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STABILITY CONSTRAINTS IN OPTIMIZATION OF CRACKED
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Maximization of the critical force of cracked columns, subjected to generalized follower
force is discussed in the paper. The crack is assumed to be formed according to the opening
and sliding modes and is modeled by a localized loss of stiffness. Influence of the crack stiffness
and its localization on the value of the critical force is analyzed. The optimization process
is based on the multimodal approach. The localization of crack with the critical force of the
system equal to 137.17 EJ/L2 is found.

1. Introduction

The structure considered in the paper is loaded by a follower force, i.e. the
force that moves with the body on which it acts and that preserves the same
attitude to this body during the loading process. In the present model, the
force inclination and its eccentricity are proportional to the actual structural
displacements. The contact force between the rail and the wheel, the reaction
force of the bridge span support, the force of the vapour pressure acting in the
Laval rotor or friction force of fluid against the pipes in fluid conveying pipes,
are examples of the considered loading in mechanical systems. Some of them are
discussed in literature, see references in [1] and [2]. Stability and optimization of
systems subjected to follower forces have been intensively developed for the last
three decades, whereas new results introduce an improvement in the stability
criteria and new research in optimization.

In literature, the optimization of nonconservative systems is often developed
on example of a column subjected to a concentrated compressive follower load,
tangential to the deflection curve. This simple structural model leads however
to some difficulties in structural and numerical modeling. It is due to the fact
that the system has no potential and is governed by non-selfadjoint differential
equations. For example, differences of about 20% in the value of the critical force
are obtained by the authors of [3] and [4], by using the same optimality criteria
but different methods of solution: the variational one and FEM.
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It is observed that the result of optimization of nonconservative systems de-
pends strongly on the starting point in the space of design variables, i.e. initial
dimensions of the column. The proper choice of initial parameters can be es-
sential for analysis. For example, a single crack located in the column span can
increase the value of critical force of the column or beam subjected to follower
compression [5, 14]. The optimal shape of a stepped column, shown in Fig. 1a,
was found by Bogacz et al. [6]. Probably the first result in the class of contin-
uous variation of the column cross-sections was obtained by Życzkowski and
Gajewski [7]. As far as the authors know, the best present result of the column
shape optimization, shown in Fig. 1b, is reported by Tada et al. [8].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Selected results of shape optimization of column subjected to follower compression 
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Fig. 1. Selected results of shape optimization of column subjected to follower compression.

In the present consideration the design variables, crack localization and stiff-
ness are searched through to find the maximum value of the critical force. Crack is
modeled by a localized loss of stiffness as an elastic joint with possible rotational
and shear deformation. The critical force is determined from the configuration
of characteristic curves on the force-frequency plane, which are obtained from
the characteristic equation of the problem. The flutter force, the local maximum
of characteristic curve graph, occurs at nonzero eigenfrequency, whereas buck-
ling occurs at the eigenfrequency equal to zero. In the multimodal analysis 4–6
first eigenfrequencies are considered. More details of the optimization process
are reported in Sec. 3.
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2. Formulation of the problem

2.1. Model of the column

The considered model of column consists of segments of length li connected
by elastic joints. The column is subjected to a generalized, follower compressive
force P . The equation of motion for the i-th column segment, for small harmonic
vibrations, has the form

(2.1)
∂2

∂x2

(
EIi

∂2yi

∂x2

)
+ P

∂2yi

∂x2
+ ρAi

∂2yi

∂t2
= 0,

where ρAi denotes the mass per unit length and EIi – stiffness of the i-th
segment. In the further analysis the cross-sections, masses and stiffnesses of the
segments are assumed to be the same in the whole column. The separation of
variables is considered in the form

(2.2) yi(x, t) = wi(xi) exp(iωt),

where ω is the angular frequency. The exact solution for the segment of uniform
mass and stiffness distribution is given by

(2.3) wi(x) = A1 sinhλ1xi + A2 coshλ1xi + A3 sinλ2xi + A4 cosλ2xi,

where

(2.4) λ1/2 =

√√√√± P

2EIi
+

√(
P

2EIi

)2

+
ρAiω2

EIi
.

2.2. Boundary conditions

The considered model of loading, the so-called generalized follower force,
includes the variation of both the force horizontal displacement e and the force
inclination at an angle of χ, as shown in Fig. 2a, [9]. These two parameters
depend on both the actual generalized displacements, f and α, of the structure
at the point of the force application. The bending moment M = Pe and the
transversal force component H = P (α−χ) are finally included in the boundary
conditions

(2.5) w(0, t) = 0,
∂

∂x
w(x1, t)/x1=0 = 0,

(2.6)

∂2

∂x2
w(xn, t)/xn=L + λ

[
δ

∂

∂x
w(xn, t) + ϑw(xn, t)

]

xn=L

= 0,

∂3

∂x3
w(xn, t)/xn=L + λ

[
µ

∂

∂x
w(xn, t) + γw(xn, t)

]

xn=L

= 0,
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Fig. 2. a) Model of column subjected to generalized follower load,
b) Segmentation of the structure on example of Beck column,

c) Euler column.

where δ, ϑ, µ, γ are the non-dimensional parameters and L is the length of the
column. In this way, values of the parameters δ, ϑ, µ, γ determine the boundary
conditions.

Taking into account that the loading is an inseparable part of the whole
system, the type of the boundary condition implies its conservativeness or non-
conservativeness. Let us consider an operator Fx of the Eq. (2.1)

(2.7) Fx =
∂2

∂x2

(
EIi

∂2yi

∂x2

)
+ P

∂2yi

∂x2
.

The system is conservative if the operator (2.7) with respect to boundary con-
ditions (2.5) and (2.6) is selfadjoint. E.g. for e = 0 and χ = α (δ = ϑ = γ = 0,
µ = 1), the condition describes a conservative Euler column, shown in Fig. 2c,
subjected to a force applied to the free end, the direction of which does not
change during the loading process. For e = 0, χ = 0 (δ = ϑ = γ = µ = 0) the
condition describes a nonconservative Beck column, shown in Fig. 2b, loaded by
a force tangent to the column free end. This model will be considered in the
following section.

2.3. Model of the crack

We assume that a crack was formed according to the opening mode and
the sliding mode of development of the crack, so that in the mechanical model
presence of the crack is expressed by a discontinuity in displacement and slope.
Due to the fact that the column is loaded by a follower force, at location of the
crack, x = xC , the change of slope and shear depends on the rotary stiffness
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χR as written in formula (2.8a), whereas the change of deflection and bending
depends on the shear stiffness χS , as given in formula (2.8b):

(2.8a)
wI

i+1(xC)− wI
i (xC) = −γRwII

i+1(xC),

wIII
i+1(xC)− wIII

i (xC) = − P

EJ
γRwII

i+1(xC),

(2.8b)
wi+1(xC)− wi(xC) = γSwIII

i+1(xC),

wII
i+1(xC)− wII

i (xC) =
P

EJ
γSwIII

i+1(xC).

where (.)I = d(.)/dx and γR = 1/χR, γS = 1/χS represent additional flexibilities
of the column due to the crack, which can be calculated on the basis of fracture
mechanics. A model which is valid for a beam with a transverse open crack is
discussed in [10, 11].

2.4. Segmentation of the structure and design variables

In what follows, the dimensionless quantities are used:

(2.9) λ∗ = PL2/EI, ω∗2 = ω2ρAL4/EI, ui = wi/L, εi = xi/L.

The problem can now be rewritten in the following final form:

(2.10)

[uII
i (εi)]II + λ∗uII

i (εi)− ω∗2ui(εi) = 0, 0 ≤ εi ≤ 1,

u1(0) = uI
1(0) = uII

n (1) = [uII
n (1)]I = 0,

uI
i+1(εC)− uI

i (εC) = −γ∗RuII
i+1(εC),

uIII
i+1(εC)− uIII

i (εC) = − P

EJ
γ∗RuII

i+1(εC),

ui+1(εC)− ui(εC) = γ∗SuIII
i+1(εC),

uII
i+1(εC)− uII

i (εC) =
P

EJ
γ∗SuIII

i+1(εC),

where γ∗i = γiEI/L, χ∗i = 1/γ∗i are the dimensionless parameters of the joint
flexibility and stiffness, respectively.

We look for the cracks localization εC and stiffnesses χ∗R, χ∗S which maximize
the critical load under the following constraints: a constant total mass of the
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column, a constant column cross-section A and the total column length L. For
n cracks this condition is written as

(2.11)
n+1∑

i=1

li = 1,

where li is the length of the i-th column segment. For the localization of the
crack at one of the column ends, l1 = 0 or ln+1 = 0. The design variables of the
problem are

(2.12) ∆α ∈ {εC , χ∗R, χ∗S}.

3. Optimality criteria based on multimodal analysis

Consider the optimization of a nonconservative Beck column under the con-
straints of dynamic stability. The objective function λ∗cr = λ∗cr(∆α), where ∆α
stands for a set of design variables, is not defined explicitly. The optimization
conditions, imposed in the frequency domain, are defined as limitations on vari-
ation of the shape of characteristic curves. Tada et al. [12] proposed a definition
of the optimal point as the one that represents the state for which all pairs of
eigenvalues become double roots with the same value of critical forces, as shown
in Fig. 3. In the present research it means that we should determine localiza-
tion and stiffnesses of the joint, for which the successive double roots have equal
values:

(3.1) λ∗12 = λ∗34 = λ∗56 = ...,

where λ∗ij denotes the critical load corresponding to the i-th and j-th frequency
branches in the force-frequency plane.

P
Popt

w1 w2 w3 w4 w5 w6 wn-1 wn

w

Fig. 3. Configuration of characteristic curves for the optimal shape.

The authors of [13] have noticed that for the developed cracks, flutter can
occur with frequency tending to zero. Increasing of the joint stiffness produces
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increasing of the flutter frequency. The condition of optimal structure can now
be rewritten in the following form

(3.2) λ∗01 = λ∗23 = λ∗45 = λ∗67 = ...

The first term λ∗01 of formula (3.2) can be understood as flutter occurring with
frequency tending to zero. Notice that this term can have a second meaning.
With respect to divergent-flutter systems it can be understood as buckling for
which the frequency is equal to zero.

In first optimizations the authors increased the value of λ∗12 like in [3] or
λ∗12 = λ∗34, similarly to [4]. In the analysis presented in [6] and [12] the first six
eigenfrequencies were considered. Finally, we reduce the problem to increasing
the value of λ∗opt under the condition

(3.3) λ∗opt ≤ λ∗ij ,

where λ∗opt = λ∗01, λ∗12 or λ∗23.
Notice that the assumption (3.3) is very useful in calculations since the ne-

cessity of keeping the first two or three first values of the critical force within
the range of acceptable accuracy can be eliminated.

The next constraint is introduced to preserve a high value of the critical force
against the shape perturbation. Due to possible interactions between the suc-
cessive characteristic curves, a discontinuous decrease in the critical force value
can appear. The assumption of minimal distance between two successive char-
acteristic curves prevents such interactions. The formula for a sufficient distance
between two curves is as follows:

(3.4) ω∗i+1 − ω∗i ≥ c,

where c is a positive number and i denotes the i-th frequency branch. Such
formulation of the condition was introduced in [12]. It is seen that a switch-over
of characteristic curves resulting in determination of a critical force higher than
λ∗opt of formula (3.3) is permitted.

4. Numerical examples – maximization of the critical force
of a cracked column

Let us consider the process of maximization of the critical force of a cracked
column. The optimization process consists of two steps. In the first one, possi-
ble combinations of the design variables ∆αi are checked to find the values for
which the critical force takes a higher value. In the second step, this result is
taken as the initial guess for the gradient procedure. The procedure selects the
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design parameter ∆α by analyzing the configuration of characteristic curves and
satisfying the conditions (3.2), (3.3) and (3.4). Notice that the condition (3.3)
guarantees only a non-negative value of the gradient of the objective function
and not the largest one. Discontinuous changes in the critical force are prevented
by the condition (3.4). The obtained maximum value of the critical force is equal
to λ∗cr = 137.17 EI/L2 for the crack localization of εC = 0.382 and stiffnesses
χ∗S = 0.01 and χ∗R = 0.0001. The column is shown in Fig. 4a and the correspond-
ing configuration of the characteristic curves is depicted in Fig. 4b. The value of
the critical force is compared with the best result obtained for continuous mass
distribution, reported by Tada et al. [8], shown in Fig. 1b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Optimal localization of crack and respective shape of characteristic curves 
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Fig. 4. Optimal localization of crack and respective shape of characteristic curves.

Notice that this result could be improved when higher frequencies would be
taken into consideration. However, this requires greater computational efforts.
On the other hand, due to a high sensitivity, such optimality is questionable
from the viewpoint of the structure reliability and safety.

5. Discussion of stability of the cracked columns and conclusions

The authors of [13] analyzed the problem of stability of column with localized
loss of stiffness described by a model similar to that given by expression (2.8).
On the force-frequency plane they observed two kinds of characteristic curves.
One of them can be attributed to a column with a joint located at the fixed
end, whereas the second kind concerns the column with a joint located at the
free end. Notice that the second localization of the joint does not influence the
stability of the column, the configuration of characteristic curves is the same
as that for a uniform Beck column. By changing the position of the joint, the
characteristic curves of one kind approach the origin of coordinates whereas the
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curves of second kind move away from it. The same phenomenon is observed for
the present model. In Fig. 5 the configurations of characteristic curves are shown
on the example of a column with optimal localization of the crack, considered in
the previous chapter. The curves of one kind are depicted by black line whereas
the curves of the second kind – by a gray line.
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Fig. 5. Two kinds of eigencurves of column with optimal localization of crack.

An interesting observation concerns the stability of a column with crack
which was formed according to the sliding mode, modeled by the loss of the
shear stiffness, i.e. for χ∗R → ∞ and arbitrary χ∗S . Any localization of the joint
and every value of the shear stiffness do not influence the stability of the system.
For each joint location and its stiffness, the shape of characteristic curves and
the value of critical force are the same as for a uniform column.

However, when the rotary stiffness of the crack is finite, the shear stiffness
influences the shape of characteristic curves. An example is shown in Fig. 6,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Characteristic curves of column with crack placed at $\varepsilon_{ for 
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 Fig. 6. Characteristic curves of column with crack placed at ε1 = 0.0 for χ∗R = 1e− 4,
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where the shape of characteristic curves for a joint of rotary stiffness χ∗R =
1e-4 placed at εC = 0.0 and two different values of shear stiffness χ∗S = 1e10
and χ∗S = 1e4 are shown. It is seen that the column with hinge-joint, χ∗S →∞,
loses stability by divergence. The successive critical forces occur with frequencies
approximately equal to zero. Release of the shear flexibility causes that successive
critical frequencies arise.

Let us consider the column with a crack which was formed according to
the opening mode, modeled by the localized loss of the rotary stiffness, i.e. for
χ∗S →∞ and arbitrary χ∗R. The critical load versus dimensionless joint location
εC is shown in Fig. 7. Notice that the critical load decreases considerably for
εC > 0.3. Discontinuous changes of the critical force occur when the crack of
χ∗R = 0.1 and χ∗R = 1e-4 is located near the free end of the column. The dis-
continuities on the chart result from the qualitative changes of the shape of
characteristic curves. The phenomenon is described e.g. in [5, 6] or [13].
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Fig. 7. Critical force versus hinge-joint localization for various joint stiffnesses.

Let us observe the shape of the curve plotted for the stiffness of χ∗R = 1.0.
An analysis of this shape can give some information concerning optimal volume
distribution of the column. The simplest way to increase the value of the critical
force of the column of constant length and constant Young modulus, is to in-
crease the moment of inertia, namely to enlarge the cross-sections of the column.
We have concluded that the column cross-sections should be enlarged in these
coordinates, for which the critical force is lower than that for a uniform column.
On the other hand, the volume of the column can be taken away in these co-
ordinates for which the critical force is higher than that for a uniform column.
According to this, the optimal shape of the column relates directly to the shape
of the curve plotted in Fig. 7.

In the modern mechanical systems the follower load can be caused e.g. by
systems of active control. The present analysis shows that in the class of slender
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columns subjected to follower load, the existence of a crack not always destroyed
the structure. There are localizations of the crack, for which the critical force is
higher than that of a uniform column. Designer can initialize such localization
of the crack for which the cracked element under the action of the follower load
will not be destroyed.
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A GLOBAL OXIDATION SCHEME FOR PROPANE-AIR COMBUSTION
SUITABLE FOR USE INTO COMPLEX REACTING FLOW

COMPUTATIONS

P. K o u t m o s, G. G i a n n a k i s, P. M a r a z i o t i

Department of Mechanical and Aeronautical Engineering
University of Patras

Patras, Rio 26500, Greece

In Direct or Semi-Direct Numerical Simulations of turbulent reacting flows the exploitation
of complex, realistic and detailed chemistry and transport models often results in prohibitive
memory and CPU requirements when flows of practical relevance are treated.

The integrated Combustion Chemistry approach has recently been put forward as a
methodology suitable for the integration of complex chemical kinetic and chemistry effects
into large scale computational procedures for the calculation of complex and practical reacting
flow configurations. Through this procedure, a reduced chemical kinetic scheme involving only
a limited number of species and reactions is derived from a detailed chemical mechanism, so as
to include major species and pollutants of interest in the main flow calculation. The chemical
parameters employed in this integrated scheme i.e. rates, constants, exponents are then cali-
brated on the basis of a number of constraints and by comparing computations over a range
of carefully selected laminar flames so as to match a number of prespecified flame properties
such as adiabatic temperatures, selected target species profiles, flame speeds, extinction char-
acteristics. The present work describes such an effort for a commonly used fuel of both the
fundamental and practical importance that often is used to simulate the performance of higher
hydrocarbons in practical engine simulations, i.e. propane. The proposed nine-step scheme in-
volves nine major stable species and in addition to the basic propane oxidation model also
includes NOX production and soot formation submodels.

Key words: integrated Combustion Chemistry, reduced propane chemistry mechanisms, lam-
inar flames, chemical reaction schemes.

Notations

Ak preexponential factor in the Arrhenius law of reaction k,
As particle surface area in soot model,

a strain rate (sec−1) in counterflow flames,
Cv constant in radiative flux expression,
cp specific heat,
Ca constant in particle number density equation source term,

D, d diameter,
Di−N2 diffusion coefficient in binary mixture of the i-th species and nitrogen,

dp carbon particle diameter in soot model source term,
ENOx NOx emission index,

fv soot volume fraction,



294 P. KOUTMOS, G. GIANNAKIS, P. MARAZIOTI

H enthalpy,
Hi enthalpy of species i,
hi absolute value of enthalpy,

h0
fi heat of formation at standard state,

Ibik Planck function in radiative flux expression,
If number of momentum equations solved,
k specific reaction rate constant,

Lei Lewis number for species i,
Ms molecular weight of soot,
Mi molecular weight of species i,
Ns number of species,
NA Avogadro number,
Nk number of species involved in reaction k,
Ps particle number density, in soot model,
P static pressure,
qr radiative heat flux,

Ru universal gas constant,
R1...9 number of reaction in reduced scheme,

Rcyl radius in porous cylinder counterflow flame configuration,
r radial direction,

SL laminar flame speed,
T temperature,
u axial velocity,

uair,∞ approach air velocity in porous cylinder counterflow flame
configuration,

v radial velocity,
vw fuel injection velocity in porous cylinder counterflow flame

configuration,
Xi mole fraction of species i,
Yi mass fraction of species i,
y y axis, transverse direction,
z z axis, axial direction,

wi net rate of production of species i.

Greek symbols

αk temperature exponent in reaction step k,
ΓΦ transport coefficients in governing equations,
ζik intergration intensities in radiative flux expression,

ηc,min constant in particle number density equation source term,
λ thermal conductivity,

ν′i,k, v′′i,k stoichiometric coefficients in forward and backward direction,
νi,k concentration exponents of species i involved in reaction k,

π 3.14. . . ,
ρ density,

σB Boltzmann constant,
Φ, φ represents any variable (i.e. 1, u, v, H or Yi) used in

the governing equations,
[CxHy] molar concentration of species i.
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Subscripts

b backward,
ex extinction,
f forward,
s soot,
k reaction step,
i species i,

Nucl nucleation,
Growth growth.

1. Introduction

The combustion of hydrocarbons for the production of energy is a common
and important phenomenon in many engineering applications. In most practical
devices, chemical reactions usually take place within and strongly interact with a
turbulent flow, and the adequate description of the combustion process requires
the consideration of a large number of fluid and chemical parameters [1]. On
the other hand, during the past decade the demand for higher efficiencies, the
stringent emission regulations and the need to reduce costs in design and op-
timization procedures for combustion chambers, has prompted the exploitation
of Computational Fluid Dynamics methods in support of experimental proce-
dures [2–4].

Direct or Semi-Direct Numerical Simulations (e.g. DNS, LES) of turbulent
reacting flows offer a promising tool toward understanding of the complex physics
of these flows. The full potential and advantages of these techniques can best be
realized when sufficiently complex and realistic but flexible and tractable chem-
istry and transport models are exploited [2, 5]. Currently, computational costs
and numerical considerations preclude spatially three-dimensional turbulent sim-
ulations with detailed chemistry and transport models in the parameter range of
practical interest. Instead, the judiciously reduced chemical mechanisms that can
be employed profitably within DNS or LES and provide a realistic description
of appropriate thermochemical parameters are preferred [2, 3, 6].

A number of methodologies have been exploited to simplify a detailed mech-
anism e.g. the systematic consideration of steady-state and partial equilibrium
assumptions leading to skeletal mechanisms [7], the analysis and categorization
of characteristic chemical time-scales of separate reaction groups [8] and the In-
tegrated Combustion Chemistry (ICC) approach [9], which involves the use of a
limited number of judiciously chosen species and reactions with kinetic parame-
ters tuned to match a prespecified number of constraints and flame properties.
The ICC approach, alone or in conjunction with other methodologies, offers
a viable alternative systematic reduction procedure, targeting specific require-
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ments with reference both to the thermochemical submodels and to the complete
computational procedure. In contrast to the first two approaches, [7, 8], it only
involves a limited number of steps and focuses on major species and pollutants
of interest for the main simulation, in the effort to avoid the burden of interme-
diate radicals and elementary rates altogether that would prohibitively burden
the basic computational procedure.

The present work describes an effort along similar lines, to derive a simplified
and tractable chemical scheme for the oxidation of propane, a fuel of practical
interest, including NOX and soot production models. Its chemical parameters
are calibrated by using this scheme within one and two-dimensional reacting flow
solvers and by computing a number of well documented one and two-dimensional
and coflowing laminar flames, lifted and attached by matching a number of flame
properties such as peak temperatures, major target species, flame speeds and
extinction characteristics. The successful derivation and encouraging validation
of the presently proposed scheme for propane lends support for an extension of
the approach to more complex hydrocarbons, such as ethylene and alternative
fuels of practical relevance such as H2 and CH3OH.

2. The integrated combustion chemistry methodology

2.1. The basic approach

The proposed approach is based on the requirement that the resulting mech-
anism must be able to predict, to a significant extent, what a state of the art
multi-step reduced mechanism is predicting for one, two-dimensional and jet
flames. The route to achieve this relies on the calibration of the rate parameters
of a starting selected chemical scheme by computing laminar flames for which
credible experimental data exist. In this investigation, the three-step reduced
scheme given by Kennel et al. [7] is chosen here as the starting mechanism for
the basic methane oxidation:

C3H8 + 2O2 → 3CO + 3H2 + H2O, (R1)

CO + H2O ↔ CO2 + H2, (R2)

2H2 + O2 ↔ 2H2O. (R3)

The original global rate parameters may be given in terms of linear combi-
nations of many of the rates of the elementary reactions of the C1-chain skele-
tal mechanism and may involve a number of intermediates and radicals (e.g.
[7, 8, 10]). The original basic steps and species of (R1) to (R3) are retained but
the target here is to produce global rates with simple kinetic parameters exclud-
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ing altogether intermediate elementary rates and radicals in the resulting global
rate expressions.

A framework to achieve this goal has been put forward by [9]. The first ob-
jective is prediction of the flame temperature and heat release in various cases.
Because no extended product dissociation is allowed, the fuel heat of reaction
is slightly (5%) reduced to reproduce the experimental temperatures. The sec-
ond objective is the reproduction of variation of the laminar burning velocity
versus mixture dilution as close as possible by regulating the pre-exponential
constants (Ak), the activation energies (EAk) and the species exponents of the
above three rates, to fit the available experimental data. An appropriate choice
of a set of Ak, EAk and relevant exponents is additionally constrained by the
adequate prediction of the extinction limits of selected opposed jet or stagnation
point flames. The third objective is the adequate computation of targeted prod-
uct species profiles for a range of strain rate values. This is interrelated with
the requirement that the resulting scheme should be also capable of predict-
ing unsteady effects, an aspect that represents the fourth objective and this is
particularly significant in highly turbulent flame calculations and at conditions
involving localized extinctions and reignitions. Here a strained counterflow flame
configuration and a pulsating lifted-off coflow diffusion flame are used for such
validation.

Apart from the choices for the chemistry model, the molecular transport
model, can also affect the correct computation of the flame properties. As in
massive complex flow simulations the simplified transport models are frequently
exploited, (e.g. [2, 3, 6]), validation tests are here performed utilizing similar
levels of complexity. Fick’s law with constant Lewis numbers, Sunderland’s law
for viscocity, constant Prandtl and Schmidt numbers and temperature-dependent
specific heats were presently employed. Only in the computations of the freely
propagating 1-D premixed flames, diffusion coefficients in binary mixtures of the
i-th species and N2 were exploited.

Anticipating that radiative losses can have a significant influence on NOX and
soot levels, an optically thin radiation model was embodied in the calculations
where it is assumed that the only significant radiating species are CO, CO2,
H2O and soot. By employing an optically thin limit in which self-absorption
of radiation is neglected, the divergence of the net radiative flux can be writ-
ten as:

(2.1) ∇qr = CV fV T 5 + 4π
∑

ik

ζikρkIbik ,

where fv is the soot volume fraction and Ibik is the Planck function evaluated
at the gas band centers of the contributing vibration-rotation or pure rota-
tional bands, whose integrated intensities are given by ζik. The value of the
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constant CV is here taken as 4.243 · 10−10, with units that give a power den-
sity in watts/cc with T in Kelvins, according to the suggestions of references
[6, 10].

2.2. The proposed mechanism

The basic oxidation of propane is here conveniently represented by the afore-
mentioned three-step scheme of reaction set (R1) to (R3). Regarding the pro-
duction of NOX it has been established that the three main routes to NO for-
mation are the prompt, the thermal and the N2O mechanism [2, 9, 11], while
in rich environments the reburn mechanism is also known to be important. The
N2O production path here is not directly accounted for; its contribution how-
ever is indirectly apportioned through the calibration of the rate constants in
the employed NOx scheme on the basis of experimental data that include the
N2O levels. The proposed scheme takes into account the remaining contributions
through the set of reactions:

0.5N2 + [O] ↔ NO, (R4)

0C3H8 + N2 + O2 + 0[O] + 0H2O ↔ 2NO + 0C3H8 . (R5)

The zero coefficients for C3H8, [O] and H2O in reaction (R5) mean that
these species do not participate explicitly in this reaction but are included in the
calibrated rate expressions. The required oxygen radical is here obtained from
partial equilibrium assumptions [8, 11]. The involvement of water and oxygen
radicals in the prompt production rate (e.g. Refs. [2, 11]) is therefore accounted
for in the formulated reduced NOx reaction scheme. The influence of interme-
diates and radicals related to the fuel structure is necessarily mimicked through
propane, which acts as a catalyst in reaction (R5).

To complete the overall scheme, a model for soot formation and oxidation
has also been implemented employing many features from the successful soot
model proposed by Linstedt [6, 10]. The underlying reactions for acetylene
production are here all summed up and represented through one model reaction
of the form:

2C3H8 ↔ 3C2H2 + 5H2 . (R6)

The corresponding soot nucleation and growth processes are addressed following
the modeling assumptions of reference [10] and represented as:

C2H2 → 2Cs + H2 . (R7)
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The subsequent soot oxidation reactions due to OH radicals and O2 is here
modeled and expressed as:

Cs + 0.5O2 → CO, (R8)

Cs + H2O → CO + H2 . (R9)

In line with the integrated concept of the proposed mechanism, the radicals
involved in the original mechanism (e.g. OH, H) have been replaced by stable
species (e.g. H2O, H2) addressed in the proposed reduced scheme. The result-
ing soot chemical scheme is implemented and applied by solving two additional
transport equations for particle number density and soot mass fraction, as dis-
cussed below in Sec. 3.

2.3. Determination of global mechanism kinetic rate parameters

The first step in the calibration procedure involves the identification of an
appropriate set of Ak and EAk values for the hydrocarbon chemistry starting
from the aforementioned basic oxidation scheme (reactions (R1) to (R3)). An it-
erative approach is then employed aiming to adjust the kinetic rate parameters
Ak, EAk and determine any species exponents with respect to the four target
requirements described in Sec. 2.1. With the simple transport formulations de-
scribed previously, the kinetic parameters are tuned and adjusted through a
series of repeated test computations involving the prediction of the temperature
and species profiles, the flame speed and the extinction behavior of laminar one
and two-dimensional and coflowing jet flames within the context of the discus-
sions of Sec. 2.2 and the constraints of Sec. 2.1. With the propane oxidation
scheme established, the NOX reactions ((R4) and (R5)) are then added. The ap-
propriate initial set of Ak and EAk values is here chosen with guidance from and
reference to several features of the relevant elementary NOX production steps,
(e.g. Ref. [9]). These rate parameters are then similarly tuned in repeated test
computations in which close prediction of the NOx levels in 1-D freely propa-
gating and 2-D coflow jet flame configurations is required.

The rate parameters of reaction (R4) are calibrated to achieve the correct
prediction of thermal NOX levels and then the prompt (Fenimore) and reburn
contributions are apportioned through reactions (R5) in the test cases described
in Sec. 4. In an analogous fashion the soot reaction scheme is finally added
and the rate constants for reactions (R6) to (R9) are adjusted to reproduce
the correct levels of C2H2 and soot volume fraction for the test cases selected
and discussed below. The final set of the kinetic rate parameters is given in
Table 1.
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Table 1. Specific reaction rate constants for reduced C3H8-air oxidation scheme.

Rxn Preexponential Temperature Activation Species
No. (Ak) exponent, (ak) energy, (EAk) exponents

1 3.5E5 1 12500 C3H0.6
8 , O1.0

2

2,f 48750 1.65 −300 CO0.8, H2O1.25

2,b 1.825*106 1.14 −1000 CO0.8
2 , H1.15

2

3,f 4.2*108 −0.72 0 H1.15
2 , O0.65

2

3,b 1.25*108 −0.7 0 H2O1.25

4,f 1*1010 0.3 37770 [O]0.97

4,b 7*107 0.9 20600 NO0.745, [O]1.04

5,f 1.5*1010 0 11100 C3H0.03
8 , N1.16

2 ,
O0.03

2 , H2O0.5,
[O]1.0

5,b 8*108 0 8100 C3H0.05
8 , NO1.56

6,f 5*1021 −4.35 25198 C3H0.92
8

6,b 7.5*1019 −3.8 34500 C2H0.95
2 , H0.01

2

7 As reported As reported 23000 C2H0.01
2

in [10] in [10]

8 As reported 0.4 23850 As reported
in [10] in [10]

9 3.6 0.75 0 C0.1
S , H2O1.7

Units in mole/cm3, sec−1, K, cal/mole (species exponents not declared above are unity).

3. The numerical method

The flame configurations studied here are simulated by solving the time-
dependent form of the two-dimensional gas-phase conservation equations for
reacting flow. The adopted methodology is similar to that of [12] and closely
derives from the formulations of [4]. Conservation equations for mass, momen-
tum, energy and species are solved and the equation set can be expressed in e.g.
cylindrical coordinates (z, r) with the general form:

(3.1)
∂ (ρφ)

∂t
+

∂ (ρuφ)
∂z

+
∂ (ρvφ)

∂r

=
∂

∂z

(
Γφ

∂φ

∂z

)
+

∂

∂r

(
Γφ

∂φ

∂r

)
− ρvφ

r
+

Γφ

r

∂φ

∂r
+Sφ

ρ, u and v denote density, axial and radial velocities and, depending on the
variable used for Φ (i.e. 1, u, v, H or Yi), this general form represents the conser-
vation of either mass, momentum, energy or species. The transport coefficients
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ΓΦ are obtained from the molecular transport model discussed previously while
the source terms, SΦ, are provided in Table 2, and their treatment is similar to
that discussed in [12]. The enthalpy H is defined as:

H =

T∫

T0

cp dt =
Ns∑

1

YiHi =
Ns∑

1

Yi(hi − h0
fi),

where h and h0
f represent the enthalpy and the heat of formation at standard

state respectively.

Table 2. Transport coefficients and source terms appearing in governing
equations.

Equations φ Γφ Sφ

Continuity 1 0 0

Axial u µ −∂p

∂z
+ (ρ0 − ρ) g +

∂

∂z

�
µ

∂u

∂z

�
+

∂

∂r

�
µ

∂ν

∂z

�
+

µ

r

∂ν

∂z
momentum

−2

3

�
∂

∂z

�
µ

∂u

∂z

�
+

∂

∂z

�
µ

∂ν

∂r

�
+

∂

∂z

�
µ

ν

r

��

Radial ν µ −∂p

∂r
+

∂

∂z

�
µ

∂u

∂r

�
+

∂

∂r

�
µ

∂ν

∂r

�
+

µ

r

∂ν

∂r
− 2µ

ν

r2

momentum

−2

3

�
∂

∂r

�
µ

∂u

∂z

�
+

∂

∂r

�
µ

∂ν

∂r

�
+

∂

∂r

�
µ

ν

r

��

Species mass
Yi ρDi−N2 ẇifractions

Energy H
λ

cp
∇
"

λ

cp

NsX
1

��
Le−1

i − 1
�
Hi∇Yi

�
#
−

NsX
1

�
h0

fiẇi

�

Lei is the Lewis number of species i, defined as Lei = λ/ρcpDi−N2, where
Di−N2 is the diffusion coefficient of the i-th species in a binary mixture of that
species and nitrogen. These binary diffusion coefficients were exploited only in
the computations of the freely propagating 1-D premixed flame configurations.
Also the global species and the state equations,

(3.2) YN2 = 1.0−
Ns−1∑

1

Yi, P = ρRuT

Ns∑

1

Yi

Mi

where Ru is the universal gas constant, T is the temperature, Mi is the molecular
weight of species i, together with the net rate of production of the i-th species
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due to the number of chemical reactions Nk expressed as:

(3.3) wi,k =
(
ν ′′i,k − ν ′i,k

) ∗Ak ∗ T ak exp
{
−EAk

RuT

} Nk∏

i=1

(
ρYi

Mi

)νi,k

which appear in the source terms of the species conservation equations, complete
the set of governing equations. Here Yi is the mass fraction of the species i, ν ′i,k
and ν ′′i,k are the stoichiometric coefficients of species i in reaction k in forward
and backward direction, νi,k are concentration exponents of species i involved in
reaction step k, Ak and EAk are the preexponential factor and activation energy
in the Arrhenius law of reaction k.

The computational domain in each different test case is commonly bounded
by inflow and outflow boundaries, wall and symmetry or axis planes. Constant
values of the variables were specified at inlet sections, with velocity, tempera-
ture and mixture compositions taken from the reported experiments. At lines of
symmetry the radial (normal) velocity was set to zero and a zero gradient was
assumed for the axial velocity, temperature and species concentrations. A zero
gradient was applied at the outflow boundaries that were carefully located far
away from regions of steep gradients of the variables. Open boundaries were im-
plemented as slip lines where a zero radial (normal) velocity and a zero gradient
condition for axial velocity, temperature and species concentrations were ap-
plied. The governing equations are integrated by using a finite-volume approach
with a staggered, non-uniform grid system. The momentum equations are dis-
cretized using an implicit QUICKEST finite-difference scheme (Koutmos et al.
[4]), while a hybrid scheme is employed for stability in the species equations. An
iterative alternating direction implicit (ADI) technique [12] is used for solving
the set of Ns + If + 1 algebraic equations (Ns + 1 is the number of species and
the enthalpy equation and If represents the number of the momentum equations
solved, depending on the dimensions of the configuration studied). A stable nu-
merical integration procedure is achieved by coupling the species and energy
equations through the chemical reaction source terms and the chemical source
terms are linearized to improve convergence. The pressure field is calculated at
every time step by solving the pressure Poisson equations in every grid node
simultaneously and exploiting the LU (Lower and Upper diagonal) matrix de-
composition technique. For the validation test runs involving freely propagating
premixed flame configurations, the standard PREMIX Sandia code [13] was used.
The extinction behavior of non-premixed stagnation point flames to steady and
unsteady strain rate were investigated by adapting the basic two-dimensional
detailed flow solver to the particular flame/geometry configuration.

The chemical reaction scheme for soot production and oxidation is combined
with the solution of two additional model transport equations for particle number
density, Ps, and soot mass fraction, Ys, as proposed by [6]. These have the same
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form as Eq. (3.1), written for the i-th species as given in Table 2. Chemical
reaction (R7) represents here both nucleation and growth while reactions (R8)
and (R9) represent the soot oxidation process.

The relevant source term, SY s, for soot mass fraction, Ys, can then be written:

(3.4) SYs = 2k7,Nucl [C2H2] Ms

+ 2k7,GrowthAs [C2H2] Ms − k8As [O2]Ms − k9As [H2O]Ms

while that for particle number density, Ps, can be expressed as:

(3.5) SPs = 2k7,Nucl [C2H2]
NA

ηC,min
− 2Cad

1/2
p

(
6σBT

ρs

)
(ρPS)2 .

According to the recommendations of references [6, 10] the following set of
constants is utilized in the above source expressions. Ms and ρs are the molecular
weight and density of soot, σB = 1.38 · 10−23 J/K is the Boltzmann constant,
NA = 6.022 · 1026 particles/kmol is the Avogadro number, Ca = 9, ηc,min = 60
and As = πd2

pρ Ps is the particle surface area with dp = (6Ys/πρsPs), the
carbon particle diameter. Here the nucleation and growth rate constants used
above, k7,Nucl and k7,Growth for reaction (R7), and the oxidation rate constant
due to oxygen, k8, are taken as suggested by [6, 10] with only minor changes
as indicated in Table 1, while the rate constant, k9, due to soot oxidation from
OH is duly modified to take into account the replacement of the radical OH
contribution in reaction R9 with the stable available species H2O. The tuned
reaction rate constants for reactions (R6) to (R9) are also given in Table 1.

4. Results and discussion

The performance of the basic oxidation mechanism was evaluated by com-
puting unstretched laminar premixed propane-air flames having different equiv-
alence ratios, Φ. An important validation parameter is the laminar flame speed,
SL, which was presently calculated and is compared against experimental data
from the extended literature (e.g. references [2, 6, 7]) as a function of equiva-
lence ratio Φ in Fig. 1a. The predicted lean and stoichiometric part of the SL

curve appears quite satisfactory with a peak SL of 0.45 m/sec against experi-
mental values in the region 0.39 to 0.47. The rich SL branch however seems to
be underpredicted possibly due to exclusion of intermediate radicals such as H
and OH. In an initial effort to alleviate, in a simple manner, this rich branch
deficiency and allow a more fruitful exploitation of the proposed scheme, a pa-
rameterization and tabulation of the preexponential factor of reaction (R3) as a
simple function of the local equivalence ratio was attempted targeting the more
correct prediction of the rich SL branch values as depicted in Fig. 1a. A more
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a)

b)

c)

Fig. 1. a) Comparison between computed with the present reduced scheme (- - - -, — )
and experimental (¨), Refs. [2, 6], laminar flame speeds over a range of equivalence ratios for
freely propagating premixed flames; b) Comparisons between present calculations (lines) and
measurements of [14] (points) in a counterflow diffusion flame configuration for major species
profiles; c) Peak flame temperature as a function of the strain rate in the stagnation point dif-
fusion flame of Ref. [14]. Computations from Ref. [15] with a four-step reduced mechanism (¨),

present computations (—).
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elaborate and extended approach along these lines can be applied by following
the approach of reference [5] when more involved chemical schemes are adapted
to local conditions and constraints.

The reduced scheme (R1) to (R3) was subsequently tested by computing a
stagnation point diffusion flame in front of a porous cylinder (Tsuji-type burner,
Fig. 3b, [14]) in a one-dimensional calculation by reformulating the detailed
mathematical model of Sec. 3. Computed major species and temperature profiles
for a strain rate, a = uair,∞/Rcyl, of 150 sec−1 and a fuel injection velocity vw

of 0.112 m/s (see Fig. 3b), agreed well with the classical experimental results of
Tsuji and Yamaoka [14] as shown in Fig. 1b. The computed unstretched flame
peak temperature lies around 1950 K below the adiabatic value due to effects of
transport processes and finite reaction rates. The presently calculated drop in
the peak temperature with increasing strain rate (a) is adequately supported in
similar calculations by Jones and Lindstedt [15] as displayed in Fig. 1c. As
the strain rate, a, increases the peak temperature drops due to reactant leakage
until no steady state solution exists and this point corresponds to the extinction
limit. The computed aex is 645 sec−1 while the measurements of reference [14]
suggested a value of about 670 sec−1.

Amongst the various flame configurations used for the present scheme calibra-
tion, the one selected for discussion here is from the range of opposed jet burner
(Fig. 3c) flame studies reported by Wehrmeyer et al. [16]. Specifically the
structure of partially premixed opposed jet C3H8-air flames produced by coun-
terflowing reactant jets of disparate and very lean or very rich stoichiometry i.e.
a lean H2-air jet impinging on a rich or lean C3H8-air jet, was experimentally
and computationally investigated in that work (Fig. 3c). The resulting complex
type of flames are of relevance to combustion processes occurring under stratified
charge mode operation of direct injection spark ignition engines, where a flame
in a region of burnable stoichiometry supports combustion in adjacent lean or
rich regions that are outside the ignitable limits and thus represent a stringent
test of the presented reduced scheme.

Here one partially premixed flame of a C3H8-air jet (Φ = 1.25) opposing a
H2-air jet (Φ = 0.4) at a strain rate of 180 s−1 was chosen for computation as
it represents a stringent test for the proposed model. The results of the com-
parisons between the present numerical calculations and the measurements and
computations, obtained by Wehrmeyer et al. [16], with the extended C3H8-air
mechanism M5 as reported in Reference [2], are shown in Figs. 2a and 2b. The
present computations are in good agreement with the reported temperature and
species profiles except for their narrower width due to a slower rise of tempera-
ture and species on the rich fuel side. This is due to a weaker penetration of the
triple flame into the rich fuel side. This is not unexpected since the uncorrected
calibrated reduced sheme produces a lower flame propagation rate, SL, when
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we move toward the rich equivalence ratios, as discussed previously with respect
to the underprediction of the experimental SL branch in Fig. 1a. The calibrated
mechanism, when corrected by employing a local adjustment of the (R3) reaction
rate preexponential factor as a function of the prevailing local equivalence ratio,
results in an improved agreement in the predicted temperature profiles as illus-
trated in Fig. 2a. The adjusted calculations, due to the locally increased reaction
rates, exhibit an extended reaction zone profile that now reaches deeper toward
the premixed fuel supply, as indicated by the comparisons shown in Fig. 2a, with
consequent improvements in the species profiles as well (lines without correction
are not shown for clarity in Fig. 2b).

a)

b)

Fig. 2. Comparisons between present calculations (lines) and measurements and computa-
tions of Wehrmeyer et al. (symbols, dashed line) in an opposed jet burner premixed flame
configuration: a) for the mean temperature profile along the burner stagnation axis; b) for the

mean CO and H2O profiles along the burner stagnation axis.
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Subsequently a range of two-dimensional axisymmetric coflowing laminar jet
diffusion flames, with or without partial premixing, attached and lifted were
calculated targeting at the qualitative and quantitative reproduction of major
species, temperature, NOX and soot production. Any discrepancies identified in
these test runs led to readjustment of the reduced chemical scheme rate para-
meters that were fed back to the runs for the one-dimensional flames discussed
above; this iterative cycle produced the final tuned set of the chemical rate pa-
rameters of Table 1.

A sketch of the two-dimensional axisymmetric geometry burner configuration
employed in the two-dimensional computations is given in Fig. 3a. It includes a
fuel supply, an oxidizer supply and in certain test cases – a coflowing surrounding
air stream. In the first test case the range of coflowing diffusion flames studied
by Won et al. [17] were computed. Fuel (a mixture of C3H8/N2 at 0.1486/0.8514
by mass) and air, both coflowed at various velocity ratios and formed a rich va-
riety of diffusion flames ranging from attached, slightly detached, lifted and also
oscillating from the burner rim. Temperature contours predicted by the present
two-dimensional formulation employing the above proposed reduced scheme are
shown in Figs. 4a, b and c depicting three fuel velocity conditions with none,
moderate and significant lift-off from the burner exit. The characteristic fishbone
structure at the base as well as the high temperature regions and the overall
flame shape have been captured well when compared with the flow visualization
photographs reported by Won et al. [17].

a)

[Fig. 3a]
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b)

c)

Fig. 3. a) Unconfined coflowing axisymmetric laminar diffusion flame burner configuration
used in the computations; b) Porous cylinder counterflow diffusion flame configuration used
in the computations (Refs. [14, 20, 21]); c) Opposed jet burner configuration used in the

computations (Ref. [16]).

In the experiments of Won et al. [17] it was also found that as fuel velocity
increases, in the intermediate velocity range, a regime can be identified, where
the lift-off height varies intermittently between distinct lower and higher values,
a feature that reportedly has been related to propane lift-off behaviour in other
investigations as well [17]. As unsteady effects play an important role during
localized extinctions and reignitions in highly turbulent flames, it was thought
of interest to address the whole extent of the variation of the flame lift-off height



A GLOBAL OXIDATION SCHEME FOR PROPANE-AIR COMBUSTION ... 309

a) b)

c)

Fig. 4. Computations of temperature isotherm topology for the axisymmetric coflowing jet
burner configuration studied by Won et al. [17]: a) attached flame, b) moderately lifted flame,

c) highly lifted flame.

with fuel velocity change for the flames studied by Won et al. [17] to estab-
lish the capability of the method to predict inherent unsteady flame behaviour.
Figure 5 displays the calculated variation of lift-off height along with the experi-
mentally reported values. Both the attached and lifted flame lengths and lift-off
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heights have been reproduced quite satisfactorily while, quite encouragingly, the
oscillating flame regime, as indicated by the two branches in the graph, has also
been retrieved by the present model. Evidently the presently proposed scheme
produces an adequate response to the unsteady strain field produced by the pul-
sating nature of the flames, despite some quantitative differences in the reported
values for the upper lift-off heights.

Fig. 5. Comparisons between predicted with the present scheme (line) and experimentally
established in Won et al. [17] (symbols) of the variation of the flame lift-off height with
fuel exit velocity (note the pulsating flame behaviour indicated by the displayed loop).

Subsequently, the capability of the proposed NOx module to capture the
NOx production levels was tested. Hewson [18] has reported a series of bulk
NOx emissions measurements in laminar coflow, nonpremixed jet flames for a
wide range of exit propane velocities and burner diameters while retaining the
constant air coflow velocity. The reported emission index is expressed as ENOx =
(3XNOxMNO21000)/(XCO2MFuel), where Xi and Mi are the mole fraction and
the molecular weight of species i, and this expression includes both the NO and
NO2 contributions. A comparison of the emissions calculated by the presently
tuned scheme (the basic oxidation model now including reactions (R4) and (R5))
against a sample from the reported variations is displayed in Fig. 6. Despite
the fact that the NO2 contribution is not accounted for in the present model
explicitly but only through tuning and calibration of the constants involved
in the prompt rate expressions, the experimental trend and levels are repro-
duced encourangingly well. As a further test, the NOx levels (including thermal,
prompt and N2O contributions) reported in the work of Bockhorn et al. [11]
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Fig. 6. Comparisons between presently predicted (lines) and experimental (Hewson [18],
symbols) variations of the emission index ENOx with fuel dilution at two fuel velocities in

the axisymmetric coflowing burner configuration.

for a range of lean partially premixed 1-D propane flames were additionally
studied to further tune the present NOx model. Following the experimental
conditions, calculations were run for an inlet mixture temperature of 400◦C
and a range of equivalence ratios corresponding to an adiabatic flame temper-
ature variation from 1290◦C to 1540◦C. Results from the present computations
are compared, in Fig. 7, with experimental and calculated results reported by

Fig. 7. Comparisons between present predictions (—) and experimental (¨) and
computational (–¨–) results from Bockhorn et al. [11], of the distribution of the NOx
concentration levels in a flat premixed 1-D flame burner configuration with variation

in the mixture equivalence ratio.
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Bockhorn et al. [11], who employed a version of the GRI 3.0 mechanism (e.g.
Ref. [19]). Both the trend and the level of variation of the experimental results
with mixture strength are apparently reproduced quite adequately by the tuned
((R4) and (R5) reactions) scheme.

The soot model was finally added to the basic C3H8 oxidation mechanism,
tuned, calibrated and tested in a range of flame configurations. As an exam-
ple, calculations for two C3H8 sooting counterflow diffusion flame arrangements
(Fig. 3b), studied by Vandsburger et al. [20] and Law et al. [21] are here dis-
cussed. Additional transport equations with source terms given by Eqs. (3.3) and
(3.5) and the reactions (R6) to (R9) were now employed in these computations.
The present model predicts the general shape, structure and peak temperature
levels of this complex flame configurations. The level of agreement for the ma-
jor species was of similar good quality as that encountered in the previously
discussed computations. Within the context of the present reduced scheme, a
critical factor in reproducing the measured soot distributions is the adequate
reproduction of the acetylene profile concentrations, the only soot precursor ad-
dressed in the reduced scheme, since benzene is here excluded. Levels of C2H2

were computed with maximum discrepancies in peak values of less than 12%
(e.g. compared with the measured peak values given in reference [20]). The ef-
fect of oxygen enrichment in the counterflow flames of Vandsburger et al. [20]
and the predicted trends in soot production for two levels of fuel enrichment are
subsequently shown in Fig. 8. Calculated peak soot volume fractions are in good
agreement with experimental values while the variation along the centerline is

Fig. 8. Comparisons between present predictions with the proposed reduced scheme (lines)
and experimental and measured by Vandsburger et al. [20] (symbols) soot volume fractions

for counterflowing C3H8-O2-N2 flames with varying levels of O2 enrichment.
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captured well. Peak temperatures and major species addressed by the proposed
mechanism were also in good agreement with the reported measurements. Next
the influence of inert additives and/or air enrichment (25% O2) in sooting coun-
terflow flames measured by Law et al. [21] was studied with the above proposed
mechanism. Figure 9a displays the measured and presently computed variation
of the temperature along the distance from the burner surface for a fuel mix-
ture of 20%He–80%C3H8 in this counterflow configuration. The good agreement

a)

b)

Fig. 9. a) Comparisons between present predictions with the proposed reduced scheme (lines)
and experimental and measured by Law et al. [21] temperature distributions with distance from
burner exit for propane-air counterflowing diffusion flame with inert addition on the fuel side
2(0%He–80%C3H8). b) Comparisons between present predictions with the proposed reduced
scheme (lines) and measurements by Law et al. [21] of soot volume fraction distributions
as a function of distance from burner surface for propane-enriched air (25%) counterflowing

diffusion flame with different inerts added on the fuel side.
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between measurements and predictions allows a meaningful evaluation of the
soot model. Figure 9b displays predictions and experimental data for soot vol-
ume fraction at 20% fuel dilution by two different inert additives, namely He
and Ar and air enrichment with oxygen maintained at 25%. Although some
quantitative discrepancies are evident, it is most encouraging to see that the
measured trends are reproduced quite well. This lends some credibility in the
models sensitivity to delineate between different soot loadings due to different
flame conditions.

From the above described test runs and comparisons it appears that the pro-
posed reduced scheme has an acceptable and consistent behavior over the range
of flame conditions investigated, and adequately predicts the target character-
istics of Sec. 2.1 for the diffusion and premixed flame configurations studied.
Inaccuracies apparently increase locally for rich mixtures beyond an equivalence
ratio of about 1.3 e.g. in the test runs for the lifted flame. This aspect might be
conveniently remedied to a large extent by employing concepts of adaptive chem-
istry as in Reference [5] and locally adjusting (at each computational grid node
and time-step) selected parameters of the reduced scheme in accordance with the
prevailing local flame conditions. Here, following a less involved approach along
these lines proved the promising gains that may accrue from such a more general
procedure; the flame speed was augmented for rich compositions (i.e. when the
mixture strength locally exceeded 1.3) through an appropriate parameterization
and tabulation of the preexponential factor of reaction (R3) as a simple function
of the local equivalence ratio, thus improving the performance of the chemical
scheme over an extented range of mixture compositions.

5. Summary and conclusions

An Integrated Combustion Chemistry approach has been employed to derive
a reduced oxidation scheme for a technically significant fuel, propane, including
submodels for NOx and soot production. The complete scheme involves nine
reactions and nine species focusing on major and stable species and pollutants,
while avoiding altogether the computational burden of intermediate radicals and
elementary rates. The chemical rate parameters were calibrated by systemati-
cally computing a range of well-documented one-dimensional freely propagating,
premixed and stagnation point diffusion flames as well as two-dimensional ax-
isymmetric coflowing jet diffusion flames, lifted and attached. Its overall perfor-
mance has been encouraging and with further tests and refinements it can be
valuable in large-scale computations of complex turbulent reacting flows. The
procedure can be systematically extended to other practical fuels such as higher
hydrocarbons, ethylene or alternative fuels of technological interest such as hy-
drogen, methanol and ethanol.
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In this paper is given the dynamic analysis of the free and forced vibration problems of
a complex system with elastic and visco-elastic inertial interlayers. The analytical method of
solving the free and forced vibrations problem of the system is presented in the paper [2].
The external layer of the complex system is treated as the plate made from elastic materi-
als, coupled by visco-elastic inertial interlayers. The plate is described by the Kirchhoff–Love
model. The visco-elastic, inertial interlayer possesses the characteristics of a continuous iner-
tial Winkler foundation and has been described by the Voigt-Kelvin model. Small transverse
displacements of the complex system are excited by the stationary and non-stationary dy-
namical loadings. The phenomenon of free and forced vibrations problems has been described
using a non-homogeneous system of conjugate, partial differential equations. After separation
of variables in the homogeneous system, the boundary value problem has been solved and two
sequences have been obtained: the sequences of frequencies and the sequences of free vibra-
tions modes. Then, the property of orthogonality of complex free vibrations has been presented.
The free vibrations problem has been solved for some arbitrarily assumed initial conditions.
The forced vibrations problem has been considered for different modes of dynamical load-
ing [3].

The solution of the ecological safety problem and protection from exposure to dust, depend
much on the equipment and techniques used in quarrying the brown coal. Thus, dynamics of
loading the open cast colliery dump trucks which have a load-carrying capacity of hundreds of
tons, mass of tens of tons and dimensions of tens of meters, is a very important problem. The
numerical results of free and forced vibrations problems of the complex system with the elastic
and visco-elastic inertial interlayer, for various parameters and different modes of dynamical
loading, are given in this paper.

Key words: vibrations, two-layer system, damping, numerical results.

1. Introduction

The problems of vibrations with damping of complex structures play an im-
portant role in various engineering structures. Some mechanical and building
constructional systems consisting of strings, beams, shafts, plates and shells, can
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be connected by elastic or visco-elastic constraints, working in complex condi-
tions of stationary and non-stationary loading. In dynamics of various technical
objects important influence on their character operation is exerted by unavoid-
able vibrations of certain structural elements.

A typical example of the above-mentioned constructional elements can be lay-
ers, which are made of soft elastic or visco-elastic materials. On this subject, the
mathematical method was presented by Cabańska–Płaczkiewicz [3] taking
into account not only stationary loading of complex systems using the methods
based on the Kirchhoff–Love hypothesis [8], but also non-stationary loading of
complex systems based on the Timoshenko model [26]. Among numerous pre-
cise models applied to the investigation of plates made of modern materials, the
Reisner model [21] was used.

Wide bibliography concerning the classical, rheological models, were pre-
sented by Nashif, Jones, Henderson [12], Nowacki [14], Rymarz [23] and
the operator methods were given by Osiowski [18].

In the paper by Jemielita [7], the criteria of choice of the shear coeffi-
cient in plates of medium thickness have been considered. Vibrations of elas-
tic compound systems subjected to inertial moving load was presented by Bo-
gacz [1], Oniszczuk [15, 16] using the Renaudot formula [22] and Szcześniak
[24, 25].

The problem of non-axisymmetric deformation of flexible rotational shells
was solved by Pankratova, Nikolaev, Świtoński [19] using the classical
Kirchhoff-Love model and the improved Timoshenko model. The dynamic
problem of elastic homogeneous bodies was presented by Taranto, Mc Graw
[6], Kurnik, Tylikowski [10, 28], Mindlin, Schacknow [1], Pankratova,
Mukoed [20] and Wang [29]. The interlayer is a one- or two-directional vis-
coelastic Winkler [30] layer, but it can also be a multiparametric viscoelastic
layer presented by Woźniak [31].

In the above-mentioned complex cases, especially where viscosity and dis-
crete elements occur, it is recommended to adopt the method of solving the
dynamic problem of a system in the domain of functions of complex variable,
following the papers by Tse, Morse, Hinkle [27], Nizioł, Snamina [13] and
Cabańska–Płaczkiewicz [2–3]. The property of orthogonality of free vibra-
tions of complex types was first described by Cremer, Heckel, Ungar [5]
and Cabański [4] or discrete systems with damping, and for discrete – continu-
ous systems with damping – by Nashif, Johnes and Henderson [12], and for
continuous systems with damping – by Nowacki [14].

The aim of this paper is a dynamics analysis of a complex system with elastic
and visco-elastic interlayers for various geometrical, physical and mechanical
parameters, and for different modes of dynamical loading.
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2. Problems of control of vibrations in ecologically-dangerous
technical systems

2.1. Statement of the problem

Interdisciplinary range of problems connected with development and use of
brown coal, is extremely urgent for Central and Western Europe. The practical
significance of these problems is determined by many factors. One of them that
should be noticed is that 58% of world productions of brown coal is concentrated
in the given region. Life of lignite reserves is in excess of 240 years. Poland is one
of the world leaders in this field and takes the 4-th place after Germany, Russia
and USA. Therefore, great attention of engineering universities in Poland is given
to various research aspects and directions within the given range of problems.
A problem of ecological safety and protection of mine staff and inhabitants of
the surrounding areas from exposure to dust, takes an important place among
them.

For example, the capacity of the body of a dump truck is 337 m3, its width is
8.53 m, length is 15.54 m, depth is 3.34 m and mass is tons. The analysis shows
that the volume of dust ejection during loading of coal depends on the efficiency
of control of body vibrations by the shock-absorbing system of a dump truck.
At the same time, the standard models and methods of analysis and control of
mechanical vibrations, are based on a combination of the control and vibration
theories.

Thus, the analysis of dynamic response and of non-linear body vibrations is
usually made with the help of models where the body is schematically represented
as a load resting on a spring with one or several degrees of freedom. Such an
approach does not take into account certain essential properties of dynamics of
loading. These are, for instance, irregularity of loading the body, randomness of
distribution of a shock dynamic loading over the surface of a body, dynamics
of interaction of a body and a dump truck during the shock load. Therefore,
there is a practical necessity for making a common formulation of the problem
of analysing and controlling the vibrations of open cast colliery dump trucks as
an interdisciplinary problem of vibration theory, control theory and visco-elastic
theory. The last one takes into account real processes of a dynamic response
during the action of a non-uniform shock loading on a real structure of a dump
truck body on the whole.

It should be remembered that the dynamics of operation of material system
is always influenced by the residual vibrations.

Typical examples concern the important dynamic problems of certain objects
working in the open extraction of coal in Poland, e. g. deep-immersion at subsoil
motors, truck and the special spring balances on which are resting many tons of
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coal mass. The dynamical problems occur also in the railroad engineering and
the seaports, e.g. in the shock occurring by cargoes of a cargo ship.

In the design of such objects, an important practical meaning has the opti-
mal choice of the main factors of the vibrational processes, providing the opti-
mal compromise of controversial requirements to the dynamic elements system:
shock-absorber-weight.

Let us consider stationary and non-stationary dynamical loading of complex
system with damping (Fig. 1). The complex system is made from the elastic
plate which is coupled by a visco-elastic inertial interlayer resting on a stiff
foundation. The elastic plate is described as the Kirchhoff–Love model [8], and
is simply supported at their edges. The interlayer connecting the plate with the
rigid foundation [30, 31] will be replaced in further considerations by the so-
called simplified foundation, which is modelled as the homogeneous foundation.
Besides it is assumed that this simplified foundation consist of a close-packed set
of homogeneous pillars appearing within the plate contour. 
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Fig. 1. Dynamic model of an elastic plate coupled with a visco-elastic inertial interlayer,
under the stationary and non-stationary dynamical loading.

For this reason, the strains in the directions of co-ordinate axes x and y are
equal to zero. Each of the pillars with unit area of cross-section, has length equal
to thickness of this foundation and is made of visco-elastic material described
by the Voigt–Kelvin model [12, 14, 17].

Due to the small angle of slope of the deflection surface of the plate, the
shearing forces acting on lateral faces of these pillars are also very small and
hence they can be neglected.

On grounds of the above assumed simplification it follows that these pillars
are subjected to uniaxial strain but to the three-dimensional state of stress.

It is obvious that the displacement of the simplified foundation is identified
with the displacement of the corresponding pillar which is placed at the point of
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co-ordinates x, y. In this situation these displacements are apparently described
by a one-dimensional differential equation; nevertheless it should be observed
that these displacements are not only dependent on the variable z, but also on
the variables x, y.

In practical application, the combined system (Fig. 1) is treated as a platform
with the stationary and non-stationary dynamical, concentrated or distributed
loadings by the moving mass of coal [2, 3].

2.2. Mathematical problem

The phenomenon of small transverse vibrations of the elastic plate cou-
pled with a visco-elastic inertial interlayer is described by the following non-
homogeneous system of conjugate partial differential equations [2]:

(2.1)

D∆2w + µ
∂ 2w

∂t2
−

(
1 + c

∂

∂ t

)
k
∂wp

∂z
|z=0 = f(x, y, t) ,

(
1 + c

∂

∂t

)
k

∂2wp

∂z2
− µp

∂2wp

∂ t2
= 0

together with the corresponding homogeneous boundary conditions for the
plate

(2.2a)

w |x=0 = 0, w |x=a = 0, w |y=0 = 0, w |y=b = 0,

∂2w

∂x2

∣∣∣∣
x=0

= 0,
∂2w

∂x2

∣∣∣∣
x=a

= 0,
∂2w

∂y2

∣∣∣∣
y=0

= 0,
∂2w

∂y2

∣∣∣∣ y=b = 0

and for the inertial foundation

(2.2b) wp

∣∣
z=hp = 0,

as well as with the continuity condition of displacements of the plate and the
simplified foundation

(2.2c) w = wp |z=0 .

In Eq. (2.1) are introduced the following notations:

(2.3) D =
Eh3

12(1− ν2
o )

, k =
Ep(1− νp)

(1− 2νp)(1 + νp)
, µ = ρh , µp = ρp .

Here f(x, y, t) is the dynamical load of the complex system; w = w(x, y, t),
wp = wp(x, y, z, t) are the transverse deflections of the plate and the visco-elastic
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inertial interlayer; E, Ep are the Young modulus of materials of the plate and
the interlayer; c is the damping coefficient of the interlayer (retardation time);
ρ, ρp are the mass densities of materials of the plate and the interlayer; h, hp

are the thicknesses of the plate and the interlayer; a, b are the dimensions of the
complex system; νo, νp is the Poisson coefficient of the plate and the interlayer;
x, y are the co-ordinate axes.

An analytical method of solving the problem of boundary-value problem as
well as free and forced vibrations of mechanical system (Fig. 1), will be based
on separation of variables.

Substituting the following dependences:

(2.4) w = WT, wp = WpT

into the system of differential equations (2.1), one obtains the ordinary differen-
tial equation

(2.5)
o
T −iνT = 0

and the system of partial differential equations

(2.6)
D∆2W − ν2µW − (1 + iνc)k

dWp

dz

∣∣∣∣
z=0

= 0,

(1 + icν)R + ν2µpWp = 0,

where T = T (t) denotes the modal function; W = W (x, y) and Wp = Wp(x, y, z)
stand for complex modes of vibration of the plate and the layer; ν is the complex
eigenfrequency of vibrations.

Thanks to the relations (2.4), the boundary conditions (2.2) take the following
form:

(2.7)

W |x=0 = 0, W |x=a = 0, W |y=0 = 0, W |y=b = 0,

∂2W

∂x2

∣∣∣∣
x=0

= 0,
∂2W

∂x2

∣∣∣∣
x=a

= 0,
∂2W

∂y2

∣∣∣∣
y=0

= 0,
∂2W

∂y2

∣∣∣∣
y=b

= 0,

Wp

∣∣
z=hp = 0, W = Wp |z=0 .

Further analytical procedures of solving this problem are presented in the
papers [1, 2, 3, 24, 25].

2.3. Different modes of dynamical loading

In the first case, small transverse vibrations of the complex system with
damping are excited by the following stationary, concentrated dynamical loading
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(2.8) f(x, y, t) = Pδ(x− xo)δ(y − yo) sin(ωot)

at the point xo, yo and varying in time t.
In the second case, small transverse vibrations of the complex system with

damping are excited by the following non-stationary concentrated dynamical
loading

(2.9) f(x, y, t) = b(t)−m
d2w(x∗, yo, t)

dt2
δ(x− x∗)δ(y − yo),

or by the following non-stationary concentrated dynamical loading:

(2.10) f(x, y, t) = b(t)− m

d

d2w(x∗, yo, t)
dt2

[H(x− x∗ − d)−H(x− x∗)].

Here m is the mass of coal; d is the length on which the moving mass is dis-
tributed; δ(. . .) is the Dirac delta function; H(. . .) is the Heaviside function;
x∗ = v∗t, v∗ is the constant speed; yo = 0.5b; w(x∗, yo, t) denote the transverse
displacements of the plate in its first approximation at the points of location of
the moving mass of coal, i.e. the trajectory of the moving mass of coal; P is the
amplitude of harmonic force; f(x, y, t) is the dynamical loading of the complex
plate; vn are complex frequencies of free vibrations; xo, yo are the co-ordinate
coal for time t = 0; b(t) is the constant loading in the direction of axis z.

3. Results and discussions

Calculations are carried out for the following data:
E = 1010 Pa, Ep = γ∗108 Pa, νo = 0.3, νp = 0.2, ρ = 5∗103 Ns2 m−4,
ρp = 7∗103 Ns2 m−4, h = 0.5 m, hp = ε∗3.34 m, a = 15.54 m, b = 8.53 m,
c = ℘∗0.00007 Nsm−2, b(t) = 0, v∗ = ς∗10 ms−1, cg = 0.00001, ωn = Re[νn],
P = 4∗102 kN, m = 4∗104 kg.

In order to solve the boundary value problem, the following boundary con-
ditions are used for the Kirchhoff–Love model.

Let us consider the free and forced vibrations problem of the complex system
(see Fig. 1).

In order to find the Fourier coefficient Φn1n2 , the following initial conditions
are assumed:

(3.1) wo = As1 sin
(πx

a

)
sin

(πy

b

)
,

o
w o = 0, As = 0.0016m

where wo is the initial displacement;
o
w o is the initial velocity.

Some results of this problem given in Fig. 2 present absolute values of a
complex determinant |∆| and eigenfrequencies of free vibrations. The diagrams
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of the values of complex eigenfrequencies νn1n2 = iηn1n2±ωn1n2 of free vibrations
for various parameters ℘ = 1, g = 1, γ = 1; 0.01; 0.0001, ε = 1; 0.6; 0.3 are shown
in Fig. 2.
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Fig. 2. Moduli of a complex determinant |∆| and values of complex eigenfrequencies
νn1n2 = iηn1n2 ± ωn1n2 of free vibrations for x = 0.6a, y = 0.6b, z = 0 and n1 = 1 , n2 = 1.

The space diagrams in Fig. 3 shows complex modes of free vibration of the
visco-elastic inertial interlayer for n1 = 1, n2 = 1 and n1 = 1, n2 = 2. The space
diagrams of W (x) show the real ReW and the imaginary ImW parts of complex
modes of free vibrations of the interlayer, in the ranges 0 < x < a and 0 < z < h
and y = 0.5b. For z = 0, the diagrams show the real ReW1 and the imaginary
ImW1 parts of complex modes of free vibrations of the plate.

The diagrams in Fig. 4 show free vibrations of the complex system with
elastic and visco-elastic interlayers in time t in two cases; the first case where
damping coefficient ℘ = 1 occurs, the second case where damping coefficient
does not occur, ℘ = 0.

Calculations of dynamic displacements for the two cases where damping co-
efficient occurs ℘ = 1, are compared with dynamic displacements in which the
damping coefficient does not occur, ℘ = 0 – Fig. 4. Amplitudes of free vibrations
for damping coefficient ℘ = 1 in a visco-elastic interlayer have the value approx-
imately by 62% smaller than the amplitudes of free vibrations for the damping
coefficient ℘ = 0 in the elastic interlayer of the complex system.

The effects of various geometrical physical and mechanical parameters are
shown in Figs. 5–12. In the first case, small transverse vibrations of the complex
system with a viscoelastic inertial interlayer are excited by the stationary dy-
namical force (2.7) acting at the point x = 0.6a, y − 0.6b, z = 0 and varying in
time t.
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Fig. 3. Complex modes of free vibrations of the complex system with damping for n1 = 1,
n2 = 1 and n1 = 1, n2 = 2; the elastic plate for z = 0 and the visco-elastic inertial interlayer

for 0 < z < h.

Ã = 0

Ã = 1

Fig. 4. Free vibrations of the complex system with the elastic ℘ = 0 and visco-elastic ℘ = 1
inertial interlayers for γ = 1, ε = 1.

The effect of stationary dynamical force in the complex system with elastic
and visco-elastic interlayer is presented in Figs. 5–9 for various damping coeffi-
cients of the interlayer: ℘ = 0 (Figs. 5a–9a) and ℘ = 1 (Figs. 5b–9b).

In the case when the complex system is loaded by stationary concentrated
force and for damping coefficient of the visco-elastic interlayer ℘=1 (Figs. 5b–9b),
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the amplitudes of forced vibrations achieve a value approximately 55–63% smaller
than the amplitudes of forced vibrations for damping coefficient of the elastic
interlayer ℘ = 0 (Figs. 5a–9a).

The effects of stationary dynamical force in the complex system with visco-
elastic inertial interlayer ℘ = 1 are presented in Fig. 5b for the theoretical A and
experimental A∗ investigations.

In the case when the complex system is loaded by a stationary dynamical
force, for the experimental amplitudes A∗ of forced vibrations we obtain a value
approximately 7% smaller than the amplitudes of forced vibrations for the ana-
lytical amplitudes A.

a) b)

Fig. 5. Forced vibrations of the complex system for the stationary force and γ = 1, ε = 1;
a) ℘ = 0, b) ℘ = 1.

a) b)

Fig. 6. Forced vibrations of the complex system for the stationary force and γ = 0.01, ε = 1;
a) ℘ = 0, b) ℘ = 1.

After analysing the results presented in Figs. 5b–9b where damping coefficient
in the interlayer occurs, we state that the visco-elastic inertial interlayer can
be a vibration damper for the elastic plate which is loaded by the stationary
dynamical force acting at the point x = 0.6a, y = 0.6b and varying in time t.

In the case when the damping coefficient is equal to zero, presented in
Figs. 5a–9a, resonance in the complex plate with an elastic inertial interlayer
occurs, because real frequency ±ωn1n2 of free vibrations is coinciding with real
frequency ωo of forced vibrations. In the case when damping coefficient is dif-
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ferent from zero, presented in Figs. 5b–9b, no resonance in the complex plate
with a visco-elastic inertial interlayer, because complex eigenfrequency νn1n2 =
iηn1n2 ±ωn1n2 of free vibrations (Fig. 2) is do not coinciding with real frequency
ωo of forced vibrations.

The effect of stationary dynamical force in the complex system with a visco-
elastic interlayer is presented in Figs. 5–7 for the various Young moduli of the
interlayer γ = 1 (Fig. 5), γ = 0.01 (Fig. 6) and γ = 0.0001 (Fig. 7).

a) b)

Fig. 7. Forced vibrations of the complex system for the stationary force and γ = 0.0001,
ε = 1; a) ℘ = 0, b) ℘ = 1.

In the case when the complex system with damping is loaded by the station-
ary dynamical force, for the Young modulus of the visco-elastic interlayer γ = 1
(Fig. 5), the amplitudes of forced vibrations achieve a value approximately 65%
smaller than the amplitudes of forced vibrations for the Young modulus of the
visco-elastic interlayer γ = 0.01 (Fig. 6). For the Young modulus of the visco-
elastic interlayer γ = 0.01 (Fig. 6), the amplitudes of forced vibrations achieve
a value approximately 60% smaller than the amplitudes of forced vibrations for
the Young modulus of the visco-elastic interlayer γ = 0.0001 (Fig. 7).

The effect of stationary dynamical force in the complex system with a visco-
elastic interlayer is presented in Figs. 5, 8, 9 for various thicknesses of the inter-
layer ε = 1 (Fig. 5), ε = 0.6 (Fig. 8) and ε = 0.3 (Fig. 9).

a) b)

Fig. 8. Forced vibrations of the complex system for the stationary force and γ = 1, ε = 0.6;
a) ℘ = 0, b) ℘ = 1.
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a) b)

Fig. 9. Forced vibrations of the complex system for the stationary force and γ = 0, ε = 0.3;
a) ℘ = 0, b) ℘ = 1.

In the case when the complex system with damping is loaded by the station-
ary dynamical force, for a small thickness of the visco-elastic interlayer ε = 0.3
(Fig. 9) the amplitudes of forced vibrations achieve a value approximately 79%
smaller than amplitudes of forced vibrations for a large thickness of the visco-
elastic interlayer ε = 0.6 (Fig. 8). For a small thickness of the visco-elastic
interlayer ε = 0.6 (Fig. 8), the amplitudes of forced vibrations achieve a value
approximately 95% smaller than the amplitudes of forced vibrations for a large
thickness of the visco-elastic interlayer ε = 1 (Fig. 5).

In the second case, small transverse vibrations of the complex system with
a visco-elastic inertial interlayer are excited by the dynamical non-stationary
loading expressed by the equations (2.8) or (2.9). The mass is moving with the
speed ς for y = 0.5b.

The effect of moving mass in the complex system with a visco-elastic inertial
interlayer is presented in Fig. 10 for various speeds ς = {1, 2, 3, 5, 6} and various
damping coefficients ℘ = {0, 0.6, 1}.

In the case when the complex system is loaded by a moving mass and when
the damping coefficient of the visco-elastic interlayer ℘ = 1, the amplitudes of
forced vibrations achieve a value approximately 20–30% smaller than the ampli-
tudes of forced vibrations for damping coefficient of the visco-elastic interlayer
℘ = 0.6. In the case when the complex system is loaded by a moving mass
and when the damping coefficient of the visco-elastic interlayer ℘ = 0.6, the
amplitudes of forced vibrations achieve a value approximately 50–60% smaller
than the amplitudes of forced vibrations for damping coefficient of the elastic
interlayer ℘ = 0 (Fig. 10).

In the case when the complex system with damping is loaded by the mass
moving with speed ς = 1, the amplitudes of forced vibrations achieve a value
approximately 10% smaller than the amplitudes of forced vibrations for the
speed ς = 2. In the case when the complex system with damping is loaded
by the moving mass with the speed ς = 2, the amplitudes of forced vibrations
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Fig. 10. Forced vibrations of the elastic and visco-elastic complex system for the moving
mass with the speeds ς = {1, 2, 3, 5, 6} for γ = 1, ε = 1, ℘ = {0, 0.6, 1}, g = 1.
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achieve a value approximately 8% smaller than amplitudes of forced vibrations
for the speed ς = 3. At the critical speed ςcrit = 5, the amplitudes of forced
vibrations achieve a value approximately 35% larger than amplitudes obtained
for the speed ς = 6 (Fig. 10).

The effect of a moving inertial mass in the complex system with elastic ℘ = 0
and visco-elastic ℘ = {0.6, 1} inertial interlayer, for the speed ς = 1, is presented
in Figs. 11–12.

 

℘ = 0  
ς = 1

 

 

ς = 1
℘ = 0 6.  

℘ = 1  

 
 

 
Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 

Fig. 11. Forced vibrations of the elastic and visco-elastic complex system for the mass
moving with the speeds ς = 1 and γ = 0.01, ε = 1, ℘ = {0, 0.6, 1}, g = 1.
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Fig. 12. Forced vibrations of the elastic and visco-elastic complex system for the mass
moving with the speeds ς = 1 and γ = 1, ε = 0.03, ℘ = {0, 0.6, 1}, g = 1.

In the case when the complex system is loaded by the moving mass for
damping coefficients of the visco-elastic interlayer ℘ = {0.6, 1}, the amplitudes
of forced vibrations achieve a value approximately 60–90% smaller than ampli-
tudes of forced vibrations for damping coefficient of the elastic interlayer ℘ = 0
(Figs. 11–12).

The effect of moving mass in the complex system with the elastic and visco-
elastic interlayer is presented in Figs. 11, 12 for the various Young moduli of the
interlayer γ = 1 (Fig. 12) and γ = 0.01 (Fig. 11).
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In the case when the complex system with damping is loaded by a moving
mass, for the Young modulus of the visco-elastic interlayer γ = 0.01 (Fig. 11),
the amplitudes of forced vibrations achieve a value approximately 12% larger
than amplitudes of forced vibrations for the Young modulus of the visco-elastic
interlayer γ = 1 (Fig. 12).

The effect of moving mass in the complex system with the elastic and visco-
elastic interlayer is presented in Figs. 11, 12 for various thicknesses of the in-
terlayer ε = 1 (Fig. 11) and ε = 0.3 (Fig. 12). In the case when the complex
system with damping is loaded by a moving mass, for a small thickness of the
visco-elastic interlayer ε = 0.3 (Fig. 12), the amplitudes of forced vibrations
achieve a value approximately 33% smaller than amplitudes of forced vibrations
for a large thickness of the visco-elastic interlayer ε = 1 (Fig. 11).

After analysing the results presented in Figs. 11–12 when damping coeffi-
cient ℘ = {0.6, 1} in the interlayer occurs, we conclude that the visco-elastic
inertial interlayer can be the vibration damper for the elastic plate which is dy-
namically loaded by the moving mass and varying in time t. In the case when
damping coefficient is equal to zero ℘ = 0 and in the case when damping co-
efficient is different from zero ℘ = {0.6, 1} presented in Figs. 11–12 no res-
onance occurs in the complex plate with the elastic and visco-elastic inertial
interlayers.

4. Conclusions

• In the case of stationary harmonic loading acting on the compound system,
i.e. the platform, the analysis of displacements and the investigations of
resonance can be considered in the routine way. The choice of mechanical
parameters of the compound system proceeds according to the principles
of the classical theory of linear vibrations.

• The problem of vibrations of a compound system excited by the non-
stationary inertial, moving load have specific attributes. Therefore the
analysis of these vibrations to exceed the general theory of the linear vibra-
tions in the mechanical systems with the time-dependent parameters. It is
well-known that a very important quantity of this compound system is the
relation between the velocity of moving mass and the so-called critical ve-
locity, that is dependent on the ratio of moving mass to the stationary mass
of the mechanical system. In turned out that in the case when the velocity
of moving mass small in comparison with the critical high-velocity. Hence
it follows that there is no danger to exceed the acceptable displacements
in the mechanical system.



332 K. CABAŃSKA–PŁACZKIEWICZ

References

1. R. Bogacz, R. Szolc, On non-linear analysis of the geared drive systems by means of
the wave method, Journal of Theoretical and Applied Mechanics, 31, 2, 393–401, 1993.

2. K. Cabańska–Płaczkiewicz, Vibrations of the sandwich plate with a viscoelastic in-
ertial interlayer, The International Journal of Strength of Materials, 103–115, National
Academy of Sciences of Ukraine, Institute of Problems of Strength, Kiev 2001.

3. K. Cabańska–Płaczkiewicz, Vibrations of the complex system with damping under
dynamical loading, The International Journal of Strength of Materials, 2, 82–101, National
Academy of Sciences of Ukraine, Institute of Problems of Strength, Kiev 2002.

4. J. Cabański, Generalized exact method of analysis of free and forced oscillations in the
non-conservative physical system, Journal of Technical Physics, 41, 4, 471–481, 2000.

5. Kl. Cremer, M. Heckel, E. Ungar, Structure-Borne Sound, Structural Vibrations
and Sound Radiation at Audio Frequencies, Springer-Verlag, Berlin 1988.

6. R.A. Di Taranto, J. R. Mcgraw, Vibratory bending of damped laminated plates, Jour-
nal of Engineering for Industry, 91, 1081–1090, Transactions of the American Society of
Mechanical Engineers, 1969.

7. G. Jemielita, The technical theory of a plate of anaverage thickness, Journal of Engi-
neering Transactions, 199–220, 1974.

8. G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastichen Scheibe, Jour-
nal fur die Reine und Angewandte Math., 40, 1, 55–88, 1850.

9. S. Kukla, Dynamic Green’s functions in free vibration analysis of continuous and
discrete-continuous mechanical systems, Pub. of the Częstochowa Univ. of Tech., Często-
chowa 1999.

10. W. Kurnik, A. Tylikowski, Mechanics of laminated elements, Pub. of the Warsaw
Univ. of Tech., Warsaw 1997.

11. R.D. Mindlin, A. Schacknow, H. Deresewicz, Flexural vibrations of rectangular
plates, Journal of Applied Mechanics, 23, 3, 430–436, 1956.

12. D. Nashif, D. Jones, J. Henderson, Vibration damping, Mir, Moskva 1988.

13. J. Nizioł, J. Snamina, Free vibration of the discrete-continuous system with damping,
Journal of Theoretical and Applied Mechanics, 28, 1–2, 149–160, 1990.

14. W. Nowacki, The Building Dynamics, Warsaw, Arkady 1972.

15. Z. Oniszczuk, Free vibrations of elastically connected rectangular double-plate compound
system, Building Engineering, Pub. of the Warsaw Univ. of Tech., 132, 183–109, Warsaw
1998.

16. Z. Oniszczuk, Vibration analysis of the compound continuous systems with elastic con-
straints, Pub. of the Rzeszow Univ. of Tech., Rzeszów 1997.

17. Z. Osiński, Damping of the mechanical vibration, PWN, Warsaw 1979.

18. J. Osiowski, A draft of the operator calculus, Warsaw: WNT, 1981.

19. N.D. Pankratova, B. Nikolaev, E. Świtoński, Nonaxisymmetrical deformation of
flexible rotational shells in classical and improved statement, Journal of Engineering Me-
chanics, 3, 2, 89–96, 1996.



DYNAMICS OF THE COMPLEX SYSTEM WITH ELASTIC ... 333

20. N.D. Pankratova, A.A. Mukoed, Deformation of the thick laminated orthotropic
plate, XXXIV Symposium of Model. in Mech., Silesian Univ. of Tech., 122, 251–256,
Gliwice 1995.

21. E. Reissner, On transverse bending of plates, including the effect of transverse shear
deformation, Int. Journal of Solid Structures, 11, 569–573, 1975.

22. M. Renaudot, Etude de l’influence des charges en mouvement sur la resistance des ponts
metallique, Annales des Ponts et Chausses, 1, 145–204, 1861.

23. Cz. Rymarz, Mechanics of continua, PWN, Warsaw 1993.

24. W. Szcześniak, The problems of vibrations of dynamical plates under moving inertial
loads, Building Engineering, Pub. of the Warsaw Univ. of Tech., 119, 1–112, Warsaw
1992.

25. W. Szcześniak, Vibrations of plates. Theoretical fundamentals of the mechanics of track-
airfield structure, Research Institute of Track and Bridges, Warsaw 2000.

26. S. P. Timoshenko, S. Woinowsky-Krygier, Theory of plates and shells, Arkady, New
York, Toronto, London 1956.

27. F. Tse, I. Morse, R. Hinkle, Mechanical vibrations theory and applications, Allyn and
Bacon, Boston 1978.

28. A. Tylikowski, Influence of bonding layer on piezoelectric actuators of an axisymmetrical
annular plate, Journal of Theoretical and Applied Mechanics, 38, 3, 607–621, 2000.

29. T.M. Wang, Natural frequencies of continuous Timoshenko beams, Journal of Sound and
Vibration, 13, 409–414, 1970.

30. E. Winkler, Die Lehre von der Elastizität und Festigkeit, Dominicus, Prag 1867.

31. M. Woźniak, Railway embankment as the building foundation, Mathematical Modelling,
Scientific Treatises and Monograhs, SGGW-AR, Warsaw 1991.

Received September 25, 2006; revised version November 28, 2007.



ENGINEERING TRANSACTIONS • Engng. Trans. • 55, 4, 335–344, 2007
Polish Academy of Sciences • Institute of Fundamental Technological Research

NORMAL PENETRATION OF THE RIGID PENETRATOR INTO
ELASTIC-PLASTIC HALF-SPACE WITH VISCOSITY

E. W ł o d a r c z y k

Military University of Technology
Faculty of Mechatronic

S. Kaliskiego 2, 00-908 Warszawa, Poland

The analytical closed-form solution of the normal penetration problem of a rigid core
(penetrator) of a jacket-bullet into elastic-plastic half-space (thick target) is presented in this
paper. The cohesive resistance of the target, frictional effects, and acceleration of the target
material in the neghbourhood of the penetrator (virtual mass effect) is taken into consideration.
On the basis of the derived closed analytical formulae, influence of these parameters on the
penetration depth may be investigated. Among other things, it appears from calculations that
the boundary penetration depth is intensivly reduced by the force of viscous friction.

Moreover, the mean value of the coefficient of viscous friction (µ) for a given penetrator-
target system may be determined. For this purpose it is necessary to define experimentally the
penetration depth hk at a given impact velocity.

Key words: terminal ballistics, normal penetration, jacket-bullet, rigid penetrator.

1. Introduction

A penetration of projectiles into various targets has been a vast field of theo-
retical and experimental investigations for many scientists. Wide reviews of the
literature concerning this question have been presented in the papers [1, 2].

It is well known that one of the principal parameters which bounds the
penetration depth of projectile into a target, is the impact velocity. The im-
pact velocity values of small arms projectiles are contained within the interval
100÷1000 m/s. In this interval of the impact velocity, the ogival penetrator,
made of a sintered carbide or of the special-purpose steel, keeps primary shape
during of the penetration into the soft metal target. This fact is shown in Fig. 1.
The braked undeformed core, and the pulled-off core and pressed jacket of the
bullet is depicted in this figure. In these cases, the penetrator (core) can be
approximated by a rigid body.

It results from the scientific literature that axial resisting force of the tar-
get, acting on a unit of the penetrator cross-section, is defined by the following
formula [1, 2]:

(1.1) σ = c + bυ + aυ2.
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Fig. 1. The braked core (sintered carbide) of the jacket bullet (calibre: 7.62 mm) in the
duralumin (PA6) target. Impact velocity V = 812 m/s.

The terms on the right-hand side of Eq. (1.1) are associated with the cohesive
resistance of the target, frictional effects, and the acceleration of target material
in the neighbourhood of the projectile (virtual mass effect), respectively.

The problem of penetration of the rigid projectile into a metal target without
the second term of the formula (1.1) was considered [1–5]. Analytical solution
of this problem for complete formula (1.1), and analysis of the dependence of
the penetration depth on the respective terms of the formula (1.1) have been
presented in this paper.

2. Formulation of the problem

We assume that a rigid core of the jacket bullet is a penetrator. The jacket
is separated from the core during embedding of the projectile into a target.
Subsequently the free core penetrates the target, as a rigid penetrator.

Normal penetration of the rigid penetrator into metallic semi-infinite space
(thick target) is considered in this paper. The penetrator has rotational symme-
try. Direction of the penetrator velocity overlaps its axis and is perpendicular to
the plane of the semi-infinite space. On the penetrator acts a unit axial resisting
force of the target, which is defined by the formula (1.1).

Under these assumptions, the penetrator’s motion into metal target can be
described by the following differential equation:

(2.1) ρpL
dυ

dt
= − (

aυ2 + bυ + c
)
,

and by the initial condition

(2.2) υ (0) = V,

where symbols L, ρp and V stand for the penetrator length, density of the
penetrator material and impact velocity, respectively.
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According to the data given in [3–5], the coefficients a and c can be described
by the following expressions:

(2.3) a = kρt, c = Ht,

where symbols Ht, ρt and k denote the dynamic hardness of the target material,
density of the target material and coefficient of the nose shape of the penetrator,
respectively. The value of the coefficient k can be estimated by means of the
formula [6, 7]:

(2.4) k = 1− 1
8

(
D

R

)2

,

where symbols D and R stand for diameter of the greatest cross-section of the
penetrator and the radius of a sphere which approximates the contact space of
the penetrator nose with crater bottom, respectively.

The symbol b denotes the coefficient of the mean absolute viscosity.
We introduce the following dimensionless quantity:

(2.5) µ =
b

ρtV
.

The quantity µ is termed as the mean coefficient of a viscous friction.

3. Solution of the problem

On separating the variables υ and t in Eq. (2.1) and integrating, we obtain:

(3.1)
∫

dυ

aυ2 + bυ + c
= − t

ρpL
+ C,

where an integration constant C is defined by the initial condition (2.2).
The left-hand side of Eq. (3.1) can be expressed by the following functions:

(3.2)
1√
∆

ln

∣∣∣∣∣
2aυ + b−√∆
2aυ + b +

√
∆

∣∣∣∣∣ for b2 > 4ac,

(3.3)
2√−∆

arc tg
2aυ + b√−∆

for b2 < 4ac,

(3.4) − 2
2aυ + b

for b2 = 4ac,

where

(3.5) ∆ = b2 − 4ac.

It results from the above relationships that the considered problem has three
different solutions, which are determined by relations between terms b2 and 4ac.
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3.1. Solution of the problem for large absolute viscosity, i.e.:
b2 > 4ac or µ2 > (4kHt/ρtV

2) = µ2
0

From expressions (3.1) and (3.2), as well as the initial condition (2.2), after
simple transformation, we obtain:

(3.6) ῡ (η) =
µ

2k

[
(1 + c1)

exp (−a1η)
b1 − exp (−a1η)

− (1− c1)
b1

b1 − exp (−a1η)

]
,

where:

(3.7)

η =
V t

L
, ῡ =

υ

V
, µ =

b

ρtV
, a1 = µc1

ρt

ρp
,

b1 =
2k + µ(1 + c1)
2k + µ(1− c1)

, c1 =
√

1− 4k
Ht

µ2ρtV 2
=

√
1−

(
µ0

µ

)2

.

It follows from Eq. (3.6) that the penetrator is completely braked (υ = 0)
after time tk = (L/V )ηk, where

(3.8) ηk =
1
a1

ln
1 + c1

(1− c1)b1
.

The current penetration depth of the penetrator into the target is defined by
the following integral:

(3.9) l(t) =

t∫

0

υ(τ)dτ.

On substituting the relation (3.6) into Eq. (3.9) and integrating, we obtain:

(3.10) h(η) =
µ

2k

[
2c1

a1
ln

b1 − exp (−a1η)
b1 − 1

− (1− c1) η

]
,

where

h =
l

L
.

The boundary (maximal) penetration depth of the penetrator into the target
is defined by the formula:

(3.11) hk = h (ηk) =
µ

2k

[
2c1

a1
ln

b1 − exp (−a1ηk)
b1 − 1

− (1− c1) ηk

]
.
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3.2. Solution of the problem for small viscosity, i.e.:
b2 < 4ac or µ2 < (4kHt/ρtV

2) = µ2
0

In this case, from expressions (3.1) and (3.3), as well as (2.2) we get:

ῡ(η) =
1
2k

[
c2tg

(
arc tg

2k + µ

c2
− c2

2
ρt

ρp
η

)
− µ

]
,(3.12)

ηk =
2
c2

ρp

ρt

(
arc tg

2k + µ

c2
− arc tg

µ

c2

)
,(3.13)

where

c2 =

√
4k

Ht

ρtV 2
− µ2 =

√
µ2

0 − µ2.

Substituting relationship (3.12) into Eq. (3.9) and integrating, we have:

(3.14) h(η) =
1
k

ρp

ρt

[
ln

∣∣∣∣
cosα (η)
cosα0

∣∣∣∣−
µ

2
ρt

ρp
η

]
,

where

(3.15)

α(η) = arc tg
2k + µ

c2
− c2

2
ρt

ρp
η,

α0 = arc tg
2k + µ

c2
.

The boundary penetration depth is defined in this case by the formula:

(3.16) hk = h(ηk) =
1
k

ρp

ρt

[
ln

∣∣∣∣
cosα (ηk)

cosα0

∣∣∣∣−
µ

2
ρt

ρp
ηk

]
,

where

(3.17) α(ηk) = arc tg
2k + µ

c2
− c2

2
ρt

ρp
ηk = arc tg

µ

c2
.

It results from formulae (3.15) and (3.17) that for µ = 0 [lack of the viscosity
term in the expression (1.1)], there are:

(3.18)
α0 = arc tg

2k√
4kHt/ρtV 2

=

√
k
ρtV 2

Ht
,

α (ηk) = 0.
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Substituting the formulae (3.18) into the relation (3.16) and taking into con-
sideration the following trigonometric identity:

arc tgx = arc cos
(
1/

√
1 + x2

)
,

we get:

(3.19) hk =
1
2k

ρp

ρt
ln

(
1 + k

ρtV
2

Ht

)
.

Such expression has been derived in papers [3–5].

3.3. Singular solution: b2 = 4ac or µ2 = µ2
0 = 4kHt/ρtV

2

In accordance with the formulae (3.1), (3.4) and (2.2) we obtain:

(3.20) ῡ (η) =
1
2k

[
2 (2k + µ0)

2 + (ρt/ρp) (2k + µ0) η
− µ0

]
.

In this case, the penetrator is completely braked on the lapsing of time

(3.21) ηk =
V tk
L

=
4k

µ0 (ρt/ρp) (2k + µ0)
.

After substitution of the relationship (3.20) into integral (3.9) and integrat-
ing, we have:

(3.22) h (η) =
l (η)
L

=
1
k

ρp

ρt

[
ln

(
1 +

2k + µ0

2ρp/ρt
η

)
− µ0

2ρp/ρt
η

]
.

The boundary penetration depth in this case is:

(3.23) hk = h (ηk) =
1
k

ρp

ρt

[
ln

(
1 +

2k

µ0

)
− 2k

2k + µ0

]
.

Thus, we obtain the analytical solution of the examined problem for each of
the mean values of the viscous friction coefficient µ.

4. Preliminary analysis of the boundary penetration depth

It follows from the above derived formulae, that normal penetration depth of
the core of the jacket projectile into metal half-space depends on the following
parameters: dynamic hardness and density of target metal (Ht, ρt), impact ve-
locity (V ), unit mass of the penetrator (ρpL), nose shape of the penetrator (k),
and the mean coefficient of the viscous friction (µ).



NORMAL PENETRATION OF THE RIGID PENETRATOR ... 341

The preliminary analysis of the boundary penetration depth hk has been
made for the following materials:

penetrator: sintered metal (WHA), ρp = 17200 kg/m3;
target: 1. Ingot iron, ρ = 7850 kg/m3, Ht = 1638 MPa;

2. Aluminium, ρ = 2700 kg/m3, Ht = 260 MPa;
3. Duralumin, ρ = 2800 kg/m3, Ht = 1300 MPa.

Two values of the coefficient k were assumed, namely:
k = 0.5 – hemispherical – ended projectile,
k = 1.0 – flat – ended projectile.
Some calculation results are depicted in Figs. 2–5. It seems that the quali-

tative variations of the boundary penetration depth hk versus coefficient µ are
similar for various materials of the target. On the contrary, significant quantita-
tive differences occur among curves hk(µ) plotted for targets made from various
metals. These variations are visible in the Figs. 2–5. For example, the boundary
penetration depth into aluminium target is about five times greater (at µ ≈ 0)
than into the duralumin one (Fig. 5). This difference decreases when the coeffi-
cient µ increases.

The penetration depth is intensively reduced by increase of the coefficient µ.
The highest gradient decreasing of the penetration depth occurs in the initial
increase stage of the coefficient µ. The viscous friction decreases the penetration
depth several times in comparison with the frictionless penetration.

Fig. 2. Variation of quantity hk as a function of coefficient µ.
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Fig. 3. Variation of quantity hk as a function of coefficient µ.

Fig. 4. Variation of quantity hk as a function of coefficient µ.
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Fig. 5. Variation of quantity hk as a function of coefficient µ for the three
target-penetrator systems.

Let us observe conclusion that for a given penetrator-target system, the mean
value of the coefficient µ may be defined by means of the formulae (3.11) or
(3.16). For this purpose it is necessary to define experimentally the quantity hk

at the given impact velocity and then the mean value of the coefficient µ can be
determined.

5. Conclusions

The analytical model of normal penetration of the rigid penetrator into the
thick metal target has been presented in this paper. In this model, cohesive
resistance of the target, frictional effects, and the acceleration of target material
in the neighbourhood of the penetrator (virtual mass effect), have been taken
into consideration. On the basis of the derived closed analytical solution, the
influence of the respective terms of the formulae (1.1) on the penetration depth
is investigated.

It is found that the penetration depth is intensively reduced by the forces
of viscous friction. By means of this model, the mean value of the coefficient of
viscous friction (µ) for a given penetrator-target system may be also determined.

Preliminary experimental investigations support the usefulness of the pre-
sented theoretical model in the calculations of the terminal ballistics.
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