3)

in which Cij (i, j = 1, . . ., n) are the material parameters. Several phenomeno-
logical models were derived by truncating the series of Eq. (3.2). In order to
satisfactorily reproduce the large strain response of the material, the Mooney–
Rivlin model is adopted (cf. Elias–Zúñiga and Beatty [17]). The correspond-
ing strain energy function is given by

(3.3) W0 =
3∑

i=1

Ci0(I1 − 3),

where C10, C20 and C30 are the three material parameters. As this model de-
pends only on the first principal invariant, it is not well-adapted to moderate
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strain because it does not improve the Gaussian theory. Nevertheless, its math-
ematical simplicity and ability to reproduce the whole behaviour of elastomers
are sufficient qualities for the present study.

Some of the simplest incompressible models proposed in the literature involve
a strain-energy function of the form W0 = f(I1), and are called generalized neo-
Hookean models. In the molecular theory of elasticity, these models involve the
introduction of a (non-Gaussian) distribution function, denoted ϕ, for the end-
to-end distance of the polymeric chain. By contrast, a Gaussian distribution
function for ϕ is associated with the special case corresponding to the classical
neo-Hookean model

(3.4) WH
0 = µ(I1 − 3)

for incompressible materials, where µ (µ > 0) is the shear modulus in the refer-
ence configuration.

In the framework of the phenomenological theory, similar models have been
developed by considering the idea of limiting chain extensibility, i.e. by consid-
ering strain-energy functions that have a singularity when the first invariant I1

reaches a certain finite value. The simplest model with limiting chain extensibil-
ity is due to Gent [58], who proposed the strain-energy function

(3.5) WG
0 (I1) = −1

2
µ J ln

(
1− I1 − 3

J

)
,

where µ is again the shear modulus in the reference configuration and J > 0 is
the constant limiting the value of (I1 − 3) that accounts for limiting polymeric
chain extensibility. In the limit as the chain-extensibility parameter tends to
infinity (J → ∞), Eq. (3.5) reduces to Eq. (3.4), cf. Horgan et al. [12]. From
a phenomenological point of view, limiting chain extensibility may be introduced
in many ways, and a detailed review of some of the possibilities may be found
in Horgan et al. [12] or Horgan and Saccomandi [44].

All the strain-energy functions considered in constitutive modelling will be
assumed to satisfy the following conditions: 1. The strain energy is zero in the
reference configuration; 2. The stress is zero in the reference configuration; 3. The
strain-energy function is positive definite. The specific form of strain-energy den-
sities used to model our rubber-like material behaviour in Sec. 5 and 6 are given
in the following subsections.

3.1.1. The Mooney–Rivlin model. The potential in the Mooney–Rivlin model
is usually presented for incompressible hyperelastic materials in the following
form (see e.g.: [6, 8]):

(3.6) WM
0 = C10(I1 − 3) + C01(I2 − 3),
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where W is the strain energy in unit initial volume fraction, C10 and C01 are two
parameters and Ī1 and Ī2 are the first and second invariants of strain deviator
defined in terms of the deviatoric principal stretches λ̄i which have the forms
(cf. [2, 3, 8, 9])

(3.7) I1 = λ
2
1 + λ

2
2 + λ

2
3 and I2 = λ

(−2)
1 + λ

(−2)
2 + λ

(−2)
3 ,

where λi = λi J
(− 1

3
) and λi are principal stretches of the total strain tensor.

Initial shear modulus µ0 in the Mooney–Rivlin model is defined by

µ0 = 2(C10 + C01).

3.1.2. The standard Ogden model. Among the hyperelastic models, in case
of polyurethane materials, the Ogden model (cf. [6, 7]) gives good results; this
will be the basis of the model elaborated and which takes into account the
material damage. In the case of incompressibility, the strain energy function is
presented in the form ([6, 7, 8]):

(3.8) WOg
0 =

N∑

i=1

2µi

α2
i

(
λ

αi

1 + λ
αi

2 + λ
αi

3 − 3
)

,

where µi and αi are material parameters and N is the number of material para-
meters (in practice N ≤ 6), usually N = 1. Initial shear modulus µ0 in Ogden
model is defined by

(3.9) µ0 =
N∑

i=1

µi.

From the general form of strain energy potential of the Ogden model we can
obtain also the peculiar material discussed above, e.g.: Mooney–Rivlin, by special
selection of µi and αi.

In the above constitutive description, the coefficient of change of length λi

(i = 1, 2, 3) can be defined as

(3.10) λi = li/L = (L + ∆li)/L,

where ∆li = li − L is the change of length in direction i.

3.2. The standard hypoelastic model

In literature, for description of rubbery-like materials behaviour was also
used, different from the previous one, an objective hypoelastic rate model which
can be presented by the following formula:

(3.11)
◦
T = 2µD+ λ∗ tr(D)I,
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where
◦
T is an objective measure of rate of the Cauchy stress T, D is the rate

of stretching (deformation) tensor and it is the symmetric part of the velocity
gradient tensor, I is the unit tensor and µ and λ∗ are elastic material constants.
For a hypoelastic constitutive equation, in case of uniaxial tension (compression)
along direction-11, when λ2 = (λ1)−ν (for incompressible elastic materials) and
if we use logarithmic strain measure, the following formula is obtained:

T11 = E ln (λ1),

where E is elastic modulus and ν is Poisson’s ratio.
Nominal stress in hypoelasticity is given by

(3.12)
P

A0
= E (λ1)−2ν ln(λ1),

where A0 is the initial area of sample cross-section.
Experimental data presented by Kwiecien and Zając [20] and Kwiecien

et al. [21] for polyurethane material, allow to assume in the identification analy-
sis, as potential candidates, the hyperelastic constitutive models proposed by
Mooney–Rivlin and Ogden [6–8]. It is useful to compare these constitutive
models with logarithmic model of hypoelasticity. For these descriptions it is pos-
sible to define the basic parameters of models, as well as the essential from the
point of application of analysed material models, the basic quantities as: initial
shear modulus µ0, elastic modulus E and Poisson’s coefficient ν. For example:
initial shear modulus µ0 is given by: µ0 = 2(C10 + C01) (see e.g. papers [1–10]).

3.3. Introduction of damage

Under repeated tensile or compression strain, many rubber-like materials
such as polyurethane (PUR), exhibit a reduction in stress after the initial ex-
tension, the so-called Mullins effect or stress-softening, and the mechanism(s)
responsible for this is considered to be very important. Damage functions are
important tools for analysing the stress-softening materials. In previous isotropic
models [4, 5, 14], softening effects are governed by their “damage” functions and
their corresponding damage points (sometimes referred to as softening points [5]
or maximum-loading parameters [15]). In Sec. 6 we will define a damage function
ξ (which may depend on the material properties) such that 0 ≤ ξ(x) ≤ 1, x ∈ R
and ξ increases (strictly) monotonically as x moves away from the point x = 1,
ξ(1) = 0.

Before using the proposed model, the two elastic parameters C10 and C01

and the parameters describing the evolution laws for damage have to be iden-
tified. It was performed through uniaxial tension and compression tests results
(monotonic for elastic parameters and non-monotonic for damage parameters),
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especially by exploiting the shear modulus properties (see Sec. 3.2). Different
stages of the procedure are summarized in Sec. 5 and 6. Let us assume that as
a first approximation, the term with I2 has been neglected since the tension test
case enables to split the contribution of the two first invariants and moreover,
simulation by the Ogden model with only the first invariant and experimental
results are in good agreement, also here µ2 = 0. The behaviour of the elastomers
is commonly represented by hyperelastic models, characterized by the strain en-
ergy function W , which is often considered to be dependent on the invariants
I1, I2, I3 of the Cauchy–Green deformation tensor C (or another strain tensor).
Among the usual hyperelasticity laws (Mooney–Rivlin, Ogden, etc.), the best one
for the studied material is the model of Ogden, as shown in Fig. 1. The agree-
ment between experiments and the model is quite good in a monotonic uniaxial
tension and compression tests, but for cycle compression tests some phenomena
are not taken into account, essentially a decrease of the shear modulus during
the cycles and a decrease of the stiffening for high strains, as Figs. 2 and 3 show.
The experimental results in a cycle compression test case (realised with some
loads and unloadings) are shown in the axes of the engineering stress σ and
principal stretch λ. Actually, the occurrence of micro-defects leads to a degra-
dation of the mechanical material properties. Nevertheless it is worthy to note
that for a damaged material, the type of load is crucial. In case of tension, the
occurrence of micro-defects induces a decrease in the material properties; on the
contrary, in case of compression, when the micro-defects are closed, the initial
properties are recovered. The model exposed in the Set. 6 takes into account
these experimental observations.

4. Experimental uniaxial tension and compression tests

The material used in this study was a commercial polyurethane material.
After compression moulding, the polymer was solidified at a slow cooling rate
to ensure that the structure and morphology of the compressed plates will be
homogeneous across the thickness and along the length. This material is a two-
component elastomer based on main feature of polyurethanes: hard segments A
(viscosity 4.40 Pas) and soft segments B (viscosity 0.26 Pas) were compound in
and it was combined in proportions 100:10, and the received material had average
mass density ρ = 0.90 kg/dm3 and hardness under Shore A 55±5. In the next
Sections, in the uniaxial tension identification process, the experimental data of
the following tests were accepted: 2R-1, 5R-1 and 7R-1 (paddle sample). In case
of uniaxial compression, the following data were used: 9C-1, 7C-1, 6CC-1, 5CT-1,
4C-1, 1C-1, 3CC, 8CZ and 8CG (cylindrical sample with diameter φ ≈ 46 mm).
All investigations were conducted only with quasi-static strain rates. Results
of these tests are contained in the report by Kwiecień and Zając [20] and
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published also by Kwiecień et al. [21], and are presented in a part in this paper
(in Secs. 4.1 and 4.2).

4.1. Tensile test

The stress-strain behaviour of the PUR was determined by means of
a INSTRON testing system. The method has been described in detail in the
literature. Consequently, only its essential features will be recalled here. Both
the quasi-static and dynamic tests were performed at room temperature 295 K.
The tensile samples were made from PUR plates. Dog-bone shaped flat specimens
were used for the uniaxial tension tests. The length and width of the homoge-
neous section of the uniaxial tension specimens were 45.0 mm and 17.0 mm,
respectively. The specimen thickness was 3.0 mm.

In Fig. 1, the force versus 1/λ curve is plotted for several tests, and in Fig. 2
the nominal stress versus λ is plotted.

4.2. Compression test

Investigations of compression were performed on disc specimens, cut off from
polyurethane plates. The diameter of the specimens was φ = 46 mm and the
thickness for the quasi-static compression tests was approximately H = 50 mm.

The sample was compressed between two circular dies. The quasi-static com-
pression tests were carried out in a hydraulic testing machine with the rates
of deformation equal to 10−3 s−1. The surface of each specimen was covered
by a thin layer of anti-friction coating before testing. The friction between the
sample and the die faces was not accounted for in the true stress-strain calcu-
lations because the friction coefficient was likely to be very low (<0.1) between
the PUR sample and the steel dies. Consequently, the engineering stress was
simply calculated as the load per actual cross-section of the compressed zone:
σ = P/(πφ2/4). Three tests were performed for each group of specimens to
assure sufficient reliability of the results.

4.3. Typical stress-strain behaviour

The stress-strain relations obtained during uniaxial quasistatic tension of
the polyurethane studied are presented in Figs. 3, 4, 5. The curve’s number in
these pictures indicates the test number. The stress and the strain quantities
are referred to the current (instantaneous) value of the specimen cross-section
and the thickness values. An example of the stress-strain curves obtained during
axial tension of three specimens of PUR subjected to loading with the same
strain rate 3 × 10−4 s−1 is shown in Fig. 3. The axial stress vs. axial strain
curves shown in Figs. 3–5 were obtained under uniaxial loading at 20◦C. The
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reproducibility of each curve was checked by three tests performed under the
same conditions. This graph is therefore typical for the behaviour of PUR at
room temperature. In this part, a simulation of a cycle compression experiment is
performed, as described in Fig. 9. Several interesting features deserve attention.
First, all experiments showed that the material’s behaviour was the same as
above (elastic), but nearly incompressible with ν ≤ 0.499. As below in Sec. 6,
Figs. 7, 8 and 10 show the experimental data for polyurethane in uniaxial cycle
compression test as a function of strain intensity measure

√
M −m, or as a

function of axial change of length λ for the loading and unloading tests.

5. Identification of models for monotonic loadings

5.1. Outline of the optimization method

The experimental data used in this paper are the data of Kwiecień and
Zając [20] and Kwiecień et al. [21] for the uniaxial tension and compression
and the numerical values have been obtained from the virgin experimental tables.
These data have been used to identify the parameters of the specific strain-energy
functions by means of the least squares (LS) technique.

Let λ̂ = [λ1
1, λ

2
1, . . ., λ

m
1 ]T be the vector of values of a measure of stretch,

appropriate to the considered deformation and let σ = [σ1, σ2, . . ., σm]T be the
corresponding values of stress, which may be either nominal stress or Cauchy
stress, depending on the deformation. Hence (λ̂, σ) are the given pairs of data
values. The considered material model is represented by the strain-energy func-
tion U, from which the stress is calculated and written F (λ̂,β) : R × Rn → R,
where λ̂ takes the values λi

1 , i = 1, . . . , m, and β = [β1, β2, . . . , βn]T is a set
of n material parameters to be identified.

Let us define the objective function as the squared 2-norm

(5.1)
m∑

i=1

(
F (λi

1, β)− σ
exp
i

)2
.

Hence, the minimization problem is given by

(5.2) min
β

m∑

i=1

(
F

(
λi

1, β
)− σ

exp
i

)2
.

If F (λ̂, β) is a non-linear function with respect to β, then a non-linear least
squares problem arises.
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It is assumed that our material is almost incompressible like majority of the
materials with similar elastic properties as rubber.

In the uniaxial deformation tests along the direction-11 we have

(5.3) λ1 = λ, λ2 = λ3 =
1√
λ

, λ = 1 + ε1.

The invariants of strain in uniaxial tests have the form

(5.4) I1 = I1 = λ2 + 2λ−1, I2 = I2 = λ−2 + 2λ.

With a known potential of strain energy it is possible to determine the de-
pendence of the nominal stress as a function of strain. For the model of the
Mooney–Rivlin, we have

(5.5)
P

A0
= 2

(
1− 1

λ3

)
(λC10 +C01) = 2

{(
λ− 1

λ2

)
C10 +

(
1− 1

λ3

)
C01

}
,

which can be defined in the form

(5.6)
P

2A0

(
λ− 1

λ2

) = C10 +
C01

λ
,

where P is the external axial force in the test, A0 is initial area of cross-section
and λ is the coefficient of change of length (stretch). The right-hand side of
the above equation is linear with respect to variable 1/λ, what enables prelimi-
nary qualification of constants C10, C01. The left-hand side represents equivalent
stress. Figure 1 shows this reduced stress change as a function of the reciprocal
of the axial stretch for tests 2R-1, 5R-1 and 7R-1. For these tests it has been
established that C10 = 0.6832, C01 = 0.01209.

In a general formulation for the Mooney–Rivlin model, we can identify para-
meters C10 and C01 from the relation

(5.7)
P

A0
= 2

(
1− 1

λ3

)
(λC10 + C01).

The Ogden model introduced generally earlier, in uniaxial tests has now the
form:

(5.8) σ11 =
2µ

α

[
λα−1 − λ−1−(α

2 )
]

and we have to identify two material parameters µ i α.
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Fig. 1. Dependence of the change of reduced stress
P

2A0

�
λ− 1

λ2

� as a function of the

reciprocal of the relative axial stretch
1

λ
in uniaxial tension. Experimental data from

Kwiecień et al. [20, 21].

Fig. 2. The nominal stress as a function of the axial stretch λ for polyurethane rubber in
a uniaxial tension test, with strain rate 3× 10−4 s−1 for different constitutive models
relations Eqs. (3.6), (3.8), (3.12) (broken and solid lines). Experimental data (quadrate

marks) from Kwiecień et al. [20, 21].
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Fig. 3. The nominal stress as a function of the axial stretch λ for polyurethane rubber,
in uniaxial compression test with strain rate 3× 10−3 s−1 for different constitutive models
relations Eqs. (3.6), (3.8), (3.12) (broken and solid lines). Experimental data (quadrate

marks) from Kwiecień et al. [20, 21].

Fig. 4. The nominal stress in uniaxial tension and compression tests as a function of the
axial stretch λ, for different constitutive models, Eqs. (3.6), (3.8), (3.12) (broken and solid

lines). Experimental data (diamond marks) from Kwiecień et al. [20, 21].
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In logarithmic description, in uniaxial tests the following relation is given:

(5.9)
P

A0
= E (λ)−2ν ln(λ)

and we have to identify E and ν.
The results of identification process were obtained for tension and compres-

sion tests separately and they are presented in Fig. 2 (for tension) and in Fig. 3
(for compression). The results of simulation plotted in Fig. 2 and in Fig. 3 are
compared with experimental results. Quadrate marks are used for experimental
data, whereas full lines are used for simulation. Identified parameters differed so
much that next test of the same process of identification was undertaken for the
same file of data for both tests, to identify for this material the set of parameters
independent of the type of test. Results of such identification are introduced in
Fig. 4. This curve shows the ability of the rubber elasticity models to estimate
the material properties.

6. Hyperelastic material with damage

6.1. Remarks on the use of damage mechanics to describe the Mullins effect

The phenomenon of internal damage in common engineering solid materi-
als depends upon the specific type of the material considered. In addition, for
the same material, damage evolution may take place, initiated by very differ-
ent physical mechanisms, which mainly depend on the type, rate of loading,
temperature, as well as on environmental factors such as exposure to corrosive
substances. As mentioned in the Introduction, the Mullins effect in rubber elas-
tic materials is often modelled by means of the CDM. Originally, continuum
damage mechanics was based on the definition of effective stress (cf. Lemaitre
and Chaboche [59]). This theory assumes that, under loading, the material sur-
face on which internal forces are applied is decreasing because of the emergence
of micro-defects and micro-voids. Taking into account these physical consider-
ations, in the case of the Mullins effect in solid rubber, following consequences
are introduced for the damage evolution:

1. It was proved experimentally that the Mullins effect recovers with time
and that this recovery is highly accelerated by annealing (Mullins [26]).
So, the damage in rubber materials may decrease if the whole life of the
material is considered.

2. The damage evolution does not differ under different deformation modes:
some authors observed the occurrence of stress-softening under tension and
compressive conditions.
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3. It is mainly recognized that rupture in rubber parts is not directly related
to stress-softening. Therefore, high values of the damage parameter should
not be considered as a criterion for rupture or occurrence of cracks.

More precisely, the Mullins effect is not a damage but a stress-softening phe-
nomenon. It is due to the rearrangement of the polymer network under defor-
mation when some links between chains (entanglements), or between chains and
reinforcement particles (for example carbon black) are broken (Bueche [51]).
Therefore, it should be stressed that CDM can be used to model the Mullins
effect in elastic rubber materials with some restrictions and care.

6.2. Description of microstructure damage

Let us consider an isotropic, homogeneous and incompressible rubber-like
material. This material is considered to be hyperelastic and subject to isotropic
damage in order to describe the Mullins effect. Consequently, it is defined by the
existence of a strain energy function, that depends on the deformation gradient F
and on a scalar damage variable α. This variable characterizes the elastic stress-
softening of the material. Taking into account the objectivity requirement, the
isotropy and the incompressibility, the strain energy function can be written as

W = W (I1; I2; α),

where I1 and I2 are the two first principal invariants of the left Cauchy–Green
tensor B = FTF defined in Sec. 3. The third invariant I3 = det(B) is equal to 1
due to the incompressibility assumption.

Consider now that the effective Cauchy stress T ∗, which acts on the dam-
aged material, is related to the virgin Cauchy stress T0 by Lemaitre and
Chaboche [59] T ∗ = T0(1 − α). In case of three-dimensional continuum, the
damage model for Mullins effect was proposed by De Souza Neto et al. [11].
In this model, the current value of the engineering stress σ in the stress-softened
material is given by

σ = ξ(α) σ0,

where the damage function ξ(α) is a differentiable, nondecreasing function of
a damage variable α ∈ [0, 1]. The engineering stress in the virgin material is
determined by (cf. De Souza Neto et al. [11])

(6.1) σ0 =
∂ψ0(F)

∂F
,

where ψ0(F) is the strain energy function for an isotropic, incompressible hy-
perelastic solid at the current deformation gradient F. The relation Eq. (6.1) is
valid only during monotonic loading. The strain energy function in Eq. (6.1) can
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be considered as a‘ product of the surface reducing parameter (1 − α) and the
strain energy function of the virgin undamaged material, denoted W0:

(6.2) W (I1; I2; α) = (1− α)W0(I1; I2).

The damage variable α, or the relative strain measure, is defined by α =
ψ0

D
,

where D ≡ max
0≤s≤t

ψ0(s) is the maximum previous value of the strain energy

in a deformation history up to the current time t, and s is a running time
variable. The evolution of α variable with the deformation must be specified
by an additional constitutive law during the loading, unloading and reloading
deformation cycles.

Similarly, like Ogden and Roxburgh [19], Beatty and Krishnaswamy
[16] introduce a generalized Johnson and Beatty [15] elastic material model of
stress-softening. In this model, the Cauchy stress T during loading of the mater-
ial is a product of the Cauchy stress T0 in an isotropic parent material model and
an isotropic scalar-valued damage function ξ(m), that depends on the current
value of the magnitude of intensity strain m. At a material point X, the magni-
tude of strain intensity denoted by m, is defined by m =

√
BB =

√
trB2, where

B is the left Cauchy–Green deformation tensor.B ≡ F·FT and F is the deforma-
tion gradient which, in case of incompressibility, requires det (F) = 1 for all F,
so that

(6.3) T = ξ(m)T0.

During loading when m is fixed at its current maximum value, mmax =
max
0≤s≤t

m(s) and the material is unloaded, the Cauchy stress T∗ in the stress-

softening elastic material is given by

(6.4) T∗ = ξ(mmax)T0 = ξ(mmax)
T

ξ(m)
=

ξ(mmax)
ξ(m)

T = ξ(mmax,m) T.

The same relations hold when the Cauchy stress is replaced by the engineering
stress. The common feature of virgin material response in the described models
is that this response, described by the parent material stress T0, is determined
by a standard strain energy function for a perfectly elastic, incompressible and
isotropic material, which may be hyperelastic.

The loading, unloading and neutral loading from the obtained maximum
value mmax = M , require ṁ > 0, ṁ < 0 and ṁ = 0, respectively. Intensity

m of tensor B as a function of invariants Ik(I1 = trB, I2 =
1
2
[I2

1 − tr(B2)],
I3 = de(B)) is given by

(6.5) m =
√

I2
1 − 2I2.
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For all deformations of an incompressible material, we have I3 ≡ 1 and
m ≥ √

3, where equality is valid when and only when B = 1. By use of the
spectral decomposition of tensor B

B = λ2
1 e1 ⊗ e1 + λ2

2 e2 ⊗ e2 + λ2
3 e3 ⊗ e3,

where λi are the principal stretches and ei are the associated orthonormal prin-
cipal directions, the intensity of strain m becomes

(6.6) m =
√

λ4
1 + λ4

2 + λ4
3.

We consider, like Elias–Zúñiga and Beatty [17], that the material is
an isotropic elastic and incompressible material and is described by a time-
independent constitutive equation of the form

(6.7) T0 = 2
∂W

∂I1
·B− 2

∂W

∂I2
·B−1 − p 1,

in which T0 is the Cauchy stress, p is hydrostatic pressure and W is the strain
energy function per unit reference volume.

Let us assume that our previous strain attained maximum value mmax = M
during monotonic loading; in such case the stress-softened material response for
subsequent unloading and reloading is defined by

(6.8) T∗ = ξ(m(λ);M)T0.

The isotropic scalar-valued damage function ξ(m(λ);M), called the softening
function at the damage level mmax = M , is a positive monotone increasing
function of the strain intensity in the interval m ∈ {m(λ = 1);M} and satisfies
the conditions

(6.9) 0 ≤ ξ(m; M) ≤ 1, ξ(M ; M) = 1.

Damage function ξ is determined by a constitutive equation that describes the
evolution of microstructural damage that begins immediately after deformation
from the natural, undeformed state of the virgin material. Its value ξ(

√
3;M)

characterizes the extent of damage at M , initiated at m =
√

3.
The relations (6.8) for T∗ and (6.9) for the function ξ show that the virgin

material and stress-softened material response values coincide only in the un-
stressed state T∗ = T0 = 0 and at each softening point m = M ; otherwise, the
stress-softened material response is everywhere smaller than the virgin material
response. The material behaviour described by (6.8) for m ≤ M is ideally elas-
tic for both loading and unloading, until the value of m exceeds its maximum
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previous value M . Thereafter, the material recalls its virgin material response
described by (6.7).

For our rubber elastic material, the ratios of the physical stress components
T∗ in the stress-softened material to the corresponding physical components T0

in the virgin material, for the given deformation, are determined by the softening
function alone.

That is, in accordance with Eq. (6.8) and Eq. (6.9)

(6.10)
T∗ij
T0ij

= ξ(m;M) ≤ 1, for i, j = 1, 2, 3 (no summation).

In Eq. (6.10) the equality holds when and only when m = mmax = M .

6.3. The form of damage function ξ(
√

3;m)

For the two-phase material model proposed by Mullins–Tobin in 1957 and
analysed also by Beatty and Krishnaswamy [16], each material point consists
of hard phase and soft phase. The total amount of hard phase in solid rubber is
much less than the amount of soft phase present in the amorphous microstruc-
ture. Elias–Zúñiga and Beatty [17] and Beatty and Krishnaswamy [16]
suppose that stress-softening begins immediately after initiation of loading of
the original material when λ = 1 (m =

√
3). As deformation progresses, the vol-

ume fraction α(
√

3, m) of the initial portion of hard phase is transformed to an
equivalent portion of soft phase (the rubbery phase), so that the volume fraction
α of soft phase increases monotonically with extension (compression). Following
Elias–Zúñiga andBeatty [17] we assume that the initiation of stress-softening
is possible to appear only after deformation has reached a threshold value λa,
say α(

√
3, m(λa)) = 0 for all λ ≤ λa and for all m ≤ √

3 we have α(
√

3;
√

3) = 0.
Then the degree of softening of a original material subjected to a maximum pre-
vious strain mmax = M is determined by the volume fraction α(

√
3, M) of hard

phase that is transformed by deformation to the new soft phase. During defor-
mation of material m >

√
3, our stress-softening measure α(

√
3,m) is related

to our softening function ξ(
√

3,m) with the properties described by Eq. (6.8) as
follows:

(6.11) α(
√

3;m) = 1− ξ(
√

3;m).

Relation (6.11) provides a physical basis for the damage function in this the-
ory of stress-softening of rubber-like materials. To determine the softening func-
tion from experimental data, the simple relation Eq. (6.10) can be applied to
various hypothetical damage functions having the property 0 ≤ ξ ≤ 1. In the lit-
erature, different forms of damage functions have been introduced for analytical
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study, see Johnson and Beatty [15], Ogden and Roxburgh [19], De Souza
Neto et al. [11] or Beatty and Krishnaswamy [16]. Johnson and Beatty
[15] suggest for ξ an exponential type function ξ(

√
3;m) ≡ e−b(m−√3), which is

studied in several papers, e.g. by Beatty and Krishnaswamy [16], but no di-
rect comparison with experiments is provided. Elias–Zúñiga and Beatty [17]
propose an exponential-type equation of law for ξ defined by

(6.12) ξ(m;M) ≡ e−b
√

M−m

where b is a positive material constant, named the softening parameter.
The softening function ξ proposed by Elias–Zúñiga and Beatty [17] yields

a stress-softening measure α by which the growth of damage may be determined

(6.13) α(
√

3;m) = 1− ξ(
√

3;m) = 1− e−b
√

m−√3.

Application of Eq. (6.13) in Eq. (6.10) determines the stress-softening mate-
rial model with exponential softening ξ = e−b

√
M−m, for which the stress after

unloading follows in accordance with

(6.14) T∗ = T0 e−b
√

M−m.

The relation (6.14) describes the family of models determined by different val-
ues of M which we obtain by describing the elastic, isotropic and incompressible
material in the form presented by Eq. (6.7)

During monotonic loading, the strain in material is the actual strain and it
is the maximum of strain and T∗ = T0. If the material is not reloaded again,
the strain intensity m decreases from m = mmax and reaction of the material is
ideally elastic according to Eq. (6.14) for all m ≤ mmax = M .

Relation (6.14) or (6.10) after use of logarithm, can be written in the form

(6.15) ln
(
T0

T∗

)
= −ln

[
ξ(
√

3; m)
]
.

The applied theory of rubber-like materials deformation is relatively simple
and it is based on purely phenomenological consideration, and identification of
the material parameters does not require the measurement of any microscopic
quantities. Indeed, behaviour of the material at damaged states is characterized
by curves determined from the loading/unloding experiments.

For uniaxial deformation tests of tension and compression, when stretch
in axial direction is denoted by λ1 = λ with condition of incompressibility
λ1λ2λ3 = 1, we can determine λ2 = λ3 = 1/

√
λ.
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For the Mooney–Rivlin model, nominal stress σ =
T0

λ
for monotonic loading

is described by Eq. (6.8) and it is obtained for axial loading in the form:

(6.16a) σ11 = 2
{(

λ− 1
λ2

)
C10 +

(
1− 1

λ3

)
C01

}
,

for monotonic loading and

(6.16b) σ∗11 = 2
{(

λ− 1
λ2

)
C10 +

(
1− 1

λ3

)
C01

}
ξ(m; M),

for stress-softening loading, where current value of m = m(λ) and maximum
value of m, M = m(λmax) = m(Λ) before unloading is calculated in accordance
with:

(6.17) m =

√
λ4 +

2
λ2

, M =

√
Λ4 +

2
Λ2

,

where Λ = λmax and M(λmax) for our experimental compression test M = 6.21.

6.4. The identification procedure of parameters of damage function ξ(m; M)

Experimental data of stress-softening elastic material response in a strain-
controlled test may be used to determine the specific form and all parameters of
the softening functions. We shall use only the isotropic scalar function, and this
form will only require a small number of equations to be solved when a curve-
fitting method is used to obtain its parameters values.

As it is seen in Fig. 5, both models of Mooney–Rivlin show a reasonably
good agreement with the experimental data – not only for the primary loading
path but also for the reloading paths for the chosen three deformation cycles.
In Fig. 5 solutions for both models with identified values of material parameters
for three deformation cycles are also shown. It appears that none of these two
models gives satisfactory prediction for the three deformation cycles. Naturally,
when more deformation cycles are included in the analysis, values of the soften-
ing parameters can be better adjusted with the hope of obtaining better fitting
of the data. However, no satisfactory prediction can be obtained in this way.
The softening functions in the form of Eq. (6.12) proposed by Elias–Zúñiga
and Beatty [17] or Eq. (6.13), also fail to give fully satisfactory coincidence of
the experimental and theoretical results. The magnitude of softening function
ξ = 1 − α, shows a strongly non-monotonic behaviour in the characteristic
S-shaped form. Variations in shapes of the curves for different deformation cycles
show that different values of the softening parameters are needed to fit the exper-
imental data for a particular choice of the softening function. Otherwise more
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softening parameters may be needed for definition of this function. In Fig. 7
the softening functions Eq. (6.12) and Eq. (6.13) which were used in fitting the
Kwiecień and Zając [20] or Kwiecień et al. [21] data, are also plotted. Differ-
ences in shapes of the softening function curves and data curves are striking and
this explains the difficulties in fitting experimental data by theoretical models.

In our identification analysis we have applied the following form of function
ξ(m; M):

(6.18) ξ(
√

3;m) ≡ e−b(M−m)d,

where b, M and d are material parameters.
This form of ξ(m; M) requires only two parameters to fit the data via a non-

linear least-squares method based on the natural logarithm. For the least-squares
method we minimize the expression

(6.19) F =
∑

i

{
ln

(
ξ(mi;M)T0(mi)

)− ln
(
Texp(mi)

)}2
.

The above minimizing statement is equivalent to minimizing

(6.20) F =
∑

i

{
ln

(
ξ(mi; M)

)− ln
(
Texp(mi)
T0(mi)

)}2

,

which is suitable for the least-square method to obtain the parameters values.
We have identified the values of b and d in Sec. 6.7.

6.5. The other forms of damage function ξ(m; M)

For better fit we use a new form of ξ function as a combination of two
functions, one being (like before) some kind of exponential function W ∗(λ) and
a function g∗(λ). Now the function of damage ξ takes the form

(6.21) ξ∗(λ) ≡ g∗(λ)W ∗(λ) = g∗(λ)K e−b(λ)d
=

(
1− g(λ)

)
K e−b(λ)d

.

The function g(λ) in Eq. (6.18) is assumed to be of a logistic form, i.e.,

(6.22) g(λ) ≡ g0

1 + exp(F − E λ)

where K, g0, F and E are material parameters. The form of W ∗(λ) is known as
the Weibull function.
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6.6. The identification of parameters of damage function ξ(m;M)
in uniaxial tension test

In order to determine the material parameters, that appear in the virgin
strain energy function W0 and the evolution equation of the damage variable
α(λ), uniaxial tensile and cyclic uniaxial compression tests were performed. The
uniaxial tensile experiments were conducted on dog-bone flat specimens; the
compression test – on specimens which are disc. All experiments were performed
under enforced displacement conditions. An example of experimental data is de-
picted in Fig. 5 for uniaxial tensile tests. In this figure, the experimental stresses
are function of principal stretch λ1. In experimental tension tests the material
was subjected to stretching until achievement of maximum stretching and rup-
ture of sample, and in these tests was not executed the cycle of unloading and
reloading. However, let us trace the description of behaviour of such a material
also in a situation when the material experienced unloading after achievement of
maximum strain just before rupture of the sample. In the case of uniaxial tension
it is shown that the Mullins effect can occur almost exclusively during the first
loading cycle, and all secondary cycles, i.e. the second, third cycles, are close.
Thus, only theoretical stress-softening example which can take place between the
first and the third cycles is considered. It is to be noted that reloading paths do
rejoin the primary loading curve at the maximum strain. In fact, as the samples
are unloaded to zero displacement, they remain in a deformed configuration due
to the time-dependent behaviour of the material (creep phenomenon). Conse-
quently, the next reloading stretch level should be higher than the first loading
stretch level to rejoin the first path (Johnson and Beatty [15]). As in most of
the studies concerning the Mullins effect, the stress-softening behaviour should
be separated from other inelastic phenomena, such as hysteresis and relaxation.
Concerning the hysteresis phenomenon, unloading paths of cycles are not con-
sidered and it is assumed that the equilibrium paths are the loading paths. Nev-
ertheless, the stress-softening model can be developed for loading paths. Once
the virgin strain energy function has been chosen, the form of the damage evo-
lution equation (Eqs. (6.12) and (6.18)) has to be established. As detailed in the
theoretical part of the paper (Sec. 6.2), the present approach focuses on the use
of a measure of deformation expressed as a function of the two first invariants
of tensor B (Eq. (3.1)). As the first approach, we assume a very simple measure
of the deformation state that depends only on I1:

(6.23) m =
√

λ4
1 + λ4

2 + λ4
3.

The damage function ξ(m; M) will be determined using the experimental re-
sults. The general method used here is described in Sec. 6.3 without reference
to the kind of experiments, but results for uniaxial tensile data are presented.
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Consider the experimental results as shown in Fig. 5; the stress-strain relation-
ship reduces to a sequence of loading curves at different maximum strains. For
the Mooney–Rivlin model, nominal stress in test of monotonic loading and un-
loading and cycled reloading and unloading, can be calculated from a formulas
given above for the known form of softening function ξ(m;M).
For the form of function ξ given by Eq. (6.12)

ξ(m;M) = e−b
√

M−m

we define the nominal stress as a function of m.

Fig. 5. Nominal stress in uniaxial tension test as a function of axial change of length λ for
loading test (experimental data) and relation Eq. (6.24), and three expected paths of

unloading from the states with maximum intensities of strain M , defined just before rupture
λ = λmax, for different samples described by Eq. (6.25) with the same damage parameter b.

In this figure, the nominal stress σ is given as a function of the first invari-
ant I1. Two types of stress-strain curves can be identified: the primary curve
represented by a dashed line and secondary curves represented by solid lines.
Depending on the type of curve, the stress-strain relationships are different:

• for the primary curve, the current stress σ11 is given by

(6.24) σ11 = 2
{(

λ− 1
λ2

)
C10 +

(
1− 1

λ3

)
C01

}
,

for monotonic loading, and
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• for the i-th secondary curve

(6.25) σ∗11 = 2
{(

λ− 1
λ2

)
C10 +

(
1− 1

λ3

)
C01

}
e−b

√
M−m,

for unloading and reloading.
Parameters C10 and C01 were identified for monotonic loading and accepting

λ = λmax for each sample and with Eq. (6.17) for m and M . For one cycle of
loading it was possible to identify for this model of material with damage of
microstructure, one parameter of damage b.

The results of process of identification have been presented in Fig. 5.

6.7. The identification of parameters in compression test

In compression tests the material was subjected to cyclic loading and un-
loading. Displacement of the upper surface of a cylindrical sample as a function
of time is presented in Fig. 6.

Fig. 6. Change of displacement of the top surface central point of a sample as a function of
time in uniaxial quasi-static compression test. Experimental data for samples 6CC-1, cf. [20].

Similarly to the case of tension, let us use the Mooney–Rivlin model for
determination of the nominal stress in monotonic loading and cycle unloading
and again loading, with the same damage function ξ(m; M) = e−b

√
M−m.

We define nominal stress by the formula similar to that of the tension tests:

(6.26) σ11 = 2
{(

λ− 1
λ2

)
C10 +

(
1− 1

λ3

)
C01

}
,
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for monotonic loading, and

(6.27) σ∗11 = 2
{(

λ− 1
λ2

)
C10 +

(
1− 1

λ3

)
C01

}
e−b

√
Mc−m,

for unloading and reloading.
In compression tests parameter C10 and C01 were also identified like before

for monotonic loading and assuming λ = λmax and Eq. (6.17) for m and Mc =
M(λmax). For our experimental compression test Mc = 6.21.

Parameter b in the Mooney–Rivlin model can be immediately determined
using the relation (6.15) and the results of process of identification for the first
and last cycle are presented in Fig. 7.

Fig. 7. Nominal stress in uniaxial cycle compression tests as a function of axial change of
length λ for loading test (experimental data) and relation Eq. (6.26), and two extreme paths
of unloading from the states with maximum intensities of strain M defined for identified

models with damaged microstructure described by Eq. (6.27).

Next, we have applied the relation Eq. (6.15) with function ξ(m; M) =
e−b

√
M−m for the first and last cycle and the results of the identification process

were presented in Fig. 8.
Now, we applied other forms of the ξ function than that given in Eq. (6.18), to

check the possibility of a better fit of models with damage to the experimental
data. It is shown that the forms of ξ(m; M) with power d = 1/2 and one b
parameter can not fit the data for all values of stretches and the values of b are
obtained via a non-linear least-squares method based on the natural logarithm.
Result for the first and last cycle are presented in Fig. 9.
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Fig. 8. The value of ln
�
T0 11

T∗11

�
= ln

�
σ11

σ∗11

�
in uniaxial compression test as a function of

√
M −m for unloading test (experimental data) and two extreme values of identified damage

parameter b (for first cycle b = 0.48 and for last cycle b = 1.093) with M = 1.2 for one sample.

Fig. 9. The value of ln
�
T0 11

T∗11

�
= ln

�
σ11

σ∗11

�
in a uniaxial compression test as a function of

strain intensity m for unloading test (experimental data), with two identified forms of
function ξ = e−b(m−√3)d

for extreme cycles of unloading.
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Fig. 10. The value of ln
�
T0 11

T∗11

�
= ln

�
σ11

σ∗11

�
in uniaxial compression test as a function of

strain intensity m for unloading test (experimental data), with two identified forms of
function ξ = e−b(M−m)d

for extreme cycles of unloading.

Fig. 11. The value of nominal stress in uniaxial cycle compression tests as a function of axial
change of length λ for loading test (experimental data) and two extreme paths of unloading
from the states with maximum intensities of strain M defined for identified models with
damaged microstructure described by Eqs. (6.21) and (6.22), ξ∗(λ) = K(1− g(λ))e−b(λ)d

.
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The identification was performed also for function ξ in the form (6.18)

ξ(
√

3;m) = e−b(m−√3)d
.

We assume now that the power d in this function can be different than
d = 1/2. The identification results indicate that the best fitting is obtained
with d = 0.324. Results of our model adjustment to experimental data for such
function ξ are presented in Fig. 10.

The results of identification process for a new function ξ∗(λ) given in Eq. (6.21)
and Eq. (6.22) for the first and last cycle are presented in Fig. 11.

It is evident that this form of ξ∗(λ) with four parameters fitting the data
can be also obtained via a non-linear least-squares method, based on the natural
logarithm and the results of our model adjustment to experimental data [20, 21]
for rubber-like material.

6.8. Comparison of model prediction with experiment

The results of simulation for a tension test are presented in Fig. 1. This
figure shows the comparison of the response in terms of force versus inverse
stretch (1/λ) for the classical model of Mooney–Rivlin. Figures 2–4 show the
nominal stress as a function of the axial stretch λ.

In the Mooney–Rivlin model for uniaxial tension with stress-softening, four
material parameters have to be determined: two for the virgin strain energy,
i.e. C10 and C01, and two for the evolution equation of the damage, i.e. b and
M . Due to the use of a measure of deformation instead of the strain energy
function as the damage criterion, the monotonic primary curve could be fitted
first by using the data reported in Fig. 5; and then the determination of W0

reduces to the classical problem of fitting a hyperelastic model, using the primary
loading curve. Nevertheless, taking into consideration the limitations discussed
above, it is more efficient to perform a global identification using the stress-
strain data for both the uniaxial tensile and uniaxial compression tests. For
the identification process, the difference between the model and experimental
results is calculated simultaneously on all curves. Computations are performed
using the known square difference algorithm. The values of material parameters
obtained are presented in Fig. 5 and the identification results are compared with
experiments.

For uniaxial compression – deformation state, the results are compared with
experimental data in Figs. 7–11, respectively. Theoretical results are globally
in good agreement with experiments; so, the model describes successfully the
transition between different loading curves in cyclic experiments and exhibits the
influence of the maximum strain on the softened behaviour. Finally, considering
Eq. (6.18) and the values of material parameters given in Fig. 5, the present
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approach is applicable until 300% of the deformation in uniaxial tension. In this
way, simulation of large strain problems can be considered. This curve shows
the ability of the rubber elasticity models to estimate the degradation of the
material properties. The stiffening effect for all ranges of strain is here very
well estimated. It is important to note that the chosen material function g(λ) is
a logistic function (see [10, 13]), which is a case of S-shape function and which
enables to fit the damage model.

If we compare our theory with the experimental data of Mullins and To-
bin [24], Mullins [26] on simple tension and compression as the first step of
modelling, we shall only use the isotropic scalar function ξ proposed in Sec. 6,
remembering that this form will require only a small number of parameters
to be identified, when a curve-fitting method is used, to obtain its parame-
ter values, Ogden and Ruxburgh [19]. According to [19], the component of
the energy function for the original material takes the form W (λ1; λ2; α) =
(1− α)W0(λ1; λ2).

7. Conclusions and final remarks

In this paper, the different models proposed in literature for the description
of the Mullins effect in rubber-like solids, e.g. the Mooney–Rivlin and the Ogden
model, are studied, which are phenomenological in nature, and a microscopically
based interpretation of some of the constitutive parameters may be given (see
Horgan and Saccomandi [44]). In this way, it was possible to modify a model
for the Mullins effect. The mathematical simplicity of the phenomenological mod-
els of rubber-like materials allows to determine all their features analytically and
to provide new insights into the physical mechanisms underlying the Mullins ef-
fect. The solid rubber structures are able to undergo very large deformation up
to 300% or 600%, which involves damage of the elastomer. The proposed model,
which is based on the continuum damage mechanic, also applied a phenomeno-
logical approach, and is simple with few parameters to identify and it is efficient
to take into account the degradation of material properties. Moreover, it enables
to take into account the asymmetry of the response of the damaged material in
tension and compression, which is a worthy aspect to be taken into account in
modelling of rubber-like materials. Concerning the simulation, even if the finite
element e.g. ABAQUS code enables to perform tension or shear experiment sim-
ulation up to higher strains, all the difficulties are not overcome. Of course, one
more difficulty is always due to the finite element distortion which could appear
when deformation becomes large, even if the sensibility is diminished through
the use of a material formulation.

This paper shows that constitutive Eqs. (6.16a) and (6.16b) for axial de-
formation in tension and compression tests describe the behaviour of the stud-
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ied material well, near monotonic as well as cyclic loading. The form of these
equations was determined using the model of Mooney–Rivlin for monotonic
loading, and the model for cyclic loading proposed by Mullins and Tobin
[24] and modified by Elias–Zúñiga and Beatty [17], which takes into ac-
count the decrease of strength capacity of rubber-like materials under unload-
ing and reloading. The studied material belonging to elastomers material is a
two-phase material which consists of hard and soft segments (rubber). Macro-
scopic behaviour of such materials is the result of conversion of a hard phase
into soft phase during deformation and the observed macroscopic growth of the
microstructural strains is the result of percentage changes of content of every
phase for the given level of macroscopic strain. In the presented models of elas-
tomers, simplified mechanism of deformation is applied, which is mathemati-
cally simplified in comparison with the model of non-Gaussian type proposed
in papers e.g.: Bueche [51], Govindjee and Simo [23]. The well-known in
literature, analytical models of Ogden and Mooney–Rivlin hyperelasticity of
rubber-like materials are not suitable to describe the behaviour of such ma-
terials under reversible loadings. It should be stressed that the applied consti-
tutive description of the interpretation of the experimental results, does not
require for each material phase the specification of the constitutive relation.
In description of the rubber-like material behaviour under the applied load-
ing it is sufficient to know the constitutive relation for the soft phase. It is
also essential, that elastic deformations of hard phase in majority of its vol-
ume do not undergo any changes in the process of deformation. The description
of mechanisms of influence between the hard and soft phases and conversion
of a hard phase into a soft one require, however, additional studies. In pa-
per by Govindjee and Simo [23] was proposed a certain general explanation
of the interaction between phases in the general state of strains, however the
analysis of mechanisms of exchange of these phases is missing. It is also jus-
tified to consider the additional effects, which have influence on the decrease
of strength capacity of rubber-like materials, e.g. such as induced anisotropy
(cf. Mullins [25]). In order to do this, we should consider the effect of arrange-
ment of hard phase as well as suitable growth of the length of free chains network
bonds.

Our calculations have shown the efficiency of the models used to simulate the
complex phenomena such as the Mullins effect in rubber-like materials. A good
compatibility was obtained between the numerical results and the experimen-
tally observed behaviour of polyurethane materials with damages in the finite
strains conditions. To determine the proposed phenomenological model of ma-
terial based on experimental data, we need to identify five constants: C10, C01,
M , d and parameter b of softening rate in Eq. (6.5). Different models, e.g. the
microstructural model of Beatty and Krishnaswamy [16] or phenomenolog-



152 Z. NOWAK

ical model of Ogden and Roxburgh [19], require considerable calculations to
obtain good compatibility with experiment and they require identification of the
considerably larger number of material parameters. The models with networks of
non-Gaussian distribution of the chains, e.g. the 8-chain Arruda–Boyce model,
require identification of only several physical parameters, but these models are
not studied in the present paper.

The proposed phenomenological theory of stress-softening behaviour of de-
formed rubber-like materials described by the constitutive Eq. (6.14) with iden-
tified parameters, for the studied material, is suitable for modelling the uniaxial
tension and compression tests. For the studied rubber-like material, we can de-
termine constitutive model, as a result of determination of the general form of
strain energy density function W , by simple parameters identification. To do this

we determine
∂W

∂I1
= f(I1) and the identification of parameters is performed by

the experiment for uniaxial tension test for λ ≥ 1. Keeping the well-known pa-

rameters of function f(I1), we determine
∂W

∂I2
= h (I2) and the identification of

parameters can be performed by experiment for the whole range of strains for
λ > 0. The form of strain energy density function W is a result of general form
of the Rivlin strain energy density function for hyperelastic material and can be
obtained also from different universally applied approximations with application
of constants C01 and C10. Therefore definite parameters C01 and C10 for this ma-
terial can be possibly used in accessible commercial packets of finite elements.
In our analysis it was established that the studied rubber-like material, described
by the constitutive Eq. (6.14), is characterized in the range of uniaxial tension
and compression by the following parameters: C10 = 0.335 and C01 = 0.00045
and the estimated initial shear modulus equals µ0 = 2(C10 + C01) = 0.67 [MPa]
for the Mooney–Rivlin model with assumption of incompressibility; µ = 0.65
and α = 1.755 and estimated initial shear modulus µ0 = µ = 0.65 [MPa]
for the Ogden model with assumption of incompressibility; Young’s modulus
E = 1.41 [MPa] and Poisson’s coefficient ν = 0.50 and the estimated initial
shear modulus µ0 = 0.47 [MPa] for logarithmic model. The assumption of small
compressibility improves the agreement of estimations with experiment when
Young’s modulus E = 2.44 [MPa] and Poisson’s coefficient ν = 0.32, and the
estimated initial shear modulus equals µ0 = 0.942 [MPa].

Our analysis is limited to the uniaxial experimental tests for this material and
the stress behaviour was not studied in more complex deformation states, e.g.:
biaxial tension or simple shear. So, we should identify the introduced functions
and parameters based on the experimental data for complex states of loading.
Such more general verification is required if we would like to apply the modified
model for a wide class of hyperelastic materials.
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Contrary to observations based on the analysis of experimental data pre-
sented in this paper, the softening functions ξ̂ = 1− α̂(m; M) in pseudo-elastic
models of the Mullins effect, are always assumed to be monotonously increas-
ing functions of m for all values of the pre-strain M . This is the main reason
for the observed qualitative differences in shapes of the softening curves due to
theoretical models and the experimental data curves (see Fig. 2 and Fig. 5).
This explains also the difficulties in fitting the experimental data by theoretical
models. It should be noted further that the modified version of Eq. (6.18) of the
virgin softening function Eq. (6.12) can not essentially improve the predictions
of pseudo-elastic models of the Mullins effect, because the softening function
ξ(m; M) in Eq. (6.18) is also a monotonously increasing function of the axial
change of length λ. The predictions of pseudo-elastic models of the Mullins ef-
fect with application of the new softening functions Eq. (6.21) and Eq. (6.22)
presented in Fig. 11 are very successful.

It is also very important to mention that stress softening is an inherently
anisotropic phenomenon, and for description of this we need to understand
the method of incorporating the induced anisotropy. However, it has been also
pointed out that the anisotropic model cannot be properly developed at the
present stage, because suitable experimental data are not available or published.
The extension of the results presented here to other states of deformation such
as simple or pure shear, is a straightforward matter and the development of
a general 3D model presents no conceptual difficulties. So far it has been shown
that rubber-like materials constitutive theory is effective due to using the form
of energy function given by Eq. (6.2).
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The mechanical behaviour of restored structural members of ancient monuments is studied
in the present paper with the aid of the Finite Element Method. The study is motivated by
the needs of the conservation project in progress on the Parthenon Temple of the Acropolis of
Athens; the results however could be valuable for various stone monuments under conserva-
tion. Centrally fractured prismatic marble architraves (epistyles) of rectangular cross-section
restored with either threaded or smooth titanium bars are modelled. The architraves are rest-
ing on marble blocks simulating the capitals (abacuses) of the columns of the temple. They
are subjected to bending under uniformly distributed loading along their span, following the
results of earlier studies, concerning the influence of the loading mode on the overall behav-
iour of restored structural members. The method used for determination of the reinforcement
required is the one introduced recently by the scientists working for the restoration of the
Acropolis monuments. All the loads that could be applied on the member after it is replaced
in its initial position in the monument were taken into account, including the own weight of
the member, the weights of the members that will rest on it after the restoration, as well as
possible dynamic (earthquake) loads. Emphasis is laid on the influence of the threads of the
bolted bars in comparison to the results for the unbolted ones, in an effort to quantify the
maximum anchoring length required in order to minimize the intervention on the authentic
stones. The distribution of the stress and strain fields all over the architrave-abacus-reinforcing
bar system is investigated and conclusions are drawn concerning the extreme stresses and the
points where they are developed.

1. Introduction

Restoring and conserving an ancient monument is a complicated, multidisci-
plinary scientific task. Many problems are to be considered and solved before final
decisions are made. These problems vary from elementary ones (for example the
strength and deformability of the materials used) to rather complex ones (such
as preservation of the structural system, determination of the minimum possible
intervention, reversibility of the interventions and of course, their durability).
Archaeologists, architects, materials scientists, civil and chemical engineers col-
laborate in order to meet the final target, i.e. the extension of the life of the
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monument. The decisions made are usually a compromise between various, and
often contradictory, points of view.

A typical example of a complicated restoration program is that of the Parthe-
non Temple of the Acropolis of Athens. Parthenon, the masterpiece of Fidias and
Kallikratis, was built in the 5th century BC as a temple of goddess Athena. It
is the most famous surviving building of ancient Greece and it has been praised
as the finest achievement of Greek architecture. The Parthenon is an enduring
symbol of Ancient Greece and of Athenian democracy and it is regarded as one
of the world’s greatest cultural monuments.

The temple has been damaged by fire during the invasion of the Herulians,
but the exact date of the fire and subsequent repairs are debated (suggestions
range from 150 B.C. to 267 A.D.). Later Parthenon was converted to a Christian
church of the Virgin Mary (around 600 A.D.). At the time of the Latin Empire
it became, for about 250 years, a Roman Catholic Church. In 1456, Athens fell
to the Ottomans and the Parthenon was converted into a mosque. Besides the
successive conversions, European visitors in the 17th century testified that the
building was largely intact. In 1687, the Parthenon suffered its greatest blow
when the Venetians attacked Athens, and the Ottomans fortified the Acropolis
and used the building as a gunpowder magazine. A Venetian mortar exploded
in the magazine and the building was partly destroyed. The internal structures
were demolished, the roof collapsed, and some of the pillars, particularly those
on the southern side, were decapitated. After this, much of the building fell into
disuse and a smaller mosque was erected.

The condition of the monument was aggravated by older restoration projects
(between 1840 and 1930) and many structural problems appeared (intrusion of
moisture, appearance of funguses, corrosion and inflation of the iron joints and
fracture of marble structural members). The Athens’ 1981 earthquake made the
situation worse and from this moment on, an ambitious scientific restoration
project was approved by the Hellenic State, which is in progress until today.
Series of problems have been confronted in the frame of this project concerning
especially protection of the authentic material and minimization of the inter-
ventions on the original structural elements of the Temple. Various innovative
solutions were proposed and applied and nowadays these solutions are considered
as guidelines for the scientists working on similar projects.

In the frame of the above project, a pioneer method was developed for the
restoration of fractured structural elements in an effort to confront the problem
of the structural stability of the monument [1]. The method is based on the use
of titanium bars in combination with suitable cement mortar and permitted to
reduce the interventions on the authentic material in comparison to older ap-
proaches. It takes into account all the loads that could be applied on the member
after it is replaced in its initial position in the monument, namely the weight
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of the member and these of any other members that will rest on it after the
restoration is completed as well as possible dynamic loads [2, 3]. For the theo-
retical development of the method it is assumed that the stresses do not exceed
the linearity limit, the strains developed in the marble body and in the reinforc-
ing bar are compatible with each other, the marble behaves as a transversely
isotropic material, the bending loads act normally to the bedding planes and the
cross-sections remain plane and normal to the longitudinal, neutral axis of the
beam.

Recently the method was assessed experimentally and numerically [4, 5].
It was concluded that the reproduction of actual bending conditions in the labo-
ratory does not give reliable results since the simulation of bending under uniform
load by a laboratory multi-point bending test does not lead to accurate conclu-
sions unless the number of loading points is increased dramatically, something
unrealizable for practical reasons. Thus the engineer who designs basing on an
experimentally evaluated and calibrated model, should increase the safety factor
accordingly, in order to take into account the fact that the stress field of the test
may be weaker compared to the actually developed one. It was, also, indicated
that some of the assumptions adopted are not always satisfied. Indeed, the axial
strains do not vary linearly along the height of the architrave but rather they fol-
low a sigmoid distribution. In addition, the neutral axis is translated towards the
bottom side of the architrave, rendering the calculations carried out considering
the centroidal longitudinal axis as the neutral one, a rather rough approximation
of the real conditions.

It became therefore clear that the method for the calculation of the reinforce-
ment required should be studied further before definite conclusions concerning
its applicability are drawn. Towards this direction, the problem of joining to-
gether fractured structural elements is studied here using a more sophisticated
numerical model, in an effort to enlighten the influence of some critical points
related to the shape of the reinforcing bars.

2. The material: Dionysos marble

The material used by the ancient Greeks for erection of the monuments of
the Parthenon Temple of the Acropolis of Athens was the Pentelic marble which
is an extremely durable white marble quarried from Mount Pentelicus in At-
tica. However, the ancient quarries are nowadays exhausted and the needs of
the restoration and conservation programs are covered almost exclusively by
Dionysos marble, since it was found to be the most compatible candidate sub-
stitute of the authentic Pentelic marble [6, 7].

From the physical point of view, Dionysos marble is composed by 98% of
calcite, 0.5% of muscovite, 0.3% of sericite, 0.2% of quartz and 0.1% of chlorite.
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Its specific density is 2730 kg/m3, its apparent density is 2717 kg/m3 and its
absorption coefficient by weight is around 0.11% [8]. The coefficient of thermal
expansion is 9 × 106/◦C between 15◦C and 100◦C. Its very low porosity varies
between 0.3% in the virgin state to 0.7% after the action of various natural
weathering and corrosive agents (superficial porosity). Its grain size varies around
0.43 × 10−3 m and the crystals have a polygonic shape of almost uniform size.
The dimensions of the largest crystals vary between 900 µm × 650 µm and
950 µm × 874 µm. It is of white colour with a few thin parallel ash-green veins,
following the schistosity of marble and containing locally silver areas due to the
existence of chlorite and muscovite [9].

Concerning its mechanical behaviour, the Dionysos marble is an anisotropic
material, characterized by three different anisotropy directions (parallel to the
layers, along the width of the web and along the thickness of the web) and thus
it appears to be orthotropic. The values of its mechanical properties reported in
literature vary within very broad limits. It is mentioned characteristically that
the values of its tensile strength vary between 2.4 MPa and 19.5 MPa, while
the respective experimental values of Young’s modulus range between 23 GPa
and 90 GPa [6, 7, 10]. However, a long series of direct tension and uniaxial
compression tests with cylindrical specimens [11] indicated that the material
can be considered as transversely isotropic, since the mechanical properties along
the first two of the above anisotropy directions are very similar to each other
and therefore, the Dionysos marble can be described with the aid of five elastic
constants: two elastic moduli, in the plane of transverse isotropy and normal to
it, two Poisson’s ratios characterizing the lateral strain response in the plane
of transverse isotropy to a tensile stress acting parallel and normal to it, and
the shear modulus in the planes normal to the plane of isotropy. It was also
concluded that Dionysos marble appears to be slightly non-linear, both in the
tension and in the compression regime, and slightly bimodular, i.e. the elastic
modulus in tension is slightly different from the respective one in compression
[12]. The values of the elastic moduli, Poisson’s ratios and the values of tensile
strength, σt, are recapitulated in Table 1, while in Fig. 1 the stress-strain curve
is shown for the whole tension-compression regime.

Table 1. Mechanical properties of Dionysos marble in direct tension (loading
rate equal to 10−6 m/min).

E [GPa] ν σf [MPa]

Strong Direction 84.5 0.26 10.8

Intermediate Direction 79.5 0.26 9.5

Weak Direction 50.0 0.11 5.3
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Fig. 1. The stress-strain curve of Dionysos marble along the strong anisotropy direction.

From the above tests it was also concluded that the size effect is very pro-
nounced for Dionysos marble. For example, the Ultimate Compressive Strength
of cylindrical specimens of height-to-diameter ratio equal to 2 is strongly depen-
dent on the size of the specimens used for the laboratory tests and, as it is seen
in Fig. 2, the dependence appears to be not monotone: a clear maximum exists
for specimens of diameter equal to about 125 mm. The size effect appears to be
independent of the lubrication conditions between the end platens and the bases
of the specimens, although the absolute strength values in case of lubricated
specimens are slightly higher. Similar conclusions were drawn also for the tensile
strength of Dionysos marble (as obtained from diametral compression tests) as
well as for its modulus of elasticity [13].

Fig. 2. The size effect for Dionysos marble.
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3. Numerical modelling

3.1. Bending of restored marble architraves using cylindrical titanium bars

In actual conditions the architraves of a monument are loaded by an almost
uniformly distributed load over their total length, since they carry their own
weight and the weight of the superimposed structural elements. However, the
realization of a bending test under homogeneous load in the laboratory is an
extremely difficult experimental task and therefore, multi-point bending tests
are carried out instead. In an effort to check the degree of approximation of
the real conditions by the laboratory multi-point bending tests, a numerical
analysis was carried out recently [14] using the Finite Element Method and the
commercially available software ANSYS 9.0. As a first step and for CPU-time
economy, intact marble architraves were considered in that study. Four loading
types were simulated:

• Uniformly distributed load along the total length of the architrave (Fig. 3a),
• Uniformly distributed load along the span (Fig. 3b),
• Eight-point bending along the span (Fig. 3c), and
• Eight-point bending along the total length of the member (Fig. 3d).

Fig. 3. The four loading cases studied numerically.

Among the most important conclusions of that study was the fact that the
points most prone to failure were those in the vicinity of the corners of the
supporting abacuses rather than those at the mid-span of the beam. The above
conclusion is strongly supported by a thorough in-situ investigation of the ar-
chitraves of the Parthenon Temple, which have never been removed from their
original place from the antiquity until the present days: more than half of the
fractures and the cracks observed (excluding those caused by interventions) have
their origin very close to the edges of the abacuses [15].
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It was also concluded that the strain is not linearly distributed along the
height of the architraves but it exhibits a sigmoid variation, in accordance with
earlier experimental results [16] and theoretical predictions [17]. The neutral
axis of the bent architrave appeared to be displaced downwards. Finally it was
indicated that the most intensive stress field developed at the central cross-
section of the architrave was the one corresponding to the uniformly distributed
load along the span (case b) rather than the one developed in the case of the
eight-point bending. It was thus pointed out that the simulation of bending under
uniform load with multi-point bending tests leads to underestimation of the
stress field developed, which may be catastrophic if the design of the restoration
is based on the results of the tests. Therefore an appropriate increase of the
safety factors used by the design engineers appears to be absolutely necessary.

Fig. 4. The distribution of the 1st (maximum) principal stress in the restored architrave.
The embedded figure shows a detail of the central section around the titanium bar.

As a second step, the problem of joining together the fragmented marble
architraves using titanium bars was also explored numerically in the previous
study, taking into account the conclusions drawn from the analysis concerning
the intact architraves. The architrave was assumed to consist of two equal parts
joined together by a single cylindrical titanium bar fully bonded with the marble.
In other words, in this simplified analysis the influence of the threads of the
titanium bars was ignored. The geometry of the model matched exactly that of
the most damaged architrave of the north colonnade of the Parthenon Temple,
namely the fifth external one, in a scale of 1:3. The architrave was subjected to
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bending and the load was assumed to be uniformly distributed along the span
of the architrave (case b), since it corresponds to the worst case concerning the
magnitude of the stress field developed.

An overall view of the distribution of the first (maximum) principal stress
in the case of the restored architrave is shown in Fig. 4. As it was expected,
the situation is completely different compared to that of the intact member.
The points most prone to fail were the ones in the immediate vicinity of the
reinforcing bar rather than at the abacuses’ corners. In addition it was indicated
that in the vicinity of the bar, both beyond and below it, the contact of the two
constituent marble parts of the architrave tends to be lost (Fig. 4, embedded
figure).

3.2. Bending of restored marble architraves using bolted (threaded)
titanium bars; The numerical model

Up to now, the bar-marble interface was not studied extensively since at-
tention was paid to the qualitative and comparative description of the stress
and strain fields all over the restored architrave. Therefore the reinforcing bar
was considered to be cylindrical in perfect contact with the marble. However in
praxis, the bars used are bolted in order to optimize the load transfer mecha-
nism avoiding the pull-out failure. It appears therefore absolutely necessary to
study thoroughly the interaction between marble and the reinforcing bar as well
as the stress and strain concentrations, inevitably generated at the corners of
the threads of the bolted titanium bars. In this direction the same problem was
modelled by considering the exact geometrical characteristics of the titanium
bars, used in the restoration of the Parthenon Temple.

The architrave was considered again to be centrally fractured and restored
with a single titanium bar, which now is assumed to be bolted all over its
length, as it is shown schematically in Fig. 5. The geometry of the beam matched
again exactly that of the fifth external architrave of the north colonnade of the
Parthenon Temple in the scale of 1:3 (length L = 1.43 m, thickness w = 0.18 m
and height h = 0.45 m). However, for reduction of the “running time” and taking
advantage of various symmetry planes, only one quarter of the configuration was
modelled. The diameter of the reinforcing bar was calculated according to the
approach introduced by Ioannidou and Paschalides [2] andMentzini [3] and
it was placed at a distance ht = 0.305 m from the upper side of the architrave.
The anchoring length at each one of the two equal parts of the architrave was
L = 0.4 m and the total thread number corresponding to the anchoring length
was 200. The thin layer of cement used in practice to increase the adhesion was
ignored again. The geometrical characteristics of the titanium bar are presented
in Table 2.
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Fig. 5. Schematic representation of the geometrical characteristics of the bolted bar.

Table 2. Geometrical characteristics of the bolted titanium bar.

R1 R2 p t a
5.85 mm 6.35 mm 2 mm 0.5 mm 250

Assuming that the bedding planes of marble are parallel to the longitudinal
axis of the architrave and the bending loads act normally to these planes, the
transversely isotropic nature of Dionysos marble could be ignored. Its slight non-
linearity and its bimodularity were ignored, also. According to these assumptions,
the values of the mechanical properties of Dionysos marble used were those of the
strong anisotropy direction of Table 1. The density of Dionysos marble was set
equal to ρm = 2.78 g/cm3 and the coefficient of static friction between the marble
architrave and the marble abacuses was set equal to µ = 0.7. The mechanical
properties of the titanium bar were: Young’s modulus Et = 105 GPa, Poisson’s
ratio vt = 0.32, density ρt = 4.51 g/cm3. The coefficient of static friction between
marble and titanium was assumed equal to 0.4.

The numerical model was discretized by creating a uniform and fine mesh
in the vicinity of the titanium reinforcement, since this part of the model was,
for the specific problem, the region of highest interest. In order to increase the
flexibility of the model and to reduce the CPU running time , a marble “cylin-
der ” was constructed around the titanium bar with radius R1+R2, where R1
and R2 are the minimum and maximum radii of the bolted bar, respectively.
The regular mesh on the cylinder and the bolted bar was attained by using the
Mapped Meshing Technique (Fig. 6b). According to this technique, a volume
must have the shape of a brick or a wedge or a prism or even a tetrahedron,
and must have equal numbers of element divisions specified on opposite sides.
The two volumes (cylinder and bar) were constructed in an appropriate manner,
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but without changing their primary geometrical characteristics, in order to take
the shape imposed by the mapped mesh. For the remaining part of the model,
a coarser mesh was created without employing the mapped meshing technique,
but using suitable divisions and spacing ratios on the unmeshed lines (Fig. 6a).
The element used for the meshing was the SOLID186, a higher order 3-D struc-
tural solid element defined by 20 nodes having three degrees of freedom per
node: translations in the nodal x, y, and z directions (Fig. 7). It has quadratic
displacement behaviour and is well suited for modelling irregular meshes. The
final model consisted of 96784 such elements (Fig. 6a).

Fig. 6. An overall view of the mesh of the model (a), and a detailed view of the mesh
in the vicinity of the titanium reinforcement (b).

Fig. 7. The element SOLID186 used for the meshing of the model.
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The next step of the numerical analysis was identification of the contact
options of the problem according to which two surfaces, a “contact” one and
a “target” one are to be defined. For modeling rigid-flexible contact, the rigid
surface must be represented by the “target” surface. For the specific problem,
three couples of 2D contact elements were created (Fig. 8). The first couple rep-
resented the contact between the architrave and the supporting abacus, which
is a rigid-rigid contact since the contact surfaces are made of the same material
(marble). In this context, the contact surface of the architrave was considered
as the “target” and that of the abacus as the “contact”. The second couple rep-
resented the contact between the architrave and the titanium bar, since for the
specific problem the titanium bar was not considered to be fully bonded with
the marble as in the previous model. Due to the fact that titanium is a rigid
material, its contact surface was considered as the “target” and the respective
one of the architrave as the “contact”. Concerning the third couple, a new rigidly
clamped area was created in the position of the central cross-section area of the
architrave, in order to be in simple contact with the respective architrave’s area.
This new area was defined as the “target” surface and that of the architrave as
the “contact” one. The elements used for the analysis were “TARGE170” and
“CONTA174”.

Fig. 8. Identification of the contact elements created for the model.

The boundary conditions were imposed in such a way that both the static
determinacy of the problem as well as its symmetry were ensured since, as it
has been already mentioned, only a quarter of the configuration was modelled
(advantage was taken of the vertical plane of symmetry). In this context, the
lower bases of the supporting abacuses were considered as rigidly clamped, while
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the central cross-section area of the titanium bar was allowed to be free only
along the vertical direction. On the other hand, the central cross-section area of
the architrave was restricted only to the right horizontal direction by creating
the rigidly clamped target surface described previously (third couple of contact
elements).

The load was assumed to be uniformly distributed along the span of the
architrave. Its magnitude was equal to 65 kN, i.e. the maximum load expected for
the particular architrave, after the completion of the restoration of the Parthenon
Temple.

4. Results and discussion

A detailed view of the distribution of the first (maximum principal stress)
in the restored architrave and the reinforcing bar in the immediate vicinity of
the central cross-section is shown in Fig. 9. From a qualitative point of view,
the conclusions drawn are of similar nature compared to those in the case of
a restored member with one cylindrical (unbolted) titanium bar: the major part
of the architrave is relieved and only at the central cross-section, around the
titanium bar, the stresses aproach the fracture stress of marble under direct ten-
sion (∼6–8 MPa) and reach the values of the order of about 8 MPa, remaining
however far from the respective limit of titanium (∼300 MPa). Comparing the
two models, i.e. the bolted and unbolted reinforcing bars (Figs. 9 and 4, respec-
tively), it is noted that the use of bolted bars leads to much higher stresses than
those generated by the cylindrical titanium bars.

The distribution of the other two principal stresses is plotted in Figs. 10
and 11. The change of sign of these stresses as one moves towards the interior of
the architrave is noteworthy. In addition, similarity of the distribution of the 3rd
principal stress with the cone-type fracture surface commonly observed during
pure pull-out tests is striking.

In Fig. 12, the variation of the von Mises equivalent stress in the (ductile)
titanium bar is plotted. As it should be expected, the maximum value is observed
in the immediate vicinity of the central section and it approaches the value of
about 20 MPa. As one moves towards the interior of the architrave, the equivalent
stress in the titanium bar decreases rapidly and after the 20-th thread (out of
200), its value is only one tenth of the respective maximum one. The above
conclusions become more clear in Fig. 13 in which the maximum value of the
equivalent stress appearing at the peaks and the roots of the threads of a bolted
bar are plotted versus the order of the thread (the thread at the central cross-
section is considered as the first one). It is seen from this figure that the stress
field is higher at the roots of the thread rather than at the respective peak.
However, the most striking conclusion is that the stress on both the peak and
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a)

b)

c)

Fig. 9. The distribution of the 1st (maximum) principal stress in the restored architrave (a)
and a detailed view of the central section of the titanium bar (b) and of the marble (c).
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a) b)

Fig. 10. A detailed view of the distribution of the 2-nd principal stress around the central
cross-section area of the titanium bar (a) and of the marble (b).

a) b)

Fig. 11. A detailed view of the distribution of the 3-nd principal stress around the central
cross-section area of the titanium bar (a) and of the marble (b).

the root of the threads is almost zero after the 50-th thread. From this point on,
it increases very slightly as one approaches the end of the bar, but the maximum
value reached does not exceed in any case the value of 1.5 MPa. Based on these
observations, one should reconsider the empirical formulae yielding the anchoring
length of the reinforcing bars, which is not in accordance with the minimum
intervention principle.

In Fig. 14 the distribution of the maximum shear stress (Fig. 14a) and that
of the maximum principal stress (Fig. 14b) are plotted in juxtaposition, around
the area of the reinforcing bar. The non-monotonous variation of both stresses
along the radial and the axial directions is clear from these figures, explaining
the cone type fracture of marble during the pull-out tests [18].

In order to study the differences between the two models (bolted bar and
cylindrical bar), a series of critical diagrams were plotted. As the first step,
variation of the normal axial strain along the central vertical line of the cross-
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a)

b) c)

Fig. 12. The distribution of the equivalent stress in the reinforcing bar (a) and two detailed
views in the vicinity of the central cross-section (b, c).

Fig. 13. The maximum equivalent stress at the peaks and the roots of the threads versus the
order of the threads of the titanium bar.
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a) b)

Fig. 14. The distribution of the maximum shear stress (a) and the maximum principal
stress (b) in the marble in the central cross-section.

Fig. 15. The variation of the normal axial strain along the height of the architrave.

section of the architrave is plotted in Fig. 15. The vertical axis is reduced over the
height of the beam, h, and is directed downwards. Point (0.00, 1.00) corresponds
at the upper base of the architrave while point (0.00, 0.00) at the lower one. It
is seen that in major part of the section, the values are of the same sign and
order of magnitude for both models. For the upper one third of the height of the
architrave, negative strain values are observed (corresponding to the compression
exerted mutually from each part of the member on the other), which become zero
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at the regions just above and below the titanium bars, since in these regions
contact of the two parts of the architrave is lost, as it was already concluded
from Fig. 9. In the immediate vicinity of the reinforcing bar, the strain reaches
high tensile values of magnitude about 120 µstrain in case when the bar is bolted.
This value is almost double the respective maximum one developed in the case of
the model with an unbolted bar (∼70 µstrain). In any case, since the maximum
fracture strain of Dionysos marble is about 200 µstrain [19], it is concluded that
even in the region of the titanium bar the member is safe, at least for the specific
load used in this analysis.

a)

b)

Fig. 16. The variation of the vertical (a) and the horizontal (b) displacements along the
height of the architrave at its central cross-section.
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Figure 16 describes variation of the components of the displacement vector
along the same as previously line. As it is seen in Fig. 16a, where variation of
the vertical displacement is plotted, behaviour of the two models is qualitatively
similar. Indeed, in both cases, an almost constant (non-zero) vertical displace-
ment is observed all along the height of the member, although it appears to
increase slightly in the portion below the reinforcing bar. However, from a quan-
titative point of view the model with bolted bar exhibits deflections higher at
any point of the architrave’s height. In addition, the discontinuity observed close
to the titanium bar is dramatically higher for this model: from −1.76× 10−5 m
the displacement reaches a value of −1.93× 10−5, namely it exhibits an abrupt
change of almost 10%.

Similar conclusions are drawn for the variation of the horizontal displacement
(Fig. 16b). The horizontal displacement is zero along the portions of the parts of
architrave for which the contact is not lost (as it is expected, also, for symmetry
reasons) and reaches considerably higher values, of the order of 6 µm, in the
portions of the section where the contact of the two constituent parts is lost
(both below and above the reinforcing titanium bar). Again the absolute values
are higher in the case of the architrave restored using a bolted bar. Although such
a displacement appears to be negligibly small, it must be considered seriously
by experts working for the restoration projects, since it is the origin of a series
of problems due to the penetration of moisture, bacteria etc in the body of the
structural member.

Variation of the normal components of the stress field along the central hori-
zontal line at the height of the axis of the reinforcing bar is plotted in Fig. 17(a,b).
In this figure the horizontal axis is reduced over the half-length of the architrave
and therefore point (0.00, 0.00) corresponds to the leftmost point of the member
(resting on the capitals), while point (0.00, 1.00) corresponds to the mid-span of
the architrave. It is observed that for the bolted bar, the axial stress (Fig. 17a)
starts to increase abruptly as one approaches the central section and reaches
a value of about 14 MPa, almost double as compared to the respective stress of
the unbolted bar (∼7 MPa). As one moves away from the central section, the
axial stresses tend to decrease rapidly for both models and some perturbations
are observed only in the region of the end of the titanium bar. The conclusions
for the transverse normal stresses are of different nature. Compressive stresses
appear at the region of the architrave resting on the abacuses which become ten-
sile as one moves towards the central section (about 3.2 MPa for the unbolted
bar and about 2.1 MPa for the bolted one). However, it should be mentioned
that the use of the bolted bar creates high compressive values very close to the
central section, just before the appearance of the tensile stresses at that section.

Finally, some interesting conclusions are drawn by plotting variation of the
axial strain along the bottom central line of the member (Fig. 18). Initially the
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a)

b)

Fig. 17. The variation of the normal axial (a) and the normal transverse (b) stresses along
the axial line passing from the centre of the reinforcing bar.

axial strain is almost zero for both models since part of the architrave, initially
resting on the abacuses, tends to lift up losing the contact with the abacus in
case when the load is applied only along the span of the member [4, 5]. However,
as ones moves towards the corners of the supporting abacuses, the axial strain
takes negative (compressive) values of the order of about −35 µstrain. From
that point on, the strain starts to increase in an almost parabolic form until
it becomes zero at the mid-span of the beam, where the contact between the
two constituent parts is lost. Similarity of the variation of the strain along the
bottom central line for the two models indicates that the stress and strain fields
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at the bottom base of the member are almost independent of the geometrical
details of the titanium bar used.

Fig. 18. The axial strain along the bottom central axial line.

5. Conclusions

The mechanical behaviour of fractured marble architraves restored with ei-
ther cylindrical or bolted titanium bars was studied with the aid of the Finite
Element Method. The findings of the analysis can be summarized as follows.

The simulation of bending under uniform load with multi-point laboratory
bending tests leads to underestimate the stress field actually developed. In the
vicinity of the reinforcing bar the contact between the two constituent marble
parts of the architrave is lost.

The axial strain along the height of the architraves is not linear but of sigmoid
variation. Taking into account, also, that the neutral axis of the bent architrave is
displaced downwards (obviously due to the fact that the length – to – height ratio
of typical architraves is lower than 4) it is indicated that higher order bending
theories should be employed, compared to the simplified technical Bernoulli-
Euler bending theory. Preliminary results using a modified Timoshenko bending
theory indicate that the number of reinforcing bars should be slightly increased.

The existence of singularities at the corners and the roots of the threads
yields more severe stress and strain fields in comparison to the restoration with
unbolted bars. The equivalent stress in the titanium bar is more severe at the
roots of the threads rather than at their respective peaks.
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However, what is perhaps more important from a practical point of view, is
the fact that the intensity of the stress field along the reinforcing bar decreases
rapidly and is almost zero after the 50-th (out of 200) thread, indicating that the
formula for the anchoring length of the reinforcing bars should be reconsidered
in the direction of minimizing the intervention on the authentic stones.
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