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The present work is concerned with unsteady mixed convection and mass transfer flow with
Hall effect of an electrically conducting incompressible viscous fluid through a porous medium
bounded by an infinite vertical plate subjected to suction/injection velocity in the presence of a
constant magnetic field. The magnetic field is applied transversely to the direction of the flow.
The resulting problem has been solved analytically and the solutions are found for velocity,
temperature, concentration of the species, skin-friction, surface heat flux and mass flux. The
effects of material parameters on the flow characteristics are expressed and illustrated/discussed
by graphs and table.
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Notations

H applied magnetic field,
J current density vector,
E electric field,
e charge of electron,

ne number density of electrons,
Pe electron pressure,

B0 = µeH0 magnetic field induction,
K permeability of porous medium,

m = ωeTe Hall parameter,
κ thermal conductivity,

T∞ temperature of the fluid far away from the plate,
C∞ concentration of the species far away from the plate,
B induced magnetic field,
V velocity vector,
g acceleration due to gravity,

Cp specific heat of the fluid at constant pressure,
M magnetic field parameter,
Pr Prandtl number,
Sc Schmidt number,
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G Grashof number,
Gc modified Grashof number,

θ non-dimensional temperature,
C non-dimensional concentration,
D the chemical molecular diffusivity,
t non-dimensional time,

T reference temperature,
u x-component of flow velocity,
v y-component of flow velocity,
w z-component of flow velocity,

x, y, z Cartesian co-ordinate system,
V0 injection velocity,
ωe cyclotron frequency,
τe electron collision time,
µ coefficient of viscosity of the fluid,

µe magnetic permeability,
ρ density of the fluid,
σ electrical conductivity,
ν kinematic viscosity,
β free convection term,

β∗ volumetric coefficient,
η modified y-coordinate,
Ω frequency parameter,
ω angular frequency,
Ψ velocity function,
γ phase angle for temperature field,
τ1 skin friction along x-axis,
τ2 skin friction along z-axis,
r real part,
i imaginary part.

1. Introduction

The phenomenon of heat and mass transfer has been the object of extensive
research due to its applications in science and technology. Such phenomenon is
observed in buoyancy – induced motions in the atmosphere, in bodies of water,
quasi-solid bodies such as earth and so on. Some of the convective heat and
mass transfer processes with phase change include the evaporation of a liquid
at the interface between a gas and a liquid or the sublimation at a gas-solid
interface. They can be described using the method for convective heat and mass
transfer. Separation process in chemical engineering such as drying of solid ma-
terials, distillation, extraction and absorption, are all affected by the process of
mass transfer. They also play a role in the production of materials in order to
obtain the desired properties of a substance. Chemical reactions, including the
combustion process, are often decisively determined by mass transfer. As ex-
amples of these types of processes, the evaporation, condensations, distillation,
rectification and absorption of a fluid should all be mentioned (Baehr [1]).
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The requirements of modern technology have stimulated interest in fluid flow
studies which involve the interaction of several phenomena. One of them is re-
lated to the effect of free convection flow through a porous medium which plays
an important role in agriculture, engineering, petroleum industries and heat
transfer. The convection problem in a porous medium has also important ap-
plications in geothermal reservoirs and geothermal energy extractions. In order
to utilize the geothermal energy to a maximum, one should have a complete
and precise knowledge of the amount of perturbations needed to generate the
convection currents in geothermal fluids. A comprehensive review of the studies
of convective heat transfer mechanism through porous media has been made by
Nield and Bejan [2]. Free convection flow past a vertical plate has been studied
extensively by Ostrach [3–6], Riley et al. [7], Dey et al. [8], Kawose et al.
[9], Weiss et al. [10] and Pantokratoras [11] in numerous ways to include
various physical aspects. Gallahan et al. [12], Soundalgekar et al. [13, 14],
Khair et al. [15], Lin et al. [16, 17] and Raptis [18] have also studied the
combined effect of thermal and mass diffusion along the vertical plate in numer-
ous ways. The problem of magnetohydrodynamic viscous flow through porous
medium past a vertical plate has been studied by Takhar et al. [19], Alchar
et al. [20], Aldoss et al. [21], Singh et al. [22], Sattar et al. [23], K.A. Helmy
[24], with different physical conditions.

Important progress has been made during the last few decades in the devel-
opment of magnetohydrodynamics due to its importance in engineering applica-
tions. The interest in these new problems stems from their importance in liquid
metals, electrolytes and ionized gases. The thermal physics of MHD processes
and MHD mass transfer are of interest in power engineering and metallurgy.
The boundary zone between hydraulics and thermal physics is the area of many
cross galvano and thermomagnetic effects. These phenomena are important in
the study of semiconductor materials. In magnetohydrodynamics, serious at-
tention has been given only to the transverse galvanomagnetic effect, i.e. the
Hall effect: crossed phenomena also occur in the interaction of heat and mass
transfer and hydraulics and mass transfer processes. The mechanism of con-
duction in ionized gases (low density) in presence of strong magnetic field is
different from that in a metallic substance. The electric current in ionized gas
is usually carried by electrons which undergo successive collisions with other
charged or neutral particles. In case of ionized gas, the current is not pro-
portional to the applied potential except when the electric field is very weak.
When the electric field is strong, the conductivity parallel to the electric field
is reduced and current is induced in the direction normal to both the elec-
tric and magnetic fields. This phenomenon is known as the Hall effect. The
effect can be taken into account within the range of magnetohydrodynamical
approximation.
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The Hall effect on the fluid with variable concentration has a lot of ap-
plications in MHD power generations, several astrophysical and meteorological
studies as well as in flow of plasma through MHD power generators. From the
point of view of applications, model studies on the Hall effect on the free and
forced convection flows have been made by several investigators. Some of them
are Datta et al. [25], Acharya et al. [26–27] and Biswal [28]. However, the
authors [25–28] studied the Hall effect on convection and mass transfer flow past
a porous plate only, while [28] considered the effect of Hall on free convection
flow of a visco-elastic fluid.

The problem investigated here is the study of the Hall effect on the combined
heat and mass transfer unsteady flow, which occur due to buoyancy forces caused
by thermal diffusion (temperature differences) and mass diffusion (concentration
differences) of comparable magnitude, past a vertical porous plate which is im-
mersed in porous medium with a constant magnetic field applied perpendicular
to the plate. The plate is kept at the oscillating temperature and concentration.

2. Formulation

Consider the unsteady flow of a viscous incompressible and electrically con-
ducting fluid past an infinite vertical porous plate in presence of transverse mag-
netic field. The x-axis is chosen along the plate in the upward direction while
the y-axis is chosen normal to it and pointing away from the plate surface. All
the properties of the fluid are assumed to be constant, except the body force
term causing the buoyancy effect. The effect of Hall current gives rise to a force
in the z-direction which induces a cross-flow in that direction. Thus the flow
becomes three-dimensional. The physical configuration considered here is shown
in the figure A. The equation governing the flow of fluid together with Maxwell’s
electromagnetic equations are as follows:

Continuity equation

(2.1) ∇.V = 0,

Momentum equation

(2.2)
∂V
∂t

+(V.∇)V = −1
ρ
∇P +ν∇2V+gβ(T−T∞)+gβ∗(C−C∞)+

1
ρ
(J×B),

Energy equation

(2.3)
∂T

∂t
+ (V.∇)T = κ∇2T,
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Generlized Ohm’s Law

(2.4) J = σ(E+V×B)− σ

ene
(J×B−∇Pe),

Maxwell’s equation

(2.5) ∇×H = J, ∇×E = 0, ∇.B = 0.

Fig. A. Physical model of the problem.

By assuming a very small magnetic Reynolds number, the induced magnetic
field is neglected [29] in comparison to the applied magnetic field, so that B =
(0, B0, 0). Since no applied or polarization voltage is imposed on the flow field,
the electric field vector E = 0. This then corresponds to the case when no
energy is added or extracted from the fluid by the electric field. The equation
of conservation of electric charge ∇.J = 0 gives Jy = constant, where J =
(Jx, Jy, Jz). As the plate is non-conducting, Jy = 0 at the plate and hence
vanishes everywhere. Considering the magnetic field strength to be very large,
the corresponding generalized Ohm’s law in the absence of electric field takes
the following form:

(2.6) J+
ωeτe

B0
(J×B) = σ

(
V×B+

∇Pe

ene

)
.
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For weakly ionized gases, the electron pressure gradient and ion slip effects (aris-
ing out of imperfect coupling between ions and neutrals) are neglected. Then
Eq. (2.6) reduces to

(2.7)
Jx =

σB0

1 + m2
(mu− w),

Jz =
σB0

1 + m2
(u + mw).

The equations of motion, energy and concentration governing the flow under the
usual Boussinesq approximation are:

Momentum equations

(2.8)
∂u

∂t
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

0(u + mw)
ρ(1 + m2)

+ gβ(T − T∞) + gβ∗(C −C∞)− νu

K
,

(2.9)
∂w

∂t
+ v

∂w

∂y
= ν

∂2w

∂y2
+ σ

B2
0(mu− w)
ρ(1 + m2)

− νw

K
,

Energy equation

(2.10)
∂

∂t
(T − T∞) + v

∂(T − T∞)
∂y

=
κ

ρCp

∂2(T − T∞)
∂y2

,

Concentration equation

(2.11)
∂

∂t
(C − C∞) + v

∂(C − C∞)
∂y

=
D∂2(C − C∞)

∂y2
.

In Eq. (2.10), the viscous dissipation and Ohmic dissipation are neglected and
in Eq. (2.11), the term due to chemical reaction is assumed to be absent. Now
using v = −V0 in Eqs. (2.8) and (2.9), T (y, t) − T∞ = θ(y, t) in Eq. (2.10)
and C(y, t) − C∞ = C∗(y, t) in Eq. (2.11), subjected to the initial boundary
conditions

(2.12)
t≤0 : u(y, t) = w(y, t) = 0, θ = 0, C∗ = 0 for all y,

t>0 :
{

u(0, t) = w(0, t) = 0, θ(0, t) = aeiωt, C∗(0, t) = beiωt, at y = 0,

u(∞, t) = w(∞, t) = 0, θ(∞, t) = 0, C∗(∞, t) = 0 as y→∞,



HYDROMAGNETIC UNSTEADY MIXED CONVECTION ... 9

and using non-dimensional parameters

(2.13)

η =
V0y

ν
, t′ =

V 2
0 t

4ν
, u′ =

u

V0
, w′ =

w

V0
,

θ′ =
θ

a
, C ′ =

C∗

b
, G =

4gβνa

V 3
0

, Gc =
4gβ∗νb

V 3
0

,

M =
4β2

0σν

ρV 3
0

, Pr =
νρCp

κ
, K ′ =

V 2
0 K

4ν2
, Sc =

ν

D
,

Eqs. (2.8) to (2.11) are transformed to their corresponding non-dimensional form
(dropping the dashes) as

∂u

∂t
− 4

∂u

∂η
= 4

∂2u

∂η2
− M

1 + m2
(mw + u) + Gθ + GcC − u

K
,(2.14)

∂w

∂t
− 4

∂w

∂η
= 4

∂2w

∂η2
+

M

1 + m2
(mu− w)− w

K
,(2.15)

∂θ

∂t
− 4

∂θ

∂η
=

4
Pr

∂2θ

∂η2
,(2.16)

∂C

∂t
− 4

∂C

∂η
=

4
Sc

∂2C

∂η2
.(2.17)

The modified boundary conditions become

(2.18)
t ≤ 0 : u(η, t) = w(η, t) = 0, θ = 0, C = 0 ∀η,

t > 0 :
{

u(0, t) = w(0, t) = 0, θ(0, t) = eiωt, C(0, t) = eiωt, at η = 0,

u(∞, t) = w(∞, t) = 0, θ(∞, t) = 0, C(∞, t) = 0 as η →∞,

3. Solution

Equations (2.14) and (2.15) can be combined using the complex variable

(3.1) Ψ = u + iw

giving

(3.2)
∂2Ψ

∂η2
+

∂Ψ

∂η
− 1

4
∂Ψ

∂t
− 1

4

[
M

1 + m2
(1− im) +

1
K

]
Ψ = −1

4
Gθ − 1

4
GcC.
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Introducing the non-dimensional parameter Ω =
4νω

V 2
0

and using Eq. (3.1), the

boundary conditions in (2.18) are transformed to

(3.3)
Ψ(0, t) = Ψ(∞, t) = 0 and C(0, t) = eiΩt,

θ(0, t) = eiΩt, θ(∞, t) = 0, C(∞, t) = 0.

Putting θ(η, t) = eiΩtf(η) in Eq. (2.16), we get

(3.4) f ′′(η) + Prf ′(η)− iΩPr
4

f(η) = 0,

which has to be solved under the boundary condition

(3.5) f(0) = 1, f(∞) = 0.

Hence
f(η) = e

− η
2

h
Pr +

√
Pr2 +iΩ Pr

i

(3.6) ⇒ θ(η, t) = e
iΩt− η

2

h
Pr +

√
Pr2 +iΩ Pr

i
.

Separating real and imaginary parts, the real part is given by

(3.7) θr(η, t) = cos
{

Ωt− η

2
R1 sin

α

2

}
e
− η

2 (Pr+R1 cos α
2 )

where

(3.8)

R1 = Pr1/2(Pr2 + Ω2)1/4,

α = tan−1

(
Ω

Pr

)
.

Putting C(η, t) = eiΩtg(η) in Eq. (2.17), we get

(3.9) g′′(η) + Scg′(η)− iΩSc
4

g(η) = 0,

which has to be solved under the boundary condition

(3.10) g(0) = 1, g(∞) = 0.

Hence
g(η) = e

1
2
η
h
−Sc−

√
Sc2+iΩSc

i
,
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so that

(3.11) C(η, t) = e
iΩt− η

2

h
Sc+
√

Sc2+iΩSc
i
.

Separating real and imaginary parts, the real part is given by

(3.12) Cr(η, t) = cos
{

Ωt− η

2
R2 sin

β

2

}
e−

η
2 (Sc+R2 cos β

2 ),

where

(3.13)

R2 = Sc1/2(Sc2 + Ω2)1/4,

β = tan−1

(
Ω

Sc

)
.

In order to solve Eq. (3.2), substituting Ψ = eiΩtf(η) and using boundary con-
ditions

(3.14) F (0) = 0, F (∞) = 0.

and then separating real and imaginary parts, we obtain

(3.15) u =
[
{A18η12 cos(A21η/2) + A19 sin(A21η/2)}e−A20η/2

− {A22 cos(Ωt−A3η/2)e−A2η/2 + A23 sin(Ωt−A3η/2)e−A3η/2}A26

− {A24 cos(Ωt−A10η/2)e−A9η/2 + A25 sin(Ωt−A10η/2)e−A10η/2}A27

]
cosΩt

−
[
{A19 cos(A21η/2)−A18 sin(A21η/2)}e−A20η/2

− {A22 sin(Ωt−A3η/2)e−A3η/2 −A23 cos(Ωt−A3η/2)e−A2η/2}A26

− {A24 sin(Ωt−A10η/2)e−A10η/2

−A25 cos(Ωt−A10η/2)e−A9η/2}A27

]
sinΩt,

(3.16) w =
[
{A18 cos(A21η/2) + A19 sin(A21η/2)}e−A20η/2

− {A22 cos(Ωt−A3η/2)e−A2η/2 + A23 sin(Ωt−A3η/2)e−A3η/2}A26

− {A24 cos(Ωt−A10η/2)e−A9η/2 + A25 sin(Ωt−A10η/2)e−A10η/2}A27

]
sinΩt

+
[
{A19 cos(A21η/2)−A18 sin(A21η/2)}e−A20η/2

− {A22 sin(Ωt−A3η/2)e−A3η/2 −A23 cos(Ωt−A3η/2)e−A2η/2}A26

− {A24 sin(Ωt−A10η/2)e−A10η/2

−A25 cos(Ωt−A10η/2)e−A9η/2}A27

]
sinΩt.
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The shearing stress at the wall along the x-axis is given by

(3.17) τ1 =
(

∂u

∂η

)

η=0

,

and the shearing stress at the wall along the z-axis is given by

(3.18) τ2 =
(

∂w

∂η

)

η=0

,

The surface heat flux is given by

(3.19) Q(t) =
1
2

[
Pr cos Ωt + R1 cos

(
Ωt +

α

2

)]
,

and the mass flux is given by

(3.20) C(t) =
1
2

[
Sc cosΩt + R2 cos

(
Ωt +

β

2

)]
,

where

R1 = Pr1/2(Pr2 + Ω2)1/4, R2 = Sc1/2(Sc2 + Ω2)1/4,

R3 =

[(
1
K

+ 1 +
M

1 + m2

)2

+
(

Ω − Mm

1 + m2

)2
]1/4

,

α = tan−1

(
Ω

Pr

)
, β = tan−1

(
Ω

Sc

)
, γ = tan−1

(
Ω − Mm

1 + m2

)

A1
,

A1 =
1
K

+ 1 +
M

1 + m2
, A2 = Pr + R1 cosα/2, A3 = R1 sinα/2,

A4 =
1
K

+
M

1 + m2
, A5 = Ω − Mm

1 + m2
, A6 = (A2

2 −A2
3 − 2A2 −A4),

A7 = (2A2A3 − 2A3 −A5), A8 = A2
6 + A2

7, A9 = Sc + R2 cosβ/2,

A10 = R2 sinβ/2, A11 = (A2
9 −A2

10 − 2A9 −A4),

A12 = (2A9A10 − 2A10 −A5), A13 = (GA6 cosΩt + GA7 sin+Ωt)A26,

A14 = (GA6 sinΩt−GA7 cosΩt)A26,

A15 = (GcA11 cosΩt + GcA12 sinΩt)A27,

A16 = (GcA11 sinΩt−GcA12 cosΩt)A27, A17 = A2
11 + A2

12,



HYDROMAGNETIC UNSTEADY MIXED CONVECTION ... 13

A18 = A13 + A15, A19 = A14 + A16, A20 = 1 + R3 cos γ/2,

A21 = R3 sin γ/2, A22 = GA6, A23 = GA7, A24 = GcA11,

A25 = GcA12, A26 = 1/A8, A27 = 1/A17.

4. Results and discussion

A study of the velocity field, variations of temperature and concentration,
shearing stresses, surface heat flux and mass flux in hydromagnetic mixed con-
vective flow past an infinite vertical plate through porous medium with Hall
effect, has been carried out in the preceding sections. Approximate solutions are
obtained for various flow variables. In order to get insight into the physical sit-
uation of the problem, we have computed the numerical values of the velocity,
temperature, concentration, shearing stress, surface heat flux and mass flux for
different values of m (Hall parameter), M (Magnetic parameter), Sc (Schmidt
number), Pr (Prandtl number) and Ω (Frequency parameter). The values of G
(Grashof number for heat transfer) are taken equal to 5.0 (G > 0, cooled New-
tonian fluid) and −5.0 (G < 0 heated Newtonian fluid). The values of modified
Grashoff number (Gc, for mass transfer) Ωt and permeability (K) are taken
equal to 2.0, π/2 and 1, respectively. The obtained numerical results are illus-
trated and tabulated in Figs. 1 to 10 and Table 1. The velocity components,
temperature and concentration versus η are shown in Figs. 1 to 6, but shearing
stress versus m are shown in Fig. 7 to 10.

Table 1. Variations of C(t) and Q(t) for different values of Ω, Sc and Pr.

Ω C(t) Q(t)

Sc = 0.22 Sc = 0.30 Sc = 0.78 Pr = 0.025 Pr = 0.71 Pr = 7.0

0 0.22 0.30 0.78 0.025 0.71 7.0

0.2 0.08 0.12 0.38 0.012 0.34 3.74

0.4 −0.17 −0.21 −0.41 −0.011 −0.38 −3.00
0.6 −0.27 −0.35 −0.81 −0.024 −0.74 −6.95
0.8 −0.08 −0.12 0.39 −0.013 −0.35 −4.42
1.0 0.21 0.26 0.44 0.011 0.42 2.22

Figures 1 and 2 depict the velocity component u for a cooled Newtonian fluid
(G > 0) and for a heated Newtonian fluid (G < 0), respectively. It is drawn for
Pr = 0.71 (Prandtl number for air at 20◦C) and Pr = 7.0 (Prandtl number for
water at 20◦C), taking different values of m, M , Ω and Sc. It is observed that an



14 B.K. SHARMA, R.C. CHAUDHARY

Fig. 1. Variation of velocity component u for Gc = 2.0, G = 5.0, Ωt = π/2.

Fig. 2. Variation of velocity component u for Gc = 2.0, G = −5.0, Ωt = π/2.
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increase in the Hall parameter leads to decrease in the velocity for both air and
water in a cooled Newtonian fluid. For a heated Newtonian fluid, the velocity
increases with increasing Hall parameter (m) for air, but in the case of water, a
reverse effect is observed. It is noticed that an increase in the magnetic parameter
(M) leads to a rise in the velocity for both air and water for an externally cooled
(Gr > 0) plate. In the case of externally heated plate (Gr < 0) and Pr = 0.71
(air), we have observed that an increase in the magnetic parameter decreases
the velocity, while a reverse effect is noticed in water (Pr = 7.0). The velocity is
greater for Ammonia (Sc = 0.78, at temperature 25◦C and 1 atmosphere) than
that of Helium (Sc = 0.30, at temperature 25◦C and 1 atmosphere) for Pr =
0.71 or 7.0 and G > or < 0. We also observe that an increase in the frequency
parameter (Ω) gives rise to the velocity for air/water and G > 0. For the heated
plate in the air, it is found that an increase in Ω leads to a fall in the values of the
velocity, while a reverse effect is observed for water. Further, it is noticed that the
velocity distribution increases/decreases gradually near the plate (0 < η ≤ 1) and
then decreases/increases slowly far away from the plate (η À 1). A comparative
study of the curves reveals that the values of the velocity increase/decrease at
each point with variations in m or M or Sc or Ω or Pr. It is concluded that the
maximum/minimum of the velocity occurs in the vicinity of the plate and the
rise and fall in the values of the velocity are more dominant in the case of air
(Pr = 0.71) than those of water (Pr = 7.0). The velocity profiles remain negative
for Gr > 0 (cooled Newtonian fluid) and positive for G < 0 (heated Newtonian
fluid) in the case of Pr = 0.71 near the plate and fade far away from the plate.
However, in the case when Pr = 7.0, the velocity profiles remain negative for
cooled/heated fluid. In all the situations, the velocity profiles remain always in
phase.

The velocity component w has been shown in Figs. 3 and 4 for cooled New-
tonian fluid (G > 0) and heated Newtonian fluid (G < 0), respectively. An
increase in the Hall parameter leads to an increase in the velocity for both air
and water in a cooled Newtonian fluid. For a heated Newtonian fluid, the velocity
decreases with increasing Hall parameter for air, while reverse effect is observed
in the case of water. It is observed that an increase in the magnetic parameter
(M) leads to a rise in the velocity for both air and water for externally cooled
(G > 0) plate. For an increasing M , there is a fall in the velocity for air but
a rise in the case of water for externally heated plate (G < 0). The velocity is
greater for Ammonia than that for Helium with Pr = 0.71 or 7.0 and G > 0 or
G < 0. Increasing Ω, the velocity decreases for air and water and G > 0. When
G < 0 and Ω is increasing, w increases for Pr = 0.71, while it decreases for
Pr = 7.0. The maximum/minimum of w occurs away from the plate (η > 1)
and becomes almost constant as we move farther from the plate. The w remains
positive in a Newtonian cooled fluid for both Pr = 0.71 or 7.0. For G < 0 (heated
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Fig. 3. Variation of velocity component w for Gc = 2.0, G = 5.0, Ωt = π/2.

Fig. 4. Variation of velocity component w for Gc = 2.0, G = −5.0, Ωt = π/2.
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Newtonian fluid), the w remains negative for Pr = 0.71, while it is positive for
Pr = 7.0. However, for increasing Ω, its value oscillates between negative and
positive values for G < 0.

The variation of temperature θr has been shown in Fig. 5 for Pr = 0.71
(air) and Pr = 7.0 (water) and for different values of Ω. It is noticed that an
increase in Ω leads to a rise in the temperature for both air and water. It is
observed that maximum of θr occurs more quickly in water than that in air, in
the neighbourhood of the plate and as the distance from the plate increases it
decays faster in water than in air. An increase in Ω gives a rise in θr at each
point. Figure 6 depicts the variation of concentration Cr for Helium (Sc = 0.30)
and Ammonia (Sc = 0.78) for different values of Ω. An increase in Ω leads to
a rise in Cr for both Helium and Ammonia. A comparative study of the curves
reveals that the values of Cr increase/decrease at each point with variation in
Ω and the same pattern is found as that of θr. It is further observed that the
values of Cr are higher in Ammonia (heavier particles) than in Helium (lighter
particles) near the plate (0 < η < 1). The shearing stress τ1 is presented in
Figs. 7 and 8 for cooled Newtonian fluid (G > 0) and heated Newtonian fluid
(G < 0), respectively. τ1 is drawn for Pr = 0.71 and Pr = 7.0, taking different
values of M and Sc as a function of m. It is observed that for increasing M
that the τ1 first increases, reaches a maximum (at m = 0.2) and then becomes
constant for G > 0 both in air and water. For extremely heated plate, the values
of τ1 first decrease, reach a minimum (at m = 0.2) and then become constant
for large values of M in air, but a reverse effect is observed for water. We have

Fig. 5. Variation of temperature θr.
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noticed that the values of τ1 are greater for Helium than Ammonia, for both air
and water and G > 0 or G < 0. Further, it is found that the values of τ1 are
smaller in air than in water for cooled Newtonian fluid, while a reverse effect is
observed for a heated Newtonian fluid. Also, the values of τ1 increase/decrease
for small values of m and then remain constant for m ≥ 0.2.

Fig. 6. Variation of concentration Cr.

Fig. 7. Variation of shearing stress τ1 for Gc = 2.0, G = 5.0, Ωt = π/2.
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Fig. 8. Variation of shearing stress τ1 for Gc = 2.0, G = −5.0, Ωt = π/2.

Figures 9 and 10 depict the variation of the shearing stress τ2 for different
values of M , Sc and Pr versus the Hall parameter (m). It is observed that an
increase in M leads to a fall in τ2 for both air and water and G > 0. However,
the values of the skin friction are greater in air than those of water for small Hall
parameter, but for large parameter a reverse effect is observed. For G < 0 and

Fig. 9. Variation of shearing stress τ2 for Gc = 2.0, G = 5.0, Ωt = π/2.
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Pr = 0.71 it is found that for increasing M , the values of τ2 rise, while a reverse
effect is observed for water. The effect of small induced magnetic field is greater
for Pr = 7.0 than that for Pr = 0.71. We have found that the values of τ2 are
greater in Helium than in Ammonia for air or water and G > 0 or G < 0. For
large induced magnetic field (m ≥ 1) the skin friction becomes almost constant
in all situations.

Fig. 10. Variation of shearing stress τ2 for Gc = 2.0, G = −5.0, Ωt = π/2.

One would also certainly like to know the quantity of heat exchange between
the body and the fluid. The heat flux across the surface Q (t) is given in the
table for different values of Pr = 0.025 (Mercury), 0.71 (air) and 7.0 (water).
The variation of Q (t) is reported for various values of Ω (frequency). It is
noted that for increasing Prandtl number, the flux increases for small values of
the frequency. However, it oscillates i.e. it increases/decreases with the increasing
values of Ω or Pr. The mass flux across the surface C (t) is also given in the table
for different values of Sc = 0.22 (Hydrogen), 0.30 (Helium) and 0.78 (Ammonia).
The variation of C (t) is reported for various values of Ω (frequency). It is noticed
that for increasing Sc, the flux increases for small values of the frequency, however
it oscillates, i.e. it increases/decreases with the increasing values of Ω or Sc.

5. Conclusions

In this work the problem of unsteady mixed convection and mass transfer
flow with Hall effect of a viscous, electrically conducting fluid through a porous
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medium, bounded by an infinite vertical plate under the action of a uniform
transverse magnetic field is investigated. The resulting governing equations are
solved by a perturbation scheme. The results are presented for variations of major
parameters, including the magnetic field parameter, the Prandtl number, the
Grashof number, the Schmidt number and Hall parameter. A systematic study
of the effects of the various parameters of flow, heat and mass flux characteristics
is carried out. Some of the important findings, obtained from the graphs and
table are listed here with:

1. An increase in magnetic parameter (M) or Hall parameter (m) leads to a
rise in the velocity for both air and water for a cooled Newtonian fluid.

2. The velocity is higher for Ammonia than that for Helium with Pr = 0.71
or 7.0 and G > 0 or G < 0.

3. For a cooled Newtonian fluid, an increase in frequency parameter (Ω) gives
a rise in the velocity for both air and water.

4. The values of concentration (Cr) are higher in Ammonia than that in
Helium near the plate.

5. An increase in Ω leads to a rise in the temperature and concentration for
air/water and Helium/Ammonia, respectively.

6. The values of shearing stresses are greater in Helium than in Ammonia for
air or water and G > 0 or G < 0.

7. The mass flux across the surface oscillates with increasing Ω or Sc.
8. The heat flux across the surface oscillates with increasing Ω or Pr.
It is hoped that the present investigation of the study of physics of flow

over a vertical surface can be utilized, as the basis for many scientific and en-
gineering applications, for studying more complex problems involving the flow
of electrically conducting fluids. The findings may be useful for the study of
movement of oil or gas and water through the reservoir of oil or gas field, in
migration of underground water and in the filtration and water purification
processes. The results of the problem are also of great interest in geophysics
in the study of interaction of the geomagnetic field with the fluid in the geother-
mal region.
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THE FIRST HALF-TURN OF AN INERTIAL VIBRATOR
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The paper concerns the starting of an inertial vibrator which, due to a high value of
static unbalance, is unable to perform the first half-turn in the gravitational field of force.
The problem plays an essential role in the selection of driving units for the wide class of
over–resonance machines.

On the basis of the Pontryagin’s Maximum Principle the problem was formulated in terms
of a dynamic optimisation. Thus, the driving moment performs the function of control – which
is being looked for – while equations of motion and start-end conditions related to the position
of a vibrator, act as constrains equations and boundary conditions. The possible simplifications
in description of the motion of the vibrator, as well as the influence of the variable asynchronous
motor driving moment on the optimal solutions, are discussed in the paper. On the basis of the
work-energy equivalence principle, the minimum values of the driving moment – which warrants
the performance of the first half-turn of the vibrator at a given number of the moment switch-
overs – were determined. The problem of thermal loads of the motor during the first half-turn
was also considered. The theoretical results were confirmed by the computer simulations.

Key words: starting, vibratory machine, dynamic optimisation.

1. Introduction

The problem of selecting the driving unit power is very important for a wide
class of over-resonance vibrating machines, such as: conveyers, screens, tables,
grids etc. The demand for the driving moment for these machines is related to the
need of overcoming two critical states. The first state concerns the necessity to
surmount the gravitational force of an unbalanced mass during the first half-turn,
while the second state corresponds to overcoming the rapidly increased resistance
to motion during passing through the resonance zone. The estimated – in such
a way – driving unit power exceeds, in many cases, several times the power
demand for realization of the in-coming steady state. In the steady state, the
energy dissipation occurs due to the technological or transporting processes, due
to overcoming the resistance to the motion of vibrators and elements of machine
suspension, or losses related to the driving moment transmission. The problem
has been repeatedly pointed out and discussed in scientific papers. For example,
the paper by Banaszewski [2], describes the start of the one- and two-mass
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vibrator at the given moment of force and the resistances from the rolling friction
and bearing seal.Michalczyk [8] determined the minimum value of the moment
of force:

Mmin = 0.7246meg ,(1.1)

which allows to perform the first half-turn when the motor starts from the ar-
rested lowest position (me – static unbalance of a vibrator, g – gravitational
acceleration). However, the approaches applied in the papers mentioned above
were restricted to the vibrator model presented as a pendulum – at the assump-
tion that the value of the driving moment as well as its sense are constant.

2. Problem formulated in terms of the Maximum Principle

Let us consider the problem in a more general way. Thus, let us find the form
of the moment acting on the vibrator shaft, which will allow to move the centre
of its mass from the lower to upper position – without imposing at that moment
any limitations concerning the value and direction of operation. It is obvious
that there is an infinite number of such forms; however, only some of them can
are of practical significance. The selection of the criterion deciding upon the
chosen solution is an open problem. However, it should be taken into account
that not all criteria are useful. E.g. an instinctively appearing criterion related
to minimalisation of the work being done by the driving moment, when applied
to the loss-less model of a physical pendulum, will not provide the expected
results. The optimal solution can be easily guessed since it is related to the
state, in which the kinetic energy is zeroing at the upper position of the vibrator.
But again – such a state can be obtained by an unlimited number of measures.
This diversity of solutions requires either imposing of an additional condition
on the criterion or the task formulation in the form of a multi-optimisation
expression.

The most reasonable and convenient criterion seems to be the time-minimal
criterion, which:

1. Provides directly an explicit solution.
2. Due to the time decrease in which the driving motor is present within

the range of short-circuit currents, it directly causes lowering of the heat
produced in rotor windings.

Thus the origin for further considerations becomes the form quality functional
(2.1) as well as the equations of motion of the vibrating machine (2.2) – the model
of which is presented in Fig. 1.

(2.1) T =

t=tk∫

t=0

dt → min ,
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m, J  +Js w

M

x

g

ϕ

Mel

e

k b

Fig. 1. The vibrating machine model.

(2.2)
(M + m)ẍ + meϕ̈ cos(ϕ)−meϕ̇2 sin(ϕ) + bẋ + kx = 0,

(Js + me2
w + Jw)ϕ̈ + meẍ cos(ϕ) = Mel −mge cos(ϕ),

Js – central moment of the vibrator inertia, Jw – axial moment of the motor
rotor inertia.

The problem presented hereby can be formulated and solved by means of the
theory of calculus of variations, based on the Pontryagin’s Maximum Principle.
Due to the reasons of the presentation clarity, two variants of the problem will
be discussed in the paper. At first the simplified variant – in which mutual inter-
actions of the machine body and the vibrator are disregarded – will be presented.
In this variant, the mechanical system becomes a physical pendulum subjected
to the influence of the gravitational field and to the moment – which is being
looked for. Later on, the second variant, that takes into account the previously
omitted interactions and which is based on Eqs. (2.3) – will be discussed.

2.1. Simplified variant

On the basis of equations of motion of the pendulum (2.3) being subjected
to the influence of M(t) moment and referring to the Maximum Principle [4],
the Hamiltonian function – due to the criterion (2.1) – takes the form given by
Eq. (2.4).

(2.3)

dω

dt
=

1
Jzr

(M(t)−mge sin(ϕ)) ,

dϕ

dt
= ω,
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Fig. 2. Inertial vibrator model presented in the form of a physical pendulum.

(2.4) H =
Ψ1

Jzr
(M(t)−mge sin(ϕ)) + ωΨ2 − 1.

The Hamiltonian function linear dependence on the M(t) value implicates imme-
diately the form of the moment maximising the Hamiltonian along the optimal
trajectory to the trajectory contained within the boundary of variability of the
force moment. Thus, limiting the M(t) moment to the set:

(2.5) M(t) ⊂ [−M0, +M0]

we may observe that:

(2.6) M(t) = M0 · sgn(Ψ1),

where M0 is given value.
On the grounds of the conditions necessary for existing of the Hamiltonian

extremum, the system (2.3) can be supplemented with equations for the coupled
functions Ψ1, Ψ2:

dΨ1

dt
= −∂H

∂ω
= −Ψ2,

dΨ2

dt
= −∂H

∂ϕ
=

mge cos(ϕ)Ψ1

Jzr
.

(2.7)

In turn, due to the time-minimal variant of the Maximum Principle, the final
positions of coupled functions should fulfil the transversality conditions, which
– in a general form [1] – can be written as:

(2.8) Ψ̄∗ =
m∑

α=1

kα
∂gα[x̄∗, t∗k]

∂x̄∗[t∗k]
,
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where gα[x∗(tk), t∗k] – equations imposed on the motion coordinates at time
t = t∗k.

In the problem discussed hereby, we have only one condition imposed on the
final positions of the motion coordinates:

(2.9) g1 : ϕ∗(t∗k)− π = 0

and on its basis we determine:

Ψ∗1 (t∗k) = k1
∂g1

∂ω
= 0,

Ψ∗2 (t∗k) = k1
∂g1

∂ϕ
= k1,

(2.10)

where k1 – certain constant.
The fact of explicit independence of the final conditions of the time imposes

one additional condition on the Hamilton’s function: zeroing of its value along
the optimal trajectory.

Thus, supplementing the final conditions (2.10) with conditions at the start:

ω∗(0) = 0,
ϕ∗(0) = 0,

(2.11)

and condition of zeroing of the Hamiltonian e.g. at t = tk:

H(t∗k) = 0(2.12)

we obtain the set of dependences needed for an explicit solution of systems (2.3)
and (2.7).

The task being considered here belongs to the so-called two-point boundary
value problems, which in a general case cannot be solved by traditional methods
of numerical integration and requires a special approach. However, the prelimi-
nary analysis provides already some interesting conclusions.

Using the Eq. (2.7) we obtain the following equation:

(2.13)
d2Ψ1

dt2
+

mge

Jzr
Ψ1 cos (ϕ) = 0

which, for small values of ϕ angle, becomes a homogeneous differential equation
with constant coefficients. One can state – on its basis – that the time form of
the moment is a switch-over type function with the switching frequency being
equal to the double frequency of the pendulum free vibrations:

(2.14) f0 =
1
π

√
mge

Jzr
.
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The system (2.7) – for any chosen value of angle ϕ – can be solved e.g. by
application of the gradient shooting method [6].

Applying such an approach, the problem was solved for two values of moment
M0, namely for M0 = 16.47 [Nm] and M0 = 65.88 [Nm]. The values Jzr =
1.98 [kgm2], mw = 382.3 [kg], e = 0.04 [m] were assumed for the pendulum.

The solution for the first M0 value is presented in Fig. 3. As it can be seen
from the graph, the moment changes its sign eight times and finally, the angle
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Fig. 3. Graphical presentation of solutions for the set of Eqs. (2.3) and (2.7),
for M0 = 16.47 [Nm].
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coordinate ϕ reaches the value π. In accordance with Eq. (2.6), the time when
the coupled coordinate Ψ1 passes zero indicates the switch-over time and equals
successively: 0.185 [s], 0.548 [s], 0.914 [s], 1.286 [s], 1.666 [s], 2.064 [s], 2.484 [s]
and 2.947 [s].

The solution for the second M0 value (being 4 times larger then the previous
one) is presented in Fig. 4. In this case the moment changes its sign only once
at t = 0.36 [s].
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2.2. Full variant

Proceeding in a similar fashion as in the previous chapter, we determine
the Hamilton’s function, which after rearrangement of Eqs. (2.2) to a standard
form (2.15)

(2.15)

dv

dt
=

(Jw + me2)(meω2 sin (ϕ)− kx− bv −Mg −mg)
∆

− me cos (ϕ)(Mel −mge cos (ϕ))
∆

,

dω

dt
=
−me cos (ϕ)(meω2 sin (ϕ)− kx− bv −Mg −mg)

∆

+
(M + m)(Mel −mge cos (ϕ))

∆
,

dx

dt
= v,

dϕ

dt
= ω,

∆ = (M + m)(Jw + me2)− (me cos (ϕ))2

assumes the following form:

(2.16) H = Ψ1
dv

dt
+ Ψ2

dω

dt
+ Ψ3

dx

dt
+ Ψ4

dϕ

dt
− 1 .

On the basis of Eq. (2.16) and criterion (2.1) we determine the formulae for
derivatives of coupled functions (2.17):

(2.17)

dΨ1

dt
=

(Jw + me2)bΨ1 −me cos (ϕ)bΨ2

∆
− Ψ3,

dΨ2

dt
=
−2(Jw + me2)meω sin (ϕ)Ψ1 + 2m2e2 cos (ϕ)ω sin (ϕ)Ψ2

∆
− Ψ4,

dΨ3

dt
=

(Jw + me2)kΨ1 −me cos (ϕ)kΨ2

∆
,
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(2.17)
[cont.]

dΨ4

dt
= −

[
(Jw + me2)meω2 cos(ϕ) + me sin(ϕ)(Mel −mge cos(ϕ))

−m2e2g cos(ϕ) sin(ϕ)
]Ψ1

∆

+ 2
[
(Jw + me2)(meω2 sinϕ− kx− bv −Mg −mg)

−me cosϕ(Mel −mge cosϕ)
]Ψ1m

2e2 cosϕ sinϕ

∆2

−
[
me sinϕ(meω2 sinϕ− k − bv −Mg −mg)−m2e2(cosϕ)2ω2

+ (m + M)mge sinϕ
]Ψ2

∆

+
[
(m + M)(Mel −mge cosϕ)−me cosϕ(meω2 sinϕ− kx− bv

−Mg −mg)
]Ψ2m

2e2 cosϕ sinϕ

∆2
.

Then – on the grounds of extremalising the conditions of the Hamilton’s function
versus moment M(t)el – we formulate the Law of Control in the form (2.18):

(2.18) Mel = M0sgn
[
(M + m)Ψ2 −me cosϕΨ1

∆

]
,

where M0 – given value of the moment of force.
Using the transversality conditions (2.8) for coupled functions, Hamiltonian

zeroing along the optimal trajectory as well as the start conditions for the motion
coordinates of the system, we are able to determine the set of start-end conditions
(2.19), which allow to solve the system (2.15) and (2.17) in an explicit way.

(2.19)

v(0) = 0, x(0) = −(M + m)g
k

, H(t∗k) = 0,

ω(0) = 0, ϕ(0) = −π

2
,

ϕ(t∗k) = +
π

2
, Ψ1(t∗k) = 0,

Ψ2(t∗k) = 0, Ψ3(t∗k) = 0.

The problem has been solved numerically for M0 = 65.88 [Nm], using the set of
parameters given in Table 1. The results are presented in Fig. 5.
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Table 1.

Vibrator mass 382.3 [kg]

Radius of vibrator unbalance 0.04 [m]

Moment of inertia reduced to the axis of rotation 1.3 [kgm2]

Machine body mass 7263.2 [kg]

Coefficient of elasticity of the machine body support 4.83·106 [N/m]

Viscous damping coefficient of the machine body support 3.84·104 [Ns/m]
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Fig. 5. The solutions of systems Eqs. (2.15) and (2.17).
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Fig. 6. The solutions of systems Eqs. (2.15) and (2.17) – continuation.

3. Influence of variability of the electric driving motor moment
on the optimal solutions

The most popular source of the moment of force in vibrating machine drives
is – in practice – an asynchronous motor. The instantaneous form of the moment
of this motor – in the velocity range being near zero – is far from constant and
exhibits very strong oscillations with the power network frequency. However, its
mean value is – in this velocity range – near the value of the starting moment
determined on the basis of the mechanical characteristic of the motor. Assum-
ing this value as M0 in the previously given models, the comparing simulations
can be performed. They will allow estimate the influence of the electromag-
netic moment variability on the optimal solutions determined for models with
bi-stable moments. The interdependence of the electromagnetic moment of the
driving motor and the vibrator shaft was determined in simulations based on
the grounds of the asynchronous machine equations obtained as the result of
two transformations applied separately for the stator circuit and for the rotor
circuit. The first transformation, the Park’s one described by the transforma-
tion matrix [T ] (3.1), changes the phase system of stator circuit equations into
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quasi-coordinates 0, d, q. The second transformation, the Clark’s transformation
(3.2), transforms the phase system of rotor circuit equations to the coordinates
0, α, β.

[T ] =

√
2
3




1√
2

1√
2

1√
2

cos (pbϕ) cos
(

pbϕ− 2
3
π

)
cos

(
pbϕ− 4

3
π

)

− sin (pbϕ) − sin
(

pbϕ− 2
3
π

)
− sin

(
pbϕ− 4

3
π

)




,(3.1)

[C] =

√
2
3




1√
2

1√
2

1√
2

1 −1
2

−1
2

0
√

3
2

−
√

3
2




.(3.2)

The relations between currents and quasi-currents i′αr i′βr ids idq and the trans-
formed power voltages uds, uqs can be presented in the following matrix notation:

(3.3)




uds

uqs

0
0


 =




Lσs + Lm 0 Lm 0
0 Lσs + Lm 0 Lm

Lm 0 L′σr + Lm 0
0 Lm 0 L′σr + Lm




d

dt




ids

iqs

i′αr

i′βr


+

+pbϕ̇




0 −(Lσs + Lm) 0 −Lm

Lσs + Lm 0 Lm 0
0 0 0 0
0 0 0 0







ids

iqs

i′αr

i′βr


+

+




Rs 0 0 0
0 Rs 0 0
0 0 R′

r 0
0 0 0 R′

r







ids

iqs

i′αr

i′βr


,

while the electric moment is formulated as:

(3.4) Mel = pb (Ψdsiqs − Ψqsids) ,
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where Ψds, Ψqs – components of the electromagnetic flow associated with the
stator and rotor, which can be presented in the matrix notation (3.5):

(3.5)




Ψds

Ψqs

Ψαr

Ψβr


 =




Lσs + Lm 0 Lm 0
0 Lσs + Lm 0 Lm

Lm 0 L′σr + Lm 0
0 Lm 0 L′σr + Lm







ids

iqs

i′αr

i′βr


.

The commutation process related to switching-over the phase sequence of
the stator circuit, being done in order to change the sense of the moment to
the opposite one, was determined on the basis of the Continuity Principle of
the electromagnetic flow associated with the rotor circuit. Taking into account
Eq. (3.5) – the components of the relevant currents – we can state that: Ψ−αr = Ψ+

αr

and Ψ−βr = Ψ+
βr, where indices „+” and „−” mark the time just before and just

after the switch-over, respectively.
The continuity of the flow associated with the rotor leads to the formulae for

the current components values just after the switch-over, in the form:

i+ds = 0,

i+qs = 0,

i
′+
αr =

Lmi−ds + (L′σr + Lm)i
′−
αr

L′σr + Lm
,

i
′+
βr =

Lmi−qs + (L′σr + Lm)i
′−
βr

L′σr + Lm
.

(3.6)

Table 2. Parameters of the asynchronous motor.

Motor power rating Pn 8.1 [kW]

Motor rated velocity nn 1420 [rot/min]

Stator leakage inductance Lσs 4.77 [mH]

Rotor leakage inductance in stator terms L′σw 4.77 [mH]

Magnetic induction Lµ 82.4 [mH]

Stator resistance Rs 0.62 [Ω]

Rotor resistance in stator terms R′w 0.84 [Ω]

The simulation results presented in Fig. 7 indicate that the switch-over per-
formed at the times determined for models presented in Secs. 2.1 and 2.2, does
not cause any significant differences, neither in the curve of the angular coor-
dinate nor in the curve of the angular velocity mean value – regardless of the
visible oscillatory influence on the driving moment.
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Fig. 7. Graphs of the motion coordinates for: A – model with an electric moment originated
from an asynchronous motor, B – full variant with a bi-stable moment of force, C – simplified

variant with a bi-stable moment of force.

4. Number of switch-overs of the driving moment

The need to determine the number of the moment switch-overs realizing the
first half-turn of the vibrator for the given M0 value, might be essential in the
preliminary designing process. For the simplified model this problem can be
solved analytically, without the necessity of performing an explicit solution of
the pendulum equation of motion. Thus, on the basis of the condition of the
mass lifting – in the gravitational field of force [8] – subjected to the influence
of the constant value M0 moment, for the case in which only one switch-over
occurs, we are entitled to state the following:

1. During lifting of the vibrator mass centre, the motion will take place until
the work performed by the moment of force equals the potential energy
stored in the vibrator. Denoting by ϕ1 the angular distance at which this
equalisation occurs, we obtain the formula:

(4.1) M0ϕ1 = mge(1− cosϕ1).
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2. During the reverse in the intermediate point, related to the lowest position
of the vibrator mass centre, the vibrator kinetic energy constitutes the sum
of the recovered potential energy connected with the height determined by
angle ϕ1 and the work performed at returning at the angular distance ϕ1.
This energy – increased by the work performed on the further part of the
distance ϕ and decreased by the potential energy of the repeated lifting of
the mass centre - should retain its positive value to avoid the stopping of
motion and changing its direction. Thus, we can write:

E = mge(1− cosϕ1) + M0ϕ1 + M0ϕ−mge(1− cosϕ) > 0.(4.2)

3. To quarantee the fulfilment of inequality (4.2), which after rearrangement
assumes the form:

M0

mge
(2ϕ1 + ϕ) > 1− cosϕ,(4.3)

the care should be taken that the straight line of the left-hand side of
the inequality should be above the function value of the right-hand side.
The smallest M0 value corresponds to the situation when tangents to the
function on its both sides are equal at certain critical point ϕkr and the
function values are also equal at this point. Thus, respectively:

M0min

mge
= sin ϕkr,(4.4)

M0min

mge
(2ϕ1 + ϕkr) = 1− cosϕkr.(4.5)

4. Solution of the set of Eqs. (4.1), (4.4), (4.5):

M0min = 0.422mge,

ϕ1 = 0.905 [rad],

ϕkr = 2.706 [rad]

(4.6)

determines the smallest value of the driving moment M0min, which allows
to perform the first half-turn with only one switch-over of the moment. It
also determines two angles: ϕ1 and ϕkr, for which the angular velocity of
the vibrator equals zero.

By means of a similar reasoning we can determine the switch-over times and
the minimum moment M0 for a larger number of switch-overs. Table 3 presents
the determined dependences, with notations: n – number of switch-overs,

k =
M0min

mge
, ϕi – successive angles corresponding to switch-overs of the mo-

ment, ϕkr – critical value of the angle of rotation.
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Table 3.

n k ϕi [rad] ϕkr [rad]

0 0.724 − +2.31

1 0.422 −0.905 +2.706

2 0.293 +0.605, −1.306 +2.844

3 0.224 −0.456, +0.948, −1.546 +2.916

Knowing the switch-over number of the moment, it is possible to estimate
the least upper bound of the time needed for performing the first half-turn.
Fig. 8 presents the nomogram, obtained by solving the pendulum equation of
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Fig. 8. Time of the first half-turn as a function of α and β parameters for the case of one
switch-over of the moment. a) Nomogram, b) Table of data (* – indicates data for the

example discussed in the paper).
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motion, relating the time – which is looked for – to two parameters α =
mge

Jzr

and β =
M0

Jzr
for the case of one switch-over of the moment.

5. Conclusions

Summarising the problem of the first half-turn, we can state that:
1. It is possible to find the driving moment of the variable sense, which will

allow the first half-turn to be performed by vibrators, without unnecessery
overmotoring.
(a) The driving moment is contained within the boundary of this moment

variability, and due to this feature – for the values being in the range
[−M0,+M0] – it becomes the bi-stable moment of the value ±M0.

(b) Times of the switch-over of the driving moment can be estimated on
the basis of Eq. (2.18) and dependences (2.15), (2.17), (2.19) necessary
for solving the Hamiltonian extreme (2.16).

2. The start, in which the first half-turn is put into practice by switch-overs of
the sense of the moment, allows to decrease radically the starting moment
of the motor, which corresponds to decreasing the driving unit power. As
a result, the system efficiency at the nominal operations improves signifi-
cantly.

3. Simplifications – following from the assumption that the driving moment is
of a constant value and from the omission of body and vibrator interactions
– do not introduce any essential errors, concerning the determination of
the switch-over time of the moment of force, for typical driving systems of
vibratory machines. It means for such systems, in which an asynchronous
motor is the source of the moment of force and the vibrator is fixed to
the elastically supported machine body. The value of the motor starting
moment found directly from the catalogue data or determined on the basis
of the Kloss mechanical characteristics – with taking into consideration the
displacement of current for deep-groove motors (like in B NEMA [National
Electrical Manufacturers Association] design) and for multi-cage motors
(like in C NEMA design) – should be applied in calculations as the M0

value.
4. When determining the M0 value for over-resonance machines, special atten-

tion should be directed towards the situation when the vibrator is passing
through the resonance zone. When the selected value of the moment (al-
though allowing to perform the first half-turn and to overcome the motion
resistance at nominal operations) is too low, it might be not sufficient to
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overcome the increased resistance during passing through the resonance
zone. In consequence, the stall of a motor in this zone occurs.

5. If the start is realised at low values of the M0 moment, which prolongs
the time when the motor stays in the zone of short-circuit currents, the
problem of motor thermal load and the selection of safety measures should
be considered. For estimation of the lowest upper bound of the time of the
first half-turn and for determination of the minimum number of switch-
overs of the moment, one can use dependences presented in Sec. 4.
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RESISTANCE OF RC ANNULAR CROSS-SECTIONS WITH OPENINGS
SUBJECTED TO AXIAL FORCE AND BENDING

M. L e c h m a n
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This paper presents ultimate limit state analysis of the resistance of reinforced concrete
(RC) annular cross-sections with openings, subjected to the axial force and the bending mo-
ment. Based on nonlinear material laws for concrete and reinforcing steel and using the method
of mathematical induction, analytical formulae are derived in the case when the cross-section
is weakened by an arbitrary number of openings located symmetrically with respect to the
bending direction. In this approach, the additional reinforcement at openings is also taken
into account. The results of numerical calculations are presented in the form of interaction
diagrams with the design values of the normalized cross-sectional forces nu and mu for the
sections weakened by openings as well as for the closed ones. This approach has been applied
to investigate the influence of different parameters such as the size and the number of openings,
the reinforcement ratio, the additional reinforcement at the opening, the form of stress-strain
relationships for concrete and the thickness/radius ratio, on the section resistance.

Notations

Es modulus of elasticity of steel,
Fad1 area of the additional reinforcement at the opening specified by α1,
Fad2 area of the additional reinforcement at the opening specified by α2,
MSd design bending moment,
Mu ultimate bending moment,
NSd design axial force,
Nu ultimate axial force,
R outer radius of ring,

ccs coefficient of concrete softening,
csh coefficient of steel hardening,
fck characteristic strength of concrete in compression,
fyk yield stress of steel,

mRd = mu design normalized ultimate bending moment,
nRd = nu design normalized ultimate axial force,

r inner radius of the ring,
rm mean radius of the ring,
rs radius of the circumference on which reinforcing steel is located,

t = R− r thickness of the cross-section,
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α angle describing the location of the neutral axis (α1 ≤ α ≤ α2), rad,
α1 angle describing the location of the first opening, rad,
α2 angle describing the location of the second opening, rad,
m number of openings,

(α1, α2), (α3, α4), ..., (αm−1, αm) couples of angular coordinates determining the locations
of openings, rad,

αb angle determining the depth of the zone of plastified concrete, rad,
αa1 angle determining the depth of the zone of plastified steel in compression, rad,
αa2 angle determining the depth of the zone of plastified steel in tension, rad,

ε strain expressed in %�,
εc strain in concrete, [%�],

εcu ultimate strain in concrete, [%�],
εs strain in steel, [%�],

εsu ultimate strain in steel, [%�],
εsy strain related to the yield stress of steel, [%�],
ε0 the given numerical parameter,
γc partial safety factor for concrete,
γs partial safety factor for steel,
µ the ratio of cross-sectional areas, steel to concrete,

µα1, µα2 the ratios of cross-sectional areas, additional reinforcement located at the open-
ings specified by α1, α2 to concrete,

µαi the ratio of cross-sectional areas, additional reinforcement located at the opening
side specified by αi to concrete,

σc compressive stress in concrete,
σs stress in steel.

1. Introduction

Structures and members with the annular cross-section weakened by openings
subjected to the axial force and bending moment are frequently encountered in
engineering practice (towers, chimneys, lamp posts, columns etc.).

Determination of the resistance of the cross-sections of RC chimneys and
tower structures has been reported in the literature by several authors. The
ultimate load analysis of a shell with a circular cross-section weakened by one
and two openings is presented in the monograph by Pinfold [1]. A similar
approach is also used by Nieser and Engel [2], in DIN 1056 and CICIND
codes [3, 4], assuming the central layout of steel reinforcement in the wall of
tower or chimney structures and ignoring the effect of additional reinforcement
at the sides of openings. The generalized linear section model for analysis of RC
chimneys weakened by openings was proposed by Lechman and Lewiński [5].

When RC cross-sections under consideration are subjected to the given design
axial force NSd and bending moment MSd and a nonlinear behavior of concrete
and steel reinforcement is assumed, the problem is described mathematically
by a set of equations which are nonlinear and difficult to solve. Therefore, a
numerical strategy must be used. For this purpose the modified BFGS method
has been successfully applied by Lechman and Stachurski [6].
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Despite the generality of the papers mentioned, there are no appropriate an-
alytical formulae for determining the resistance of the annular sections weakened
by an arbitrary number of openings and taking into consideration the physical
nonlinearity of concrete and reinforcing steel. Such a task has been undertaken
in the present paper.

2. Derivation of formulae for the section with one or two
diametrically opposite openings

As the first step of the proposed approach, the annular cross-section, de-
scribed by the outer radius – R and the inner radius – r, is assumed to be
weakened by one or two openings. The locations of the openings are determined
by couples of the angular coordinates (0, α1), (α2, π), 0 ≤ α1 ≤ α2 ≤ π. The
reinforcing steel spaced in a general case continuously at l layers can be replaced
by a continuous ring of equivalent area located on the reference circumference
of radius rs (Fig. 1a). The section under consideration is subjected to the axial
force Nu and the bending moment Mu at ultimate limit state. If α1 6= 0 and
α2 = π, it forms the cross-section weakened by a single opening, while α1 = 0
and α2 = π describe the closed annular one.

In the present derivation, the following assumptions have been introduced:
(i) plane cross-sections remain plane,
(ii) the tensile strength of concrete is ignored,
(iii) the reinforcement in both the tension and compression zone is taken into

account,
(iv) the thickness of the section is thin compared with its diameter,
(v) elasto-plastic stress/strain relationships for concrete and steel are used,
(vi) the ultimate strain for concrete is defined as −3.5%� or −2%�, while for

reinforcement as 5%� (tension) and −5%� (compression).
For determining the resistance of cross-sections, the stress-strain relation-

ships for concrete in compression with softening in the plastic range is given by
(Fig. 1b):

(2.1)
σc =

fck

γc

2
ε0

(
1 +

ε

2ε0

)
ε, for − ε0 ≤ ε ≤ 0,

σc = −fck

γc

(
1− ccs

ε + ε0

εcu + ε0

)
, for − 3.5 ≤ ε ≤ −ε0,

where ε0 – the given numerical parameter, fck – characteristic strength of con-
crete in compression, γc – partial safety factor for concrete, ccs = (fcd− fcu)/fcd

– coefficient of concrete softening in the plastic range, fcd – design value of the
compressive strength of concrete, fcu = σc(εcu).
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Fig. 1. a) The cross-section weakened by two openings, b) distribution of strains ε, stresses
in concrete σc and in steel σs across the section.

To determine the resistance of the cross-sections, the stress-strain relations
for reinforcing steel with hardening in the plastic range are assumed as (Fig. 1b):

(2.2)

σs =
fyk

εss
ε, for −εsy ≤ ε ≤ εsy,

σs =
fyk

γs

(
1 + csh

ε− εsy

εsu − εsy

)
, for εsy ≤ ε ≤ 10,

σs = −fyk

γs

(
1− csh

ε + εsy

εsu − εsy

)
, for −10 ≤ ε ≤ −εsy,

εss =
fyk

Es
, εsy =

εss

γs
,
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where fyk – yield stress of steel, Es – modulus of elasticity of steel, γs – partial
safety factor for steel, csh – coefficient of steel hardening in the plastic range
expressed as:

csh =
fsu − fyd

fyd
,

fyd – design value of the yield stress of steel, fsu = σs(εsu).
Let us consider the cross-section under combined compression and bending.

Due to the Bernoulli assumption we obtain:

(2.3)
εc =

cosϕ− cosα

ρR − cosα
ε′ = (cosϕ− cosα)ε′α,

εs =
ρ cosϕ− cosα

ρR − cosα
ε′ = (ρ cosϕ− cosα)ε′α,

where ε′ – the maximum compressive strain in concrete at the point (0, R), [%�],
α – angle describing the location of the neutral axis, rad, ϕ – angular coordinate,

rad, ρ – coefficient, ρ = rs/rm, ρR – coefficient, ρR = R/rm, ε′α =
ε′

ρR − cosα
.

The conditions of the strain conformity for the concrete and the steel in
compression and in tension are expressed, respectively, by

(cos αb − cosα)ε′α = −ε0,(2.4)

(ρ cosαa1 − cosα)ε′α = −εsy,(2.5)

(ρ cosαa2 − cosα)ε′α = εsy,(2.6)

where αb – angle determining the depth of the zone of the plastified concrete, αa1

– angle determining the depth of the zone of the plastified steel in compression,
αa2 – angle determining the depth of the zone of the plastified steel in tension.

The resistance of the cross-section is reached when either the ultimate strain
in concrete εcu or in steel εsu is reached anywhere in that section, i.e. the following
conditions must be satisfied:

(cosα1 − cosα)ε′α = εcu,(2.7)

(ρ cosα2 − cosα)ε′α = εsu.(2.8)

On the basis of a combinatorial approach, eight possible forms of the stress
distribution in the section are to be considered:

1) elastic phase of the concrete and steel,
2) plastic phase of the concrete, elastic phase of the steel,
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3) plastic phase of the concrete and the steel in compression, elastic phase of
the steel in tension,

4) plastic phase of the concrete and the steel in tension, elastic phase of the
steel in compression,

5) elastic phase of the concrete and the steel in compression, plastic phase of
the steel in tension,

6) elastic phase of the concrete and the steel in tension, plastic phase of the
steel in compression steel,

7) elastic phase of the concrete, plastic phase of the steel in compression and
the steel in tension,

8) plastic phase of the concrete and steel.
Let us consider the case 8). The equilibrium equation of the normal forces in the
cross-section weakened by one or two openings at ultimate limit state takes the
following form:

(2.9) 2




αb∫

α1

σpl
c dAc +

α∫

αb

σe
cdAc


 + 2




αa1∫

α1

σpl
s dAs +

αa2∫

αa1

σe
sdAs

+

α2∫

αa2

σpl
s dAs


 + 2Faα1σ

pl
s (α1) + 2Faα2σ

pl
s (α2) + Nu = 0,

where σpl
c – the stress function of concrete in the plastic range given by (2.1)2,

σe
c – the stress function of concrete in the elastic range given by (2.1)1, σpl

s – the
stress function of steel in the plastic range given by (2.2)2, (2.2)3, σe

s – the stress
function of steel in the elastic range given by (2.2)1, dAc – element of the concrete
area, dAs – element of the steel area, Faα1 – area of the additional reinforcement
at the opening specified by α1, Faα2 – area of the additional reinforcement at
the opening specified by α2.

Using the relation dAc + dAs = dA = rmtdϕ, the equilibrium equation of
the sectional bending moments at ultimate limit state with respect to the line
perpendicular to the symmetry axis and crossing it at the centre of the section,
can be written in the form

(2.10) rmt(1− µ)




αb∫

α1

σpl
c rm cosϕdϕ +

α∫

αb

σe
crm cosϕdϕ




+ rmtµ




αa1∫

α1

σpl
s rs cosϕdϕ +

αa2∫

αa1

σe
srs cosϕdϕ +

α2∫

αa2

σpl
s rs cosϕdϕ




+ Faα1σ
pl
s (α1)rs cosα1 + Faα2σ

pl
s (α2)rs cosα2 + Mu = 0.
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Taking into account the relationships (2.1)–(2.3), after integration and rearrange-
ment of (2.9), (2.10) we obtain

α = arc cos
(

ρR(εsu cosα1 − εcu cosα2)
εsu − εcu

)
,(2.11)

ε′ = εcu
ρR − cosα

ρR cosα1 − cosα
,(2.12)

αb =





α1 elastic phase,

arc cos
(

cosα− ε0
1
ε′α

)
plastic phase,(2.13)

αa1 =





α1 elastic phase,

arc cos
[
1
ρ

(
cosα− εsy

1
ε′α

)]
plastic phase,(2.14)

αa2 =





α2 elastic phase,

arc cos
[
1
ρ

(
cosα + εsy

1
ε′α

)]
plastic phase,(2.15)

(2.16) nu = − 1
π

{
−1− µ

γc
[X7(αb) +

ccs

εcu + ε0
[ε′αX4(α, αb) + ε0X7(αb)]

+
1− µ

γc
ε′α

2
ε0

[
X1(α, αb) +

1
2ε0

ε′αX2(α, αb)
]

+ µ
fyk

fck

{
− 1

γs
[X8(αa1)

+
csh

εsu − εsy
[ε′αX5(α, αa1)− εsyX8(αa1)] +

1
εss

ε′αX3(α, αa1, αa2)

+
{

1
γs

[X9(αa2) +
csh

εsu − εsy
[ε′αX6(α, αa2)− εsyX9(αa2)]

}

+
fyk

fck
µα1

{
−δk1

1
γs

[
1− csh

εsu − εsy
[ε′α(ρ cosα1 − cosα) + εsy]

]

+ δk1+1
ε′α
εss

(ρ cosα1 − cosα)
}

+
fyk

fck
µα2

{
δk2

1
γs

[
1 +

csh

εsu − εsy
[ε′α(ρ cosα2 − cosα)− εsy]

]

+ δk2+1
ε′α
εss

(ρ cosα2 − cosα)
}}

.
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(2.17) mu = − 1
π

{
−0.5

1− µ

γc

[
Y7(αb) +

ccs

εcu + ε0
(ε′αY4(α, αb) + ε0Y7(αb))

]

+ 0.5
1− µ

γc
ε′α

2
ε0

[
Y1(α, αb) +

1
2ε0

ε′αY2(α, αb)
]

+ 0.5µ
fyk

fck

[
− 1

γs
ρ

[
Y8(αa1)

+
csh

εsu − εsy
(ε′αY5(α, αa1)− εsyY8(αb))

]
+

1
εss

ε′αY3(αa1, αa2)

+
1
γs

ρ

[
Y9(αa2)− sinαa2 +

csh

εsu − εsy
(ε′αY6(α, αa2)− εsyY9(αa2))

]]

+
fyk

fck
ρµα1

{
−δk1

1
γs

[
1− csh

εsu − εsy
[ε′α(ρ cosα1 − cosα) + εsy]

]
cosα1

+ δk1+1
ε′α
εss

(ρ cosα1 − cosα) cos α1

}

+
fyk

fck
ρµα2

{
δk2

1
γs

[
1 +

csh

εsu − εsy
[ε′α(ρ cosα2 − cosα)− εsy]

]
cosα2

+ δk2+1
ε′α
εss

(ρ cosα2 − cosα) cosα2

}}
,

where:

(2.18) nu =
Nu

2πrmtfck

denotes the normalized ultimate normal force,

(2.19) mu =
Mu

4πr2
mtfck

denotes the normalized ultimate bending moment, µ = dAs/dA – the ratio of

areas, steel to concrete, µα1 =
Faα1

rmt
, µα2 =

Faα2

rmt
– the ratios of areas, additional

reinforcement located at the openings specified by α1, α2 to concrete, t - thickness
of the cross-section t = R− r, dϕ – element of the angle measured from the axis
in the compressive zone.

δk =
1
2
((−1)k + 1), k = 1, 2, 3;

k1 = 1, 2; k2 = 2, 3.
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The functions X1–X9 and Y1–Y9 are defined by the following formulae:

(2.20)

X1(α, αb) = sinα− sinαb − cosα(α− αb),

X2(α, αb) = (0.5 + cos2 α)(α− αb) + 0.25(sin 2α− sin 2αb)

− 2 cos α(sinα− sinαb),

X3(αa1, αa2) = ρ(sinαa2 − sinαa1)− cosα(αa2 − αa1),

X4(α, αb) = sinαb − sinα1 − cosα(αb − α1),

X5(α, αa1) = ρ(sinαa1 − sinα1)− cosα(αa1 − α1),

X6(α, αa2) = ρ(sinα2 − sinαa2)− cosα(α2 − αa2),

X7(αb) = αb − α1,

X8(αa1) = αa1 − α1,

X9(αa2) = α2 − αa2.

(2.21)

Y1(α, αb) = 0.5(α− αb) + 0.25(sin 2α− sin 2αb)

− cosα(sinα− sinαb),

Y2(α, αb) = (1 + cos2 α)(sinα− sinαb)− 1
3
(sin3 α− sin3 αb)

− cosα[α− αb + 0.5(sin 2α− sin 2αb)],

Y3(αa1, αa2) = ρ{ρ[0.5(αa2 − αa1) + 0.25(sin 2αa2 − sin 2αa1)]

− cosα(sinαa2 − sinαa1)},
Y4(α, αb) = 0.5(αb − α1) + 0.25(sin 2αb − sin 2α1)

− cosα(sinαb − sinα1),

Y5(α, αa1) = ρ[0.5(αa1 − α1) + 0.25(sin 2αa1 − sin 2α1)]

− cosα(sinαa1 − sinα1),

Y6(α, αa2) = ρ[0.5(α2 − αa2) + 0.25(sin 2α2 − sin 2αa2)]

− cosα(sinα2 − sinαa2),

Y7(αb) = sinαb − sinα1,

Y8(αa1) = sinαa1 − sinα1,

Y9(αa2) = sinα2 − sinαa2.

In a similar way one can analyze the section wholly being in compression.
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3. Generalization of the obtained formulae for the section
with m openings

The presented model can be generalized for the cross-section weakened by
more than two openings. Let us consider the annular cross-section weakened by
m openings situated symmetrically with respect to the bending direction. By
this assumption, the locations of the openings are determined by couples of the
angular coordinates (α1, α2), (α3, α4), . . . , (αm−1, αm), 0 ≤ α1 ≤ α2 ≤ ... ≤
αm−1,≤ αm ≤ π (Fig. 2). Using the principle of mathematical induction one can
obtain a solution that takes a similar form as (2.11)–(2.17). It covers all locations
of the neutral axis and takes account of possible plastic ranges of concrete and
reinforcing steels. The functions X1–X9 and Y1–Y9 are given in this case by:

(3.1)

X1(α, αb) =
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

− cosα

(
k∑

l+1

(−1)i−1αi − δlαb + δkα

)
,

X2(α, αb) = (0.5 + cos2 α)

(
k∑

l+1

(−1)i−1αi − δlαb + δkα

)

+ 0.25

(
k∑

l+1

(−1)i−1 sin 2αi + δl sin 2αb + δk sin 2α

)

− 2 cos α

(
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

)
,

X3(α, αa1, αa2) = ρ

(
k2∑

k1+1

(−1)i−1 sinαi − δk1 sinαa1 + δk2 sinαa2

)

− cosα

(
k2∑

k1+1

(−1)i−1αi − δk1αa1 + δk2αa2

)
,

X4(α, αb) =
l∑

l=1

(−1)i−1 sinαi + δl sinαb

− cosα

(
l∑

i=1

(−1)i−1αi + δlαb

)
,
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(3.1)
[cont.]

X5(α, αa1) = ρ

(
k1∑

i=1

(−1)i−1 sinαi + δk1 sinαa1

)

− cosα

(
k1∑

i=1

(−1)i−1αi + δk1αa1

)
,

X6(α, αa2) = ρ

(
m∑

k2+1

(−1)i−1 sinαi + δk2 sinαa2

)

− cosα

(
m∑

k2+1

(−1)i−1αi + δk2αa2

)
,

X7(αb) =
l∑

i=1

(−1)i−1αi + δlαb,

X8(αa1) =
k1∑

i=1

(−1)i−1αi + δk1αa1,

X9(αa2) =
m∑

k2+1

(−1)i−1αi − δk2αa2 + π.

(3.2)

Y1(α, αb) = 0.5

(
k∑

l+1

(−1)i−1αi − δlαb + δkα

)

+ 0.25

(
k∑

l+1

(−1)i−1 sin 2αi − δl sin 2αb + δk sin 2α

)

− cosα

(
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

)
,

Y2(α, αb) = (1 + cos2 α)

(
k∑

l+1

(−1)i−1 sinαi − δl sinαb + δk sinα

)

− 1
3

(
k∑

l+1

(−1)i−1sin3αi − δlsin3αb + δksin3α

)

− cosα

[
k∑

l+1

(−1)i−1αi − δlαb + δkα

+ 0.5

(
k∑

l+1

(−1)i−1sin 2αi − δlsin 2αb + δksin 2α

)]
,
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(3.2)
[cont.]

Y3(α, αa1, αa2) = ρ

{
ρ

[
0.5

(
k2∑

k1+1

(−1)i−1αi − δk1αa1 + δk2αa2

)

+ 0.25

(
k2∑

k1+1

(−1)i−1 sin 2αi − δk1 sin 2αa1 + δk2 sin 2αa2

)]

− cosα

(
k2∑

k1+1

(−1)i−1 sinαi − δk1 sinαa1 + δk2 sinαa2

)}
,

Y4(α, αb) = 0.5

(
l∑

i=1

(−1)i−1αi + δlαb

)

+ 0.25

(
l∑

i=1

(−1)i−1 sin 2αi + δl sin 2αb

)

− cosα

(
l∑

i=1

(−1)i−1 sinαi + δl sinαb

)
,

Y5(α, αa1) = ρ

[
0.5

(
k1∑

i=1

(−1)i−1αi + δk1αa1

)

+

(
0.25

k1∑

i=1

(−1)i−1 sin 2αi + δk1 sin 2αa1

)]

− cosα

(
k1∑

i=1

(−1)i−1 sinαi + δk1 sinαa1

)
,

Y6(α, αa2) = ρ

[
0.5

(
m∑

k2+1

(−1)i−1αi + δk2αa2

)

+ 0.25

(
m∑

k2+1

(−1)i−1 sin 2αi + δk2 sin 2αa2

)]

− cosα

(
m∑

k2+1

(−1)i−1 sinαi + δk2 sinαa2

)
,

Y7(αb) =
l∑

i=1

(−1)i−1 sinαi + δl sinαb,

Y8(αa1) =
k1∑

i=1

(−1)i−1 sinαi + δk1 sinαa1,

Y9(αa2) =
m∑

k2+1

(−1)i−1 sinαi + δk2 sinαa2.
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k = 0, 1, ..., m – the index of the interval satisfying the condition α ∈ 〈αk, αk+1〉,
where α is the angle describing the location of the neutral axis of the section,
l denotes the index of the interval satisfying the condition αb ∈ 〈αl, αl+1〉,
l = 0, 1, ..., k, k1 – the index of the interval satisfying the condition αα1 ∈
〈αk1, αk1+1〉, k1 = 0, ..., k, k2 – the index of the interval satisfying the condition
αa2 ∈ 〈αk2, αk2+1〉, k2 = k + 1, ..., m.

In the above formulae it is assumed that if m1 > m2 then
m2∑
m1

( ) = 0.

Fig. 2. The cross-section weakened by m openings located symmetrically with respect
to the bending direction.

The effects of the additional reinforcements at the openings are determined
by the following conditions:
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– with respect to nu:

(3.3)
fyk

fck

{
− 1

γs

k1∑

i=1

µai

[
1− csh

εsu − εsy
[ε′α(ρ cosαi − cosα) + εsy]

]
+

+
ε′α
εss

k2∑

i=k1+1

µai(ρ cosαi − cosα)

+
1
γs

m∑

i=k2+1

µai

[
1 +

csh

εsu − εsy
[ε′α(ρ cosαi − cosα)− εsy]

]}

– with respect to mu:

(3.4) 0.5
fyk

fck
ρ

{
− 1

γs

k1∑

i=1

µai

[
1− csh

εsu − εsy
[ε′α(ρ cosαi − cosα) + εsy]

]
cosαi

+
ε′α
εss

k2∑

i=k1+1

µai(ρ cosαi− cosα) cos αi

+
1
γs

m∑

i=k2+1

µai

[
1 +

csh

εsu − εsy
[ε′α(ρ cosαi − cosα)− εsy]

]
cosαi

}
.

To prove validity of the formulae (3.1)–(3.2) in a general case, the mathematical
induction is employed. Substituting m = 4, k = 2, l = 2 in the formulae (3.1)
and (3.2), the relationships given by (2.20)–(2.21) for the section weakened by
two openings are obtained (Fig. 1a):

X1(α, αb) =
2∑

3

(−1)i−1 sinαi − δ2 sinαb + δ2 sinα

− cosα

(
2∑

3

(−1)i−1αi − δ2αb + δ2α

)
= − sinαb + sin α− cosα(−αb + α),

Y1(α, αb) = 0.5

(
2∑

3

(−1)i−1αi − δ2αb + δ2α

)

+ 0.25

(
2∑

3

(−1)i−1 sin 2αi − δ2 sin 2αb + δ2 sin 2α

)

− cosα

(
2∑

3

(−1)i−1 sinαi − δ2 sinαb + δ2 sinα

)

= 0.5(−αb + α) + 0.25(− sin 2αb + sin 2α)− cosα(− sinαb + sin α),

due to
2∑
3

( ) = 0.
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In a similar way the functions X2–X9 and Y2–Y9 given by (2.20) and (2.21)
can be obtained.

Let us in turn assume validity of the formulae (3.1)–(3.2) for the section
weakened by m openings, k = 1, 2, ..., m, and let us consider the section weakened
by two additional, symmetrically situated openings, the locations of which are
determined by a couple of angular coordinates (αm+1, αm+2), 0 ≤ α1 ≤ α2 ≤
... ≤ αm ≤ αm+1 ≤ αm+2 ≤ π (Fig. 2).

The task leads to two additional cases of location of the neutral axis α to be
considered: αm+1 ≤ α ≤ αm+2 or αm+2 ≤ α ≤ π .

Integrating the equilibrium equation (2.9) in the first case, the function X1 (α,
αb) takes the following form (k = m + 1):

X1(α, αb) =
m−1∑

l+1

(−1)i−1 sinαi − δl sinαb + sinαm+1 − sinαm

− cosα

(
m−1∑

l+1

(−1)i−1αi − δlαb + αm+1 − αm

)

=
m+1∑

l+1

(−1)i−1 sinαi−δl sinαb−cosα

(
m+1∑

l+1

(−1)i−1αi − δlαb

)
, (δm+1 = 0).

For the case αm+2 ≤ α ≤ π (k = m + 1):

X1(α, αb) =
m+1∑

l+1

(−1)i−1 sinαi − δl sinαb + sinα− sinαm+2

− cosα

(
m+1∑

l+1

(−1)i−1αi − δlαb + α− αm+2

)

=
m+2∑

l+1

(−1)i−1 sinαi − δl sinαb + δm+2 sinα

− cosα

(
m+2∑

l+1

(−1)i−1αi − δlαb + δm+2α

)
, (δm+2 = 1).

The remaining functions X2–X9 and Y1–Y9 can be checked in a similar way.
Thus, the general formulae (3.1) and (3.2) are proved.

4. Numerical examples

The presented approach enables the determination of the resistance of the
sections under consideration. Using the derived formulae (2.11)–(2.17) and
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(3.1)–(3.4), the interaction curves with the design values of the normalized, cross-
sectional forces nu and mu have been obtained for the section weakened by two
or four openings (Fig. 3, Fig. 4). Each curve refers to the corresponding value
of reinforcement ratio µfyk/fck. The maximum compressive strain in concrete is
calculated at the extreme fibre in the compression zone of the section. The two
numbers εc/εs at each indication point are concrete strain and steel strain in %�.
The points located on the nu axis are related to pure compression and on the mu

axis – to pure bending. The points denoted by εc/0 can be interpreted as tran-
sition from the state εc/(εs < 0) described as whole compression (uncracked) to
the one εc/(εs > 0) characterized by the occurrence of the tensile strains which
cause the crack formation in concrete (cracked).

Fig. 3. Interaction diagram with the design values of the normalized cross-sectional forces
nu and mu for the section weakened by two openings: fyk = 220 MPa; γc = 1.5; γs = 1.15,

ε0 = 2.0, ccs = csh = 0.

The effect of the additional lumped reinforcement at an opening was exam-
ined under the assumption that the cross-sectional area of the additional steel
bars at the sides of the opening is equal to that which would have passed through
it. The comparison presented in Fig. 5. indicates that the section resistance de-
termined by the values of nu, mu increases due to the additional reinforcement
at a single opening by more than 10%, depending on the opening size and the
ultimate values εcu and εsu.
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Fig. 4. Interaction diagram with the design values of the normalized cross-sectional forces
nu and mu for the section weakened by four openings: fyk = 500 MPa; γc = 1.5; γs = 1.15,

ε0 = 2.0, ccs = csh = 0.

Fig. 5. The effect of the additional reinforcement at the opening on the resistance of the
section with a single opening: curves a, b – α = 44◦, Faα1 = 21.85 cm2 (a), Faα1 = 0 (b);
curves c, d – α = 66◦, Faα1 = 32.78 cm2 (c), Faα1 = 0 (d); fyk = 410 MPa; γc = 1.5;

γs = 1.15; µ = 1%, ε0 = 2.0, ccs = csh = 0.
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Fig. 6. The effect of a single opening of the size of 44◦ on the section resistance: curves a, b
– the closed ring section; curves c, d – the ring section weakened by single opening;

fyk = 410 MPa; γc = 1.5; γs = 1.15; µ = 1%, ε0 = 2.0, ccs = csh = 0.

Fig. 7. Comparison of the section resistance determined by stress-strain relationship for the
concrete given by (2.1) (b) with that based on the parabolic-rectagular one (a);

fyk = 410 MPa; fck = 20 MPa; γc = 1.5; γs = 1.15; µ = 0.5%, ε0 = 2.0, ccs = 0.15, csh = 0.
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Fig. 8. Resistance of the annular cross-section as a function of the t/R ratio; fyk = 410
MPa; fck = 20 MPa; γc = 1.5; γs = 1.15; µ = 0.5%, ε0 = 2.0, ccs = csh = 0.
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As the next problem, the effect of openings on the section resistance has been
determined. The curves presented in Fig. 6 indicate that a single opening of the
size of 44◦ results in reduction in the section resistance by 30–40% with respect
to the normal force nu and the bending moment mu.

The comparison of the section resistance determined by the stress-strain re-
lationship given by (2.1) with that based on the parabolic-rectagular one is pre-
sented in Fig. 7. It shows that the concrete softening in the plastic range results
in decreasing the section resistance by 9–11% with respect to nu and 8–19% with
respect to mu.

In Fig. 8 the values of nu and mu are shown as functions of the t/R ratio for
different ultimate values εcu and εsu. The increasing value of t/R ratio results
in lower section resistance. It is reduced in the considered range 〈0.05; 0.25〉 by
up to 14% with respect to nu and by up to 7% with respect to mu.

Table 1. Comparison of the calculated values with those specified in the DIN
1056 code; fyk = 420 MPa, γc = 1.5, γc = 1.25, α – opening size, RD – relative

difference.

Type
of Section

α
[◦]

µ
fyk

fck
εc/εs

nu mu

DIN Proposed
model RD [%] DIN Proposed

model RD [%]

Closed 0.2 −2/2 0.260 0.244 6.6 0.14 0.138 1.7

with 1 opening 22 0.2 −2/1 0.305 0.293 4.1 0.11 0.108 2.1

with 1 opening 33 0.3 −2/1 0.30 0.286 5.1 0.111 0.109 1.4

with 2 openings 22 0.15 −2/1 0.30 0.287 4.6 0.10 0.098 1.7

with 2 openings 44 0.1 −2/4 0.100 0.105 4.7 0.059 0.0589 0.1

The calculated design values of the normalized, cross-sectional forces nu and
mu for the sections weakened by one and two openings have been compared
with those given according to DIN 1056 [2, 3] (Table 1). The resulting differ-
ences do not exceed 7%. In the author’s opinion, they result from the differences
in the models used and partly from the inaccuracies of reading the DIN dia-
grams.

5. Conclusions

Based on this study, the following conclusions can be drawn:
1. Using combinatorial approach and the method of mathematical induction,

general analytical formulae have been derived for determining the resis-
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tance and elasto-plastic analysis of RC annular cross-sections, weakened
by an arbitrary number of openings located symmetrically with respect to
the bending direction.

2. The obtained solutions are presented in the form of interaction diagrams
with the design values of the normalized cross-sectional forces nu and mu

that can be easily used in structural design.

3. The proposed section model seems to have a wider application field than
the previous ones due to the assumptions of non-central layout of rein-
forcement, additional steel bars at openings and wall edge strains.

4. The resistance of the section increases due to the additional reinforcement
at the opening by more than 10%, depending on the opening size and the
ultimate values εcu, εsu.

5. A single opening may result in reduction in the section resistance by
30–40% with respect to the normal force nu and the bending moment
mu.

6. Concrete softening in the plastic range as well as increasing value of the
t/R ratio result in a lower section resistance.

7. The proposed model works well in most cases encountered in engineering
practice.

8. The range of validity of the obtained solutions is limited to such number,
sizes and locations of openings which assure that plane sections remain
plane.

9. If the assumption that plane sections remain plane is not satisfied, the
method may still be used provided that the openings are treated as en-
larged, as described in the CICIND 2001 Code [4] and the Eurocode
EN 13084-2:2006 [7].

10. The model serves for dimensioning the cross-sections and enables to design
strenghtening of RC structures by means of the external reinforcement.
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Several parameters can affect the fatigue delamination growth in laminates – these in-
clude e.g. constituent material properties and/or composite shape. Knowledge about effects
of these parameters can lead to a better understanding of the fatigue delamination behaviour
and can also pinpoint directions for optimum composite design. These effects can be elucidated
by carrying out an appropriate sensitivity analysis. A FEM-based computational approach to
sensitivity analysis is proposed in this work to study composite parameter effects in a fatigue
delamination problem of an elastic two-layer composite. It is used to calculate and analyse sen-
sitivity gradients of the fracture parameter and fatigue cycle number with respect to composite
design parameters such as layer elastic constants. It is observed that sensitivities computed
from this approach are generally numerically stable. Obtained sensitivities pinpoint quantita-
tively the most and least important composite parameters that govern a fatigue delamination
process. Sensitivity results are verified by another computational approach and a very good
agreement is found.

Key words: layered structures, fatigue delamination, sensitivity analysis, finite element
analysis.

1. Introduction

Composite laminates, such as classical fibre-reinforced laminates or hybrid
composites, are utilised in many fields of modern engineering, where they are
subjected to either static or cyclic (fatigue) loads [1]. The most common mode
of failure of these materials is interlaminar fracture (delamination). Delamination
growth can lead to a loss of structural integrity and hence – to catastrophic com-
posite failure [2]. Therefore, a large amount of research, both experimental and
theoretical, has been already undertaken to better understand that phenomenon
under applied static or cyclic loads.
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It is known that several factors can affect delamination growth such as envi-
ronmental conditions, constituent material properties or a component geometry
[3–5]. However, to the best knowledge of the authors there has not yet been
carried out any detailed research concerning effects of these parameters on the
fatigue delamination behaviour of composite laminates. The authors believe that
it is necessary for a better understanding of a delamination phenomenon and for
further, improved design and optimisation of layered materials. Therefore, an
attempt to elucidate the effects of composite parameters is undertaken in this
work by exploiting a concept of sensitivity analysis [6].

The sensitivity analysis is an introductory step to structural system optimi-
sation [7] and reliability estimation [8]. Evaluation of sensitivities is a central
point of the sensitivity analysis. These sensitivities map the changes of system
design parameters (e.g. elastic constants or geometry) onto changes in the system
objective parameters such as a composite effective property [9, 10] or composite
fatigue life [11]. This in turn provides a relationship between design and objective
parameter changes and enables to estimate the significance (or insignificance) of
design parameters. This information can further be used in design optimisation
of e.g. composite fatigue performance [12] or probabilistic fatigue analysis [13].
The sensitivities can be obtained using various approaches, e.g. by analytical
derivation of partial derivatives, by finite difference approximation of partial
derivatives, by automatic differentiation of numerical procedure, by computa-
tional implementation of explicit differentiation in the finite element method
(FEM) codes or some probabilistic approaches [6, 8, 14–19]; utilisation and ef-
ficiency of each of these approaches depends on the boundary value problem at
hand. From the engineering point of view, the sensitivity analysis is particularly
very useful, when it is formulated in the framework of one of the numerical meth-
ods such as the finite element method (FEM) or the boundary element method
(BEM). The advanced state of the FEM and related software provides a reliable
tool for composite analysis, but it gives a composite engineer only little help in
identifying the ways to modify composite design to improve the desired qualities.
Using the design sensitivity information generated by strategies exploiting the
FEM formulation and software, the composite engineer would be able to carry
out a systematic trade-off analysis and improve the composite design.

The main goal of this paper is to present a computational approach for cal-
culation and analysis of sensitivities for a fatigue delamination problem of an
elastic two-component laminate. This approach combines a fatigue delamina-
tion model with the concept of finite differences and it is implemented using
the FEM-based program ANSYS. The developed approach is used to compute
sensitivities of the total energy release rate and fatigue life, to reveal the most
crucial design parameters of a two-component composite laminate. This paper
starts with a description of the fatigue delamination model and sensitivity calcu-
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lation with finite differences. Further, computer implementation of the approach
is presented. A computational illustration utilising a two-component laminate
subjected to cyclic shear loads is presented and discussed.

2. Fatigue delamination model and senstivities

A composite system composed of two layers, Ω1 and Ω2 is considered here and
shown in Fig. 1. The two layers are assumed as isotropic linear-elastic materials
defined by the elasticity tensor Cn in terms of two elastic engineering constants,
i.e. Young’s modulus En and Poisson’s ratio νn, and n denotes the n-th (n = 1, 2
in this work). It is assumed that there exists a delamination over some portion
of a curved interface between those two layers, denoted by Γc(n). The other part
of the curved interface is assumed as perfectly bonded and denoted by ΓI . The
interface itself is assumed to have a vanishing thickness, i.e. tI → 0 and its
curvature is denoted by a radius RI .

RI

Gu(n)

Gs(n)

ao
g

N

Gc(n)

u=0

Ds

Crack surfaces

W2

W1

Delamination tip

GI

Interface
X2

X1

Contact zone

Fig. 1. Two-component model of a delaminated composite laminate.

The composite system is subjected to cyclic loads of constant amplitude
∆σ = σmax − σmin = const. and load ratio R = σmin/σmax = 0 applied to the
composite boundary Γσ(n) (cf. Fig. 1); σmax and σmin denote the maximum and
minimum values of applied loads. The composite is supported on the portion of
its boundary denoted by Γu(n) (cf. Fig. 1).

It is assumed that under these boundary conditions the fatigue delamination
growth per cycle N can be described by the modified Paris law as follows:

(2.1)
da

dN
= C(GT )m,
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where GT is the total energy release rate (the crack driving force parameter)
such that GT = ∆GT = GT,max – it is assumed that the minimum total energy
release rate at a cycle does not influence the fatigue delamination growth under
R = 0 (GT,min = 0). Then, C and m are the empirical constants. The model
describes a stable fatigue crack growth along the selected crack path.

Then, two situations that can occur at the delamination tip during propaga-
tion under applied fatigue load are considered in this work, i.e. 1) opened and
2) closed delamination tips as shown in Fig. 2.

a) b)

Fig. 2. Near-tip behaviour during fatigue delamination a) opened crack tip
b) closed crack tip.

In the case when the tip is opened during propagation, i.e. when the gap gN

at the tip is larger than zero (cf. Fig. 1), the stress distribution around the tip is
assumed to be governed by the so-called oscillatory solution of the linear fracture
mechanics for interface cracks [21]. In addition, since the crack propagation along
the interface (without kinking out or branching) is analysed here, therefore it is
sufficient to account for stresses ahead of the delamination tip i.e. for θ = 0 as
follows:

(2.2) σ22(t) + iσ12(t) =
1√
2πr

(K1 + iK2)riε
o

(
r

ro

)iε

,

where σ22(t) and σ12(t) denote normal and shear stresses near the delamination tip
– since R = 0 then σij(t) = ∆σij(t) = σij(t,max), where σij(t,max) denotes the tip
stresses at the maximum applied load during a single cycle. Then, K1 and K2 are
real and imaginary components of the complex stress intensity factor K, which
similarly to crack tip stresses correspond to maximum load in a single cycle.
Further, ro is a characteristic length as an attempt to produce dimensionally
meaningful results for K1 and K2. Finally, ε is an oscillation index (or mismatch
parameter) given as follows [21]:

(2.3) ε =
1
2π

ln
(

1− β

1 + β

)
,
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where β is the second Dundurs mismatch parameter given by

(2.4) β =
µ1 (κ2 − 1)− µ2 (κ1 − 1)
µ1 (κ2 + 1) + µ2 (κ1 + 1)

,

where µn is the shear modulus and κn denotes the Kolosov constant such that
κn = 3− 4νn for plane strain conditions and κn = (3− νn)/(1 + νn) under plane
stress conditions; n denotes the n-th layer.

Then, for the cyclic variation of applied stress and R = 0, propagation of a
delamination with an opened tip is controlled by the total energy release rate,
expressed as follows:

(2.5) GT =

(
1− β2

)

Eeff

[
(K1)

2 + (K2)
2
]
,

where the effective Young’s modulus Eeff is given by

(2.6) Eeff =
2E1E2

E1 + E2

,

where En = En

/
(1− νn)2 under plane strain conditions and En = En under

plane stress conditions. In order to calculate the total energy release rate one
needs to know K1 and K2. They can be obtained from stresses (Eq. (2.2)) and
the well-known Euler relations

(2.7) eiϕ = cosϕ + i sinϕ and e−iϕ = cosϕ− i sinϕ,

as follows:

K1 =
√

2πr

{
σ22(t) cos

(
ε ln

[
r

ro

])
+ σ12(t) sin

(
ε ln

[
r

ro

])}
,(2.8)

K2 =
√

2πr

{
σ12(t) cos

(
ε ln

[
r

ro

])
− σ22(t) sin

(
ε ln

[
r

ro

])}
.(2.9)

In the case when the delamination propagates with a closed tip (cf. Fig. 2b),
i.e. when the gap gN at the crack tip equals zero (cf. Fig. 1) and delamination
surfaces slide over each other, shear stresses along the interface ahead of the
crack tip are assumed to have the following form:

(2.10) σ12(t) =
K2

(2πr)λ
,
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where λ describes a stress singularity that depends on the friction coefficient f
in the following way:

(2.11) cot(λπ) = fβ,

where β is described by Eq. (2.4).
Then, the delamination propagation with a closed tip under applied cyclic

loads of R = 0 is governed by the following total energy release rate [22]:

(2.12) GT =
(K2)

2 sinλπ

2γ (1− λ) (2π)2λ
∆a1−2λ

[
Γ (2− λ) Γ (1− λ)

Γ (3− 2λ)
− cosλπ

2 (1− λ)

]
,

where γ is a parameter described in terms of µn, κn and β and given by

(2.13) γ =
4µ1µ2

µ2κ1(1 + β) + κ2µ1(1− β) + 2
,

and Γ (.) is the Euler gamma function. The delamination driving force GT de-
scribed in Eq. (2.12) is dependent on the crack extension, ∆a, which must be
finite because GT diminishes as ∆a → 0 and λ < 0.5, while it becomes un-
bounded as ∆a → 0 and λ > 0.5 as reported in [22].

Then, the fatigue life of a delaminated composite can be predicted by inte-
grating Eq. (2.1) from an initial delamination length, ao, to the one that corre-
sponds to a composite failure, af , as follows:

(2.14) Nf =

af∫

ao

da

C(GT )m
.

In order to determine numerically the fatigue cycles number at failure, the
delamination length range from ao to af is divided into equal crack increments,
∆a = ai+1−ai. Hence, the fatigue life is obtained as the sum of all fatigue cycle
number increments as follows:

(2.15) Nf =
n∑

i=1

Ni and Ni =

ai+1∫

ai

da

C(GT (ai))m
.

As it can be seen directly from Eqs. (2.14) and (2.15), the fatigue life or increment
of fatigue cycles depends on the initial delamination length ao, constants C and
m, the crack driving force GT and material properties such as the n-th layer
Young’s modulus En. The sensitivity analysis allows to estimate the influence
of each model parameter on the fracture parameter, fatigue cycle increment
during delamination propagation, and finally on the composite fatigue life. In this
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work, that influence is estimated in terms of sensitivity gradients (sensitivities).
The sensitivity gradients of the composite fatigue life are approximated by the
forward finite difference as follows:

(2.16) S =
Nf (bk + ∆bk)−Nf (bk)

∆bk

or by an alternative expression using the central finite difference

(2.17) S =
Nf (bk + ∆bk)−Nf (bk −∆bk)

2∆bk
,

where bk denotes a nominal value of a design parameter such as En or hn and
∆bk is an infinitesimally small variation of a design parameter about its nominal
value bk.

The main issue related to sensitivity calculations through finite and central
difference approaches is the numerical stability (or instability) of sensitivities.
Therefore, a proper choice of the design parameter increment, ∆bk, is required.
The main advantage of the central finite difference approximation over the for-
ward one is that it allows a larger value of ∆bk to be selected. This also permits
avoiding problems associated with small parameter increments, such as numeri-
cal round-offs. However in practice, it is usually possible to find an appropriate
parameter increment associated with the forward finite difference that provides
numerically stable sensitivities.

Eqs. (2.16)–(2.17) express a sensitivity measure, which is inconvenient in
cases where sensitivities of Nf with respect to different design parameters must
be characterised and compared. Since it is the case in this work, thus, the relative
sensitivity or classical sensitivity due to Bode [23] is utilised here and given by

(2.18) Srel =
∂(lnNf )
∂(ln bk)

=
∂Nf/Nf

∂bk/bk
=

∂Nf

∂bk

bk

Nf
,

which provides a dimensionless sensitivity measure appropriate for comparative
purposes. It is mentioned that an analogous expression for the fracture parameter
GT can be obtained by replacing Nf .

It must be mentioned that in this work, the sensitivities are calculated with
respect to a single parameter change, ∆bk, i.e. only a single design parameter
is subjected to a perturbation when the sensitivity is calculated. Calculation of
sensitivities, when more than one design parameter is perturbed, would be more
general, but it should account for some correlations between particular design
parameters. In that case it might be more appropriate to use a probabilistic
approach for calculation of sensitivities [24] rather than the current concept.
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3. Computer implementation using ANSYS

Efficient numerical evaluation of relative sensitivities, given by Eq. (2.18),
demands a development of a numerical approach and its computer implementa-
tion. In this work, the FEM is chosen as a tool to solve a boundary value problem
for displacements, and then strains and stresses. Hence, the fatigue delamination
model and relevant equations for sensitivity measure are combined together and
implemented into the FEM-based package ANSYS. In particular, the advantage
is taken of the ANSYS Parametric Design Language (APDL), which permits
obtaining sensitivities from equations coded up in the postprocessor. Hence, this
implementation does not demand any access to the source code of ANSYS.

A numerical strategy proposed to compute sensitivities in this work, is
sketched schematically in Fig. 3 and described below in a detail.

Selection

· Design parameter

· Design parameter perturbation

· Delamination growth range

· Delamination increment

Computation of absolute

sensitivity gradients

· Forward finite difference

· Central finite difference

Computation of relative

sensitivity gradients

FEM-based model

· Model

· Boundary value problem solution

Computation

· Fracture parameter

· Cumulative fatigue cycles number

Fig. 3. Flowchart for computation of sensitivities.

The first step is to select a design parameter (e.g. layer Young’s modulus),
its perturbation as well as to define delamination propagation range (using ao

and af ) and delamination increment (∆ai). In the next step, a FEM model of
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the problem must be built using a pre-processor of ANSYS. Each FEM model
parameter such as material or geometrical parameter is defined parametrically
to allow for a full flexibility for sensitivity computations. Then, a boundary value
problem needs to be solved using the FEM for a selected design parameter value
and its increment, at required delamination lengths. Hence, considering a two-
layer composite with a delamination (Fig. 1) subjected to arbitrarily prescribed
loads, one needs to solve the following general differential boundary value prob-
lem:

Div(σn) = 0 x ∈ Ωn,(3.1)

εn =
1
2

[∇(un) +∇(un)T
]

x ∈ Ωn,(3.2)

σn = Cnεn x ∈ Ωn,(3.3)

σnnn = tn x ∈ Γσ(n),(3.4)

un = 0 x ∈ Γu(n),(3.5)

τ = f |p| for gN ≤ 0 x ∈ Γc(n),(3.6)

τ = p = 0 for gN > 0 x ∈ Γc(n),(3.7)

where σn = σn(bk) is the stress tensor at a point in the interior of the n-th
composite constituent Ωn; εn = εn(bk) is the strain tensor written in terms of
the displacement field in un = un(bk); nn is the unit vector that is normal to the
surface of the composite constituent; tn denotes the applied surface tractions on
Γσ(n); f is the friction coefficient that approximates roughness of delaminated
composite parts (contact surfaces); p and τ denote the contact pressure and
frictional stresses along the crack surfaces remaining in contact.

The boundary value problem (3.1)–(3.7) is complemented by conditions of
stress equilibrium (normal and shear components only) and continuity of dis-
placement across the uncracked portion of the interface, denoted by ΓI . It should
be mentioned that the boundary value problem presented above is general, and
its specific form, i.e. under prescribed shear loads, is solved using ANSYS in this
work.

The problem is primarily solved for displacements, and then strains and
stresses are computed for each value of the design parameter bk. Then, the
total energy release rate, GT , can be obtained using crack-tip stresses from
Eqs. (2.8)–(2.9), what in turn enables calculation of the fatigue cycles number,
Nf . It is mentioned that stress intensity factors K1 and K2 required to calculate
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GT are obtained by a linear extrapolation of stress intensity factors determined
at finite element nodes at θ = 0 over a selected distance r (cf. Fig. 2). The
extrapolation technique is based on the least squares method to give

(3.8) K1,2 =

nk∑
i=1

Ki(1,2) − d
nk∑
i=1

yi

nk
,

where

(3.9) d =
nk

(
nk∑
i=1

Ki(1,2)yi

)
−

(
nk∑
i=1

Ki(1,2)

)(
nk∑
i=1

yi

)

nk

(
nk∑
i=1

y2
i

)
−

(
nk∑
i=1

yi

)2 ,

where yi is the distance between the i-th node ni and the delamination tip; nk

is the number of nodes used in the extrapolation of nodal stress intensity factors
Ki(1,2).

The boundary value problem described by Eqs. (3.1)–(3.7) is solved for a se-
lected design parameter at subsequent crack lengths until the final delamination
length af is reached. When that is the case, the entire procedure (i.e. solution
of the boundary value problem and fracture parameter calculation as well as
fatigue cycle increment) is repeated for a new design parameter increment. This
is done to study the numerical stability of sensitivities calculated from the finite
difference concept. Results of calculations, in terms of the fracture parameter and
fatigue cycle number are written to output files at each delamination length and
design parameter increment. After the computational procedure is completed
for the last design parameter increment, then sensitivity calculations begin. The
absolute sensitivities are calculated first, using forward and/or central finite dif-
ference methods. Then, relative sensitivities are obtained by appropriate scaling
of absolute sensitivities according to Eq. (2.18). The entire computational process
is repeated for all design parameters of interest. That process is coded up into
ANSYS such that it does not need any user interference, when sensitivities are
calculated for a single design parameter – i.e. the computational process is run
automatically at each delamination length and design parameter perturbation
until a = af . However for the time being, a change in the design parameter (e.g.
Young’s modulus) to the layer thickness must be done manually by the user.

The solution of the boundary value problem is the most expensive step of
the approach, in terms of computational time. It will obviously be less expen-
sive for linear elastic problem, while the computational costs will increase with
introduction of geometrical and physical nonlinearities.
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4. Computational example

4.1. FEM model

Accuracy and applicability of the approach presented in the Sec. 3 is evalu-
ated on an example related to a two-component boron/epoxy-aluminium (B/Ep-
Al) curved composite (cf. Fig. 4). This composite laminate represents a simpli-
fied repeated element of a hybrid-like composite laminate, which is utilised in
aerospace applications – frequently in large curved parts of the aircraft fuselage.
Both layers have the same nominal thickness h1 = h2 = 2.5×10−3 m, then com-
posite width is w = 5×10−3 m, while the interface curvature is described by the
nominal radius value RI = 5.25 × 10−2 m. B/Ep component is considered as a
linear elastic and isotropic material with the Young modulus E1 = 207 GPa and
Poisson’s ratio ν1 = 0.21. This is only a rough approximation to the real situa-
tion where B/Ep component behaves as an anisotropic and viscoelastic material,
depending on the volume fraction of the boron reinforcement. The Al component
is also considered as linear elastic and isotropic with the corresponding material
properties E2 = 70.8 GPa and ν1 = 0.33. Here the real situation is simplified
by assuming that the yield stress of aluminum is very high. The interface is
modelled as a zero thickness layer with no assigned material properties.

Cycles number

smax=sQ=100 MPa

smin=0

Load, s

0 1 2

B/Ep

Al

sQ

a;Q

af;Qf

h1

h2

Crack tip
Crack

Interface (non-cracked)

RI

s;q

Fig. 4. Two-layer boron/epoxy-aluminium curved composite under cyclic shear.

The composite structure contains an initial delamination of length a = ao =
5.498 × 10−3 m (Θ = Θo = 6 deg) located at the interface between layers.
Then, the total interface length, including cracked and perfectly bonded parts
of the interface, is equal to a = af = 1.835 × 10−2 m (Θ = Θf = 20 deg).
The nominal value of the interface friction coefficient is selected arbitrarily and
equal to f = 0.05. Then, the nominal value of the fatigue law exponent is equal
to m = 10. The nominal value of the fatigue law constant is equal to C =
1 × 10−29 and it was evaluated based on the knowledge of the total energy
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release rate threshold, GT,th = 100 J/m2 as well as the delamination growth
threshold, (da/dN)th = 1 × 10−9 m/cycle according to the concept reported in
[25].

The composite laminate is subjected to cyclic shear loads with a triangular
profile shown in Fig. 4. Shear type of loading is designed by constraining com-
posite edges in the radial direction and additionally imposing supports on the
upper component in the angular direction. The cyclic load of σΘ = 100 MPa is
applied to lower composite constituent (with thickness h2) in the angular direc-
tion. It is noted that the aforementioned boundary conditions simulate those of
a proposed compression shear fracture test for curved and flat layered specimens
[26].

Both layers are discretised by eight-node solid elements PLANE82, while the
crack surfaces – by contact elements pairs CONTA172-TARGE169 as shown
in Fig. 5. The mesh is designed here in such a way that the contact elements
number changes only along with the crack length from 42 (a/ao = 1) to 94
(a/ao = 3.167), while the solid elements number is fixed and equal to 2224. Spe-
cial attention is focused on the discretisation of the near-tip domain to simulate
properly the stress singularity. A single row of quarter-point elements with radius
r1 = 1× 10−6 m discretises the crack tip vicinity and the mesh becomes coarser
far away from the crack tip as shown in Fig. 5. Investigation of the influence
of different r1 values on the total energy release rate is shown in the following
subsection.

Solid finite elements: PLANE82

Near crack-tip region

Finite elements contact pairs:

CONTA172-TARGE169 Crack surface

Fig. 5. FEM discretisation of composite domain and crack surfaces.

The augmented Lagrange method implemented in ANSYS was utilised to
compute contact constraints. Computation of frictional stresses and resulting
slip was possible with the so-called radial return algorithm available in ANSYS.
Solution was obtained via the full Newton–Raphson incremental-iterative tech-
nique, and the line search option was used to enhance the solution convergence.
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4.2. Total energy release rate

Accurate calculation of the total energy release rate is a key step in deter-
mination of fatigue cycle number and then proper evaluation of relative sensi-
tivities of fracture parameter and fatigue life. Therefore, results obtained from
the current model are verified by those obtained using the virtual crack closure
method (VCCM) as reported in [27]. Mixed mode formulation of the VCCM
for singular elements is used. Results are compared for three different values of
r1 = 0.5 × 10−6, 1 × 10−6 and 5 × 10−6. It must be mentioned that a careful
investigation of the delamination growth revealed that the crack tip was opened
for all crack lengths under the considered boundary conditions. However, the
delamination was opened only in the vicinity of the crack tip, while delaminated
surfaces were in frictional contact with each other, away from the crack tip.

Table 1. Comparison of the fracture parameter GT for a/ao = 1.

r1 [m] GT [J/m2] (from Eq. (2.5)) GT [J/m2] (from the VCCT)
5× 10−6 123.826 118.603
1× 10−6 121.648 120.579

0.5× 10−6 120.661 127.466

Therefore, the fracture parameter was computed from Eq. (2.5) and its results
are verified against those obtained from the VCCT, and shown in Table 1 for the
normalised crack length a/ao = 1. In addition, the fracture mode 2 of the fracture
parameter, G2, prevails for all crack lengths, so GT ≈ G2. Fracture parameter
values obtained from Eq. (2.5) are only slightly sensitive to the value of r1 as
shown in Table 1, contrary to those obtained from the VCCT, which increase
as r1 decreases. However, a good agreement between these two approaches is
obtained for r1 = 1× 10−6. Therefore, the total energy release rate determined
from Eq. (2.5) and that value of r1 is used in all sensitivity calculations.

4.3. Interpretation of sensitivity analysis results

Interpretation of sensitivity results is presented with some selected examples,
where the relative sensitivity Srel of the total energy release rate and the fatigue
cycles number is obtained with respect to composite parameters. The sensitivi-
ties are calculated for three different parameter increments, 0.1%, 1% and 10%.
A simple engineering interpretation of relative sensitivity gradients of the frac-
ture parameter and fatigue cycle number, is that if a particular gradient is less
than 0, an increase of composite parameter (e.g. layer Young’s modulus) ac-
companies the reduction of the objective parameter (fracture parameter and/or
fatigue cycle number). Otherwise (the relative sensitivity greater than 0), an in-
crease of the design parameter results in an appropriate increase of the objective
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parameter. Ultimately, if the sensitivity is comparable to 0, then the given design
parameter does not influence the objective parameter.
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Fig. 7. Relative sensitivities of the fracture parameter with respect to the layer thickness h2  
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Fig. 6. Relative sensitivities of the fracture parameter with respect to the Young’s
modulus E1.
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Fig. 7. Relative sensitivities of the fracture parameter with respect to the layer thickness h2.

For example, results of relative sensitivities of the total energy release rate
with respect to the Young’s modulus of the upper layer Srel(E1), thickness of
the lower layer Srel(h2) and the interface radius Srel(RI), are shown in Figs. 6–8,
as functions of a normalised delamination length, a/ao. This enables to demon-
strate evolution of relative sensitivities as the crack propagates. An interesting
behaviour is shown in Fig. 6, where the relative sensitivity is positive at short
delamination lengths and then changes its sign for large crack lengths. Thus, an
increase of the upper layer Young modulus leads to an increase of the fracture
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parameter at short delamination lengths, whereas an opposite situation (reduc-
tion of the fracture parameter for increasing Young’s modulus) is observed at
large crack lengths. Hence, there exists a point where the sensitivity equals zero
so the fracture parameter value is not affected by the change of the investigated
design parameter (the upper layer Young’s modulus in this case). Then, the rel-
ative sensitivities of the total energy release rate with respect to the thickness of
the lower layer, h2, are shown in Fig. 7. It is possible to observe from that figure
that the fracture parameter increases with increasing layer thickness. Addition-
ally, the relative sensitivities increase as the delamination propagates. A similar
situation is observed in Fig. 8, where the relative sensitivities are positive during
nearly entire range of crack growth (excluding some numerical instabilities near
the shortest delamination length). However, a quantitative difference between
results in Figs. 7 and 8 is observed. The relative sensitivities obtained with re-
spect to the lower layer thickness (Fig. 7) are larger, at the order of two, than
those calculated with respect to the interface radius (Fig. 8).

Fig. 8. Relative sensitivities of the fracture parameter with respect to the interface
radius RI .

Relative sensitivity results shown in Figs. 6–8 demonstrate usefulness of the
sensitivity analysis in general. In particular, they enable to pinpoint exactly the
importance of a particular composite parameter. In order to show that aspect
in a more detail, the relative sensitivities of the fatigue cycles number were cal-
culated with respect to several parameters and compared. Outcome of these
computations is shown in Table 2 as a function of the normalised delamina-
tion length. Thus, the importance of each design parameter on the fatigue cycle
number can be compared at consecutive delamination lengths. Here, it is only
focused on the sensitivity values obtained at the largest crack length (last line
of Table 2 marked in bold). These sensitivities enable to judge the importance
of each parameter on the fatigue life of the analysed composite. It is shown in
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Table 2 that two parameters associated with the lower component of the com-
posite, i.e. Young’s modulus E2 and the thickness h2, are the most significant
parameters for the fatigue life. In particular, positive value of the relative fa-
tigue life sensitivity gradient, Srel(E2), corresponds to the fact that an increase
in the lower layer Young’s modulus extends considerably the composite fatigue
life. This is directly connected with the fact that by increasing the lower layer
Young’s modulus, E2, the normalised crack tip opening and tangential displace-
ments decrease, as shown in Figs. 9 and 10 for two normalised crack lengths as a
function of the arc length s (s = 0 for a = 0). This in turn, results in a reduction
of stress component values around the crack tip (interestingly without a change
of stress distribution) as shown in Fig. 12 for a single normalised delamination
length, and compared with the reference (unperturbed) stress values in Fig. 11.
Reduction of crack tip displacements and near tip stresses leads to a reduction of
the crack driving force (total energy release rate), as demonstrated later, in Figs.
13 and 14, by negative values of relative sensitivities of the fracture parameter
with respect to the lower layer Young’s modulus, E2. Hence, altogether it leads
to the conclusion that delamination demands more loading cycles to propagate
from ao to af with increasing E2. Thus, an increase in the component stiffness
ratio E2/E1 might retard the fatigue failure of the analysed composite.

Table 2. Relative sensitivity gradients of the fatigue cycles number
(parameter perturbation +1%).

a/ao Srel(E1) Srel(E2) Srel(ν1) Srel(ν2) Srel(h1) Srel(h2) Srel(µ) Srel(RI)

1.167 −2.292 12.957 −1.662 3.016 −3.220 −8.732 0.814 −1.467
1.333 −2.210 13.060 −0.878 3.171 −3.202 −8.119 0.808 −0.638
1.500 −2.204 13.024 −0.620 3.216 −3.228 −8.004 0.918 −0.412
1.667 −2.192 12.993 −0.493 3.266 −3.258 −8.034 1.011 −0.305
1.833 −2.171 12.959 −0.415 3.312 −3.286 −8.144 1.096 −0.247
2.000 −2.139 12.914 −0.366 3.349 −3.313 −8.317 1.173 −0.215
2.167 −2.097 12.860 −0.333 3.372 −3.334 −8.535 1.238 −0.198
2.333 −2.049 12.801 −0.312 3.381 −3.347 −8.767 1.287 −0.191
2.500 −2.006 12.749 −0.300 3.378 −3.352 −8.957 1.316 −0.189
2.667 −1.982 12.721 −0.295 3.372 −3.351 −9.058 1.327 −0.189
2.833 −1.975 12.713 −0.294 3.370 −3.349 −9.082 1.329 −0.189
3.000 −1.974 12.713 −0.294 3.370 −3.349 −9.084 1.329 −0.189
3.167 −1.974 12.713 −0.294 3.370 −3.349 −9.084 1.329 −0.189
3.333 −1.974 12.713 −0.294 3.370 −3.349 −9.084 1.329 −0.189
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Fig. 9. Effects of Young’s moduli variations on delamination tip opening displacements.

Fig. 10. Effects of Young’s moduli variations on delamination tip tangential displacements.

Fig. 11. Near-tip stress distribution for nominal design parameter values [Pa]
(1) normal (2) shear (3) von Mises.



82 Ł. FIGIEL, B. LAUKE, M. KAMIŃSKI

Fig. 12. Near-crack tip stress distribution (+∆E2 = 10%) [Pa]
(1) normal (2) shear (3) von Mises.

Then, it has been already mentioned that the lower layer thickness, h2, is
the next, after E2, most important composite parameter that affects the com-
posite fatigue life. However, it is not yet fully clear if the high value of the
relative sensitivity is actually because of a large significance of that composite
parameter, or it is rather caused by an increase in a load area. The latter fact
obviously implies larger forces acting on the composite, that increase consid-
erably the crack tip displacement and near tip stresses, and thereby the crack
driving force. This leads finally to a serious reduction of the composite fatigue
life. This issue must be investigated further, to conclude about an actual impor-
tance of h2 on the composite fatigue life. It can be carried out by replacing the
force (stress)-controlled loading conditions by displacement (strain)-controlled
ones, hence avoiding any change in load when perturbing h2. Finally, the least
important composite parameters are the interface radius and the Poisson’s ra-
tio of the lower component, RI and ν1, respectively. The lack of significance of
ν1 and especially RI is caused by the specific boundary conditions considered
in this work. In a more general (complex) case of boundary conditions such as
bending or compression, one might expect a much larger significance of com-
posite curvature. Hence, the next step in application of the sensitivity analysis
to composite fatigue delamination problems should consider other, more general
boundary conditions.

It is believed that the information shown in Table 2 (particularly in the last
line) might help a composite engineer to choose appropriate design directions
to optimise the fatigue fracture performance of the composite. However, at the
time being one should be careful with a direct translation of these results into
design. It is due to the fact that the composite models used here, do not include
other important composite parameters such as those connected with all inelastic
damage micro-phenomena. Nevertheless, a change (enrichment) of the model
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will not change the sensitivity approach presented in this work. It will solely
introduce new design parameters in calculations. Hence, the results should be
more useful with respect to composite design and optimisation.

4.4. Numerical stability of sensitivity analysis results

An important issue of sensitivity computations with the finite difference ap-
proach is the numerical stability of calculated sensitivities. Therefore, this aspect
is briefly discussed herein. In order to analyse it, the sensitivities are calculated
with respect to three different composite parameter increments, as it has been
already mentioned above, i.e. promiles (0.001), percents (0.01) and tenths (0.1).
Most of the sensitivities showed a very good numerical stability, i.e. the sensi-
tivities computed for different parameter increments were nearly the same and
did not show any oscillations (cf. Figs. 6–8). However, there were some cases
in which the sensitivities were affected by parameter increments, as it is shown
e.g. in Fig. 13 for the Young’s modulus of the lower layer, E2. In that case, the
sensitivities obtained for the largest parameter increment (+10%) were different
from those calculated for smaller increments (+0.1 and 1.0%). Thus, the design
parameter change equal to +10% was too large in the problem at hand to obtain
reliable sensitivities. Therefore, the sensitivities were calculated once more for
three increments using the central finite differences. The outcome is shown in
Fig. 14, where the parameter-increment dependence is absent as compared with
Fig. 13. Thus, on the one hand it shows that the dependences are caused by too
large parameter increments, which is a common feature associated with an appli-
cation of the forward finite difference approach. On the other hand, it points out
that if any numerical instabilities arise due to the utilisation of that approach,
then a user might avoid it by switching it to the central finite differences.

Fig. 13. Relative sensitivities of the fracture parameter with respect
to the Young’s modulus E2 – forward finite difference.
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Fig. 14. Relative sensitivities of the fracture parameter with respect
to the Young’s modulus E2 – central finite difference.

In general it was observed that the relative sensitivities of GT and Ni obtained
from the forward difference approach showed a good numerical stability for the
parameter increment (+1%).

4.5. Verification of relative sensitivities

Another important aspect was to verify the accuracy of calculated relative
sensitivities with other existing approaches. Since no closed-form solution re-
lated to the problem considered was found, the numerical probabilistic approach
reported in [24] was taken as a reference case. The reference approach is based
on the Monte–Carlo simulation concept that helps to generate a design parame-
ter spectrum according to a specified statistical distribution. Then, FEM-based
simulations are run for each generated parameter from which the corresponding
fracture parameters are calculated. Then, functions describing relations between
the design and objective parameters (such as crack driving force) are numerically
evaluated, differentiated with respect to a design parameter and normalised to
obtain relative sensitivities.

Herein, the relative sensitivity values of the total energy release rate with
respect to the Young’s modulus of the lower layer, E2, are compared. Results
from both approaches are collected in Table 3 as a function of the normalised de-
lamination length. The sensitivities from the current (finite-difference) approach
were calculated for the parameter increment +1%.

It is shown in Table 3 that results from both approaches are in a very good
agreement – sensitivities obtained from the reference approach are only slightly
higher, especially for larger delamination lengths. This confirms the conclusion
that current sensitivity calculations are correct from the computational point of
view.
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Table 3. Relative sensitivities of the total energy release rate GT .

a/ao
Srel(E2)

Current approach Reference approach

1.0 −1.210 −1.230
1.167 −1.228 −1.226
1.333 −1.211 −1.225
1.5 −1.207 −1.220
1.667 −1.200 −1.214
1.833 −1.190 −1.203
2.0 −1.173 −1.186
2.167 −1.148 −1.160
2.333 −1.110 −1.122
2.5 −1.058 −1.069
2.667 −0.992 −1.003
2.833 −0.923 −0.933
3.0 −0.923 −0.933
3.167 −0.872 −0.933
3.333 −0.872 −0.933

5. Conclusions

A computational approach to sensitivity analysis was proposed in this work
to study composite parameter effects in a fatigue delamination problem of a two-
layer composite. The main conclusions that stem from this work are as follows:

1. The calculated relative sensitivities enabled to point out, both qualitatively
as well as quantitatively, the importance (or lack of importance) of compos-
ite parameters, such as layer Young’s modulus or thickness, on the fatigue
life of a delaminated composite subjected to shear fatigue loads of constant
amplitude. Results of the current investigation revealed an important fact
that the relative sensitivities of the fracture parameter and fatigue cycle
number are not constant but vary during delamination growth.

2. Relative sensitivities determined by the forward finite difference concept
showed a satisfactory numerical stability – i.e. results were generally in-
dependent of the composite parameter increment. In cases where relative
sensitivity results were parameter increment-dependent, the application of
the central finite difference concept improved considerably their numerical
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stability. However, in nearly all cases it was possible to find the appropriate
parameter increment when using the forward finite differences.

3. Relative sensitivity values obtained from the current approach were verified
and found to be in a very good agreement with relative sensitivity results
of a sample-based approach to sensitivity analysis.

4. ANSYS post-processing environment appeared as a very convenient tool
in implementing and executing the sensitivity analysis by solely using its
parametric design language without a direct access to its source code. More
computational details and parts of the implementation can be found in [20].

5. Actually it is not possible to conclude that the current approach can be
applied to carry out the sensitivity analysis of other delamination problems
in composite laminates. Therefore, it would be interesting and necessary to
consider other, more general, boundary conditions such as cyclic bending
or compression. This issue is left for future research.
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