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THREE-PARAMETER OPTIMIZATION OF AN AXIALLY LOADED
BEAM ON A FOUNDATION
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Institute of Physics, Cracow University of Technology

1 Podchorążych Str., 30-084 Kraków, Poland

A beam of circular cross-section, made of viscoelastic material of Kelvin–Voigt type, is
considered. The beam is symmetric with respect to its center, the length and volume of the
beam are fixed and its ends are simply supported. The radius of the cross-section is a cubic
function of co-ordinate. The beam interacts with a foundation of Winkler, Pasternak or Hetényi
type and is axially loaded by a non-conservative force P (t) = P0 + P1 cos ϑt. Only the first
instability region is taken into account. The shape of the beam is optimal if the critical value
of P1 is maximal. A few numerical examples are presented on graphs.

1. Introduction

Problem of stability and parametric optimization of an axially loaded beam
interacting with a foundation is considered. The radius of the circular cross-
section of the beam is assumed to be a cubic polynomial of co-ordinate and
an additional strength condition is added. Foundations of Winkler, Pasternak
and Hetényi type are taken into account. Only the first instability region is
considered. The optimal shape of the beam is characterized by variation of its
cross-section radius. This paper is a continuation of the papers [1, 2] in which
one-parameter and two-parameter optimization of the problem were considered.

Optimization of viscoelastic cantilever beam with respect to its dynamic sta-
bility was presented by A. Gajewski and A. S. Foryś during Euromech Col-
loquium 190 [3], cf. [4]. Optimization of structures is the subject of monograph
by A. Gajewski and M. Życzkowski [5]. A study concerning to optimization
of mechanical systems in conditions of parametric resonances was written by
A. Foryś [6]. Some new approach to the solution of optimization problem for a
compressed column is given by A. Gajewski [7, 8].

The Lagrange problem on an optimal column is analysed in the paper by
A. P. Seyranian, O. G. Privalova [9]. Parametrically excited beam and its
optimal shape is considered in the paper by A. A. Mailybaev, H. Yabuno
and H. Kaneko [10].
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2. Formulation of the problem

A straight beam of circular cross-section (see Fig. 1) is made of viscoelastic
material of Kelvin–Voigt type. The undeformed beam axis coincides with the x-
axis. In view of symmetry of the problem we assume that the beam is symmetric
with respect to its centre x = l/2. The length l of the beam and its volume V are
fixed. We assume that the cross-section of the beam is non-zero i.e. the radius
r(ξ) (where ξ = x/l ) of the cross-section satisfies the assumption

(2.1) r(ξ) > 0, ξ ∈ [0, 1].

Fig. 1. The shape of the beam.

We assume that the radius is given by the following formulae:

(2.2) r(ξ) ≡ r0(ε1, ε2, ε3)ϕ(ξ; ε1, ε2, ε3)

=






r0

(
1 − ε1

2
− ε2

4
− ε3

8
+ ε1ξ + ε2ξ

2 + ε3ξ
3
)
, ξ ∈

[
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2

]

r0

[
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+
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8
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]
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2
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]

where r0 > 0. Values of the parameters ε1, ε2, ε3 determine the shape of the
beam. For a prismatic beam ε1 = ε2 = ε3 = 0. In this paper one assumes that
ε3 6= 0. On the basis of the assumption (2.1) employed for ξ = 0 i.e. r(0) > 0,
one has the inequality

(2.3) 1 − ε1
2

− ε2
4

− ε3
8
> 0.

The volume of the beam is

V = 2πl

1/2∫

0

r2(ξ)dξ = πr20l/f(ε1, ε2, ε3),

where

(2.4) f(ε1, ε2, ε3)

=

[
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3
− 3ε3

16
+
ε21
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+
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+
9ε23
896

+
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+
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7ε2ε3
192

]−1

.
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Therefore one obtains the following formula:

(2.5) r0 =

√
V f(ε1, ε2, ε3)

πl
.

The three independent parameters ε1, ε2, ε3 are the optimization parameters.
Their admissible values must belong to a set in R3 in which the inequality (2.1)
is satisfied. One boundary (a plane) of this set is given by (2.3).

So we look for such values of parameters ε1, ε2, ε3 for which the value of the
cubic polynomial ϕ(ξ; ε1, ε2, ε3) given by the first formula (2.2) is positive for

ξ ∈
[
0,

1

2

]
.

To this end the following reasoning is applied. Beacause of the assumption
that ε3 6= 0, the possible graphs of this polynomial can be of the forms shown in
Figs. 2–5, where ϕ = ϕ(ξ; ε1, ε2, ε3).

For the graphs shown in Figs. 2 and 3 the polynomial has no extremes, so
the following condition is fulfilled:

(2.6) ∆ ≡ 3ε1ε3 − ε22 ≥ 0.

For the graphs shown in Figs. 4 and 5 the polynomial has two extremes, so the
following condition is fulfilled:

(2.7) ∆ < 0.

Fig. 2. The cubic polynomial.



104 A. S. FORYŚ, A. FORYŚ

Fig. 3. The cubic polynomial.

For the cases shown in Figs. 2 and 3, from the inequalities r(0) > 0, r

(
1

2

)
=

r0 > 0 the condition (2.1) results. Therefore the conditions (2.3) and (2.6) define
the set of admissible values of the optimization parameters for these cases.

If ∆ < 0 the situation is more complicated. In this case the polynomial ϕ given
by the first formula (2.2) has two extremes at the points ξmin = (−ε2+

√
−∆)/3ε3

and ξmax = (−ε2 −
√
−∆)/3ε3 .

First we cosider the case ε3 > 0 , shown in Fig. 4. The points ξ = 0 and

ξ =
1

2
i.e. the ends of the interval

[
0,

1

2

]
, can be situated in the following six

positions: (11), (33), (22), (21), (31), (32), where each digit denotes the interval
indicated in Fig. 4. To satisfy the condition (2.1) the following inequalities must
be satisfied for succesive positions:

(11) : ξmin ≤ 0,(2.8)

(33) : ξmax ≥ 1

2
,(2.9)

(22) : ξmax ≤ 0 ∧ ξmin ≥ 1

2
,(2.10)

(21) : ξmax ≤ 0 ∧ ξmin ∈
(

0,
1

2

]
∧ ϕ(ξmin) > 0,(2.11)

(31) : ξmax > 0 ∧ ξmin ≤ 1

2
∧ ϕ(ξmin) > 0,(2.12)

(32) : ξmin ≥ 1

2
∧ ξmax ∈

(
0,

1

2

]
.(2.13)
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Fig. 4. The cubic polynomial.

Fig. 5. The cubic polynomial.

Next we consider the case ε3 < 0, illustrated in Fig. 5. To satisfy the condition
(2.1), the following inequalities must be satisfied for succesive positions:

(11) : ξmax ≤ 0,(2.14)

(33) : ξmin ≥ 1

2
,(2.15)

(22) : ξmin ≤ 0 ∧ ξmax ≥ 1

2
,(2.16)

(21) : ξmin ≤ 0 ∧ ξmax > 0 ∧ ξmax ≤ 1

2
,(2.17)
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(31) : ξmin > 0 ∧ ξmax <
1

2
∧ ϕ(ξmin) > 0,(2.18)

(32) : ξmin > 0 ∧ ξmin <
1

2
∧ ξmax ≥ 1

2
∧ ϕ(ξmin) > 0.(2.19)

For ∆ < 0 the above conditions define the admissible set in ε1ε2ε3 space, i.e. the
set in which the radius of cross-section of the beam is positive.

The beam under consideration is axially loaded by a non-conservative force
of the form

(2.20) P (t) = P0 + P1 cosϑt,

where t is time and P0, P1, ϑ are positive constants. The beam interacts with
a foundation of Winkler, Pasternak or Hetényi type with damping. A study of
different foundation models has been presented by Kerr [11].

The following dimensionless quantities are introduced [1, 12]:

υ =
w

l
, τ = (π/2l2)

√
πEV/ρlt, α = 4l4P0/πEV

2,

β = 4l4P1/πEV
2, Λ = (πλ/2l2)

√
πV/ρlE, κ = 4kl6/π3EV 2,

µ = 4Gl4/πEV 2, θ = (2l2/π)
√
ρl/πEV ϑ, γ = (2cl4/π2EV 2)

√
πEV/ρl,

δ = 4πDl2/EV 2, f ≡ f(ε1, ε2, ε3), ϕ ≡ ϕ(ξ; ε1, ε2, ε3),

where w(x, t) is the transverse displacement of the cross-section in the space
coordinate x at the time t, E is Young’s modulus, λ and c are the coefficients of
internal and external damping respectively, ρ is the mass density of the beam, k
is the foundation stiffness per unit length, G is the foundation modulus and D
is the foundation flexural stiffness.

The equation of the transverse vibrations of the beam on its foundation has
the form [1, 12]

(2.21)
1

π2
f2 ∂

2

∂ξ2

(
ϕ4∂

2υ

∂ξ2
+ Λϕ4 ∂3υ

∂ξ2∂τ

)
+ α

∂2υ

∂ξ2
+ β

∂2υ

∂ξ2
cos θτ

+ π2fϕ2∂
2υ

∂τ2
+ π2κυ + π2γ

∂υ

∂τ
+

δ

π2

∂4υ

∂ξ4
− µ

∂2υ

∂ξ2
= 0,

where µ ≡ δ ≡ 0 for a Winkler foundation, δ ≡ 0 for a Pasternak foundation
and µ ≡ 0 for a Hetényi foundation respectively.

It is assumed that the two ends of the beam are simply supported:

(2.22)
υ(0, τ) = 0, [ϕ4(∂2υ/∂ξ2 + Λ∂3υ/∂2ξ∂τ)](0, τ) = 0,

υ(1, τ) = 0, [ϕ4(∂2υ/∂ξ2 + Λ∂3υ/∂2ξ∂τ)](1, τ) = 0.
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From the Eq. (2.21) with the boundary conditions (2.22) one can determine
the first instability region for the beam under consideration. Parametric opti-
mization of the shape of the beam consists in finding those admissible values of
the parameters ε1, ε2, ε3 for which the value of P1 i.e. the oscillatory component
of the loading force, causing beam’s instability, is maximal.

3. Solution of the problem

The problem is approximately solved by the Galerkin method; cf. [1, 2].
Therefore one looks for the solution of Eq. (2.21) in the form

(3.1) υ(ξ, τ) =

N∑

n=1

qn(τ) sinnπξ

and obtains the set of ordinary differerential equations for the unknown functions
qn(τ)

(3.2)
N∑

k=1

(Ankq̈k +Bnkq̇k + Cnkqk +Dnkqk cos θτ) = 0, n = 1, ..., N,

where

Ank = f(ε1, ε2, ε3)

1∫

0

ϕ2(ξ; ε1, ε2, ε3) sinnπξ sin kπξdξ,

Bnk =
1

2
γδnk + Λn2k2f2(ε1, ε2, ε3)

1∫

0

ϕ4(ξ; ε1, ε2, ε3) sinnπξ sin kπξdξ,

(3.3) Cnk =
1

2
(κ+ µn2 + δn4 − αn2)δnk

+ n2k2f2(ε1, ε2, ε3)

1∫

0

ϕ4(ξ; ε1, ε2, ε3) sinnπξ sin kπξdξ,

Dnk = −1

2
βn2δnk.

Here δnk is the Kronecker delta.
In further considerations only the first two Eqs. (3.2) are retained; these are

equations for the functions q1(τ), q2(τ). From these two equations the boundaries
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of the first instability region of the beam are determined. The instability region
occurs in the neighbourhood of twice the value of the first natural frequency of
the beam [3, 4].

To determine the boundaries of the first instability region one assumes the
solution of Eqs. (3.2) in the following form [13, 14]:

(3.4) qk(τ) = Ak sin
θτ

2
+Bk cos

θτ

2
, k = 1, 2,

where Ak, Bk are constants. After inserting (3.4) into the system of Eq. (3.2),
a system of four algebraic linear homogeneous equations for Ak, Bk is obtained.
The non-zero solution of these equations exists if the determinant of the system
equals zero. This leads to the biquadratic equation for dimensionless amplitude
β of the oscillating component of loading, in the form ([1])

(3.5)
1

16
β4 −

[
h2

11 +
1

16
h2

22 + (θ2/4)B2
11 + (θ2/64)B2

22

]
β2 + h2

11h
2
22

+ (θ2/4)
[
h2

11B
2
22 + h2

22B
2
11 + (θ2/4)B2

11B
2
22

]
= 0,

where

(3.6) h11 = −(θ2/4)A11 + C11, h22 = −(θ2/4)A22 + C22.

From Eq. (3.5) one determines the boundaries of the first instability region
i.e. the critical value of β as a function of θ. Inside the instability region the
critical value attains its minimal value given by the formula

(3.7) βmin = 4 |B11|
√
C11

A11
− B11

2

4A2
11

.

The critical value of β depends on the values of optimization parameters ε1, ε2, ε3.
The shape of the beam is optimal if the value of βmin is maximal.

The results of paper [2] show one difficulty: in many cases the radius of
the cross-section of the beam attains very small values. This fact undoubtedly
questions the obtained results. Thus in the present paper the following strength
condition is added – one assumes that the maximal stress, i.e. the stress, at the
smallest cross-section of the beam, does not exceed the limity stress σ0 of the
material:

(3.8)
P0 + P1

πr2min

≤ σ0.
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4. Parametric optimization of the shape of the beam

To realize a few numerical calculations one assumes: E = 2.1 · 1011 Pa,
σ0 = 2.2 · 108 Pa, V/l3 = 10−4. Therefore the strength condition (3.8) takes the
form

(4.1)
α+ β

f(ε1, ε2, ε3)ϕ2
min

≤ 13.37.

The numerical calculations have been performed for εk ∈ [−10, 10], k = 1, 2, 3
with step 0.1 and the maximum of βmin has been found out.

The following denotations are adopted:

Winkler model (µ = δ = 0)
case 1: γ = 0.03, κ = 0.1, α = 0.5, Λ = 0.01,

case 2: γ = 0.1, κ = 0.1, α = 0.5, Λ = 0.01,

case 3: γ = 0.1, κ = 0.1, α = 0.8, Λ = 0.01.

Pasternak model (δ = 0)
case 4: γ = 0.005, κ = 0.1, µ = 0.2, α = 0.5, Λ = 0.002,

case 5: γ = 0.1, κ = 0.1, µ = 0.2, α = 0.5, Λ = 0.01.

Hetényi model (µ = 0)

case 6: γ = 0.005, κ = 0.1, δ = 0.2, α = 0.5, Λ = 0.002,

case 7: γ = 0.1, κ = 0.1, δ = 0.2, α = 0.5, Λ = 0.01.

The results are tabulated and illustrated on the graphs which are shown in
Figs. 6–10, where

(4.2) R(ξ) = r(ξ)/l.

For comparison in Figs. 8–10 the graphs obtained in virtue of reference [2] are
shown by dashed lines.

Case ε1 ε2 ε3 βopt

1 −1.0 0.2 9.9 0.382
2 −1.1 0.5 9.5 0.623
3 −1.2 0.3 10.0 0.584
4, 6 −3.4 4.2 8.8 0.316
5, 7 −3.2 4.4 7.4 1.404

The optimal shape of the beam depends on the values of parameters describ-
ing materials of the beam and foundation. The optimal shape of the beam is not
a universal one.

Sensitivity of the shape of the beam i.e. R(ξ) to the values of ε1, ε2, ε3 is
presented by Fig. 11 where the graphs for optimal case and for εk−0.1, k = 1, 2, 3
are shown.
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Fig. 6. The graph R(ξ), case 1.

Fig. 7. The graph R(ξ), case 4, 6.

Fig. 8. The graph R(ξ), case 2.
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Fig. 9. The graph R(ξ), case 3.

Fig. 10. The graph R(ξ), case 5, 7.

Fig. 11. The graph R(ξ), case 1, for different εk.
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5. Final remarks

The parametrical optimization of an axially loaded viscoelastic beam on a
foundation has been discussed. The radius of the cross-section of the beam is
a cubic function of co-ordinate. The beam performs transverse vibration and
interacts with a foundation of Winkler, Pasternak or Hetényi type. The values of
three optimization parameters defining optimal shape of the beam are calculated
for a number cases. Results are shown on the graphs.

The results of the paper are the extension and confirmation of the results
obtained in the previous papers [1, 2].
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MODELLING OF CONTINUUM DAMAGE FOR APPLICATION
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CONSTITUTIVE EQUATIONS
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The aim of the paper is to propose an application of the continuum damage model proposed
by Lemaitre to the elasto-viscoplastic constitutive equations of the Bodner–Partom model.
The proposed approach has been implemented into subroutines of the FE code MSC.Marc as
the user’s viscoplastic subroutine UVSCPL and has been used to perform the FE numerical
simulations. Comparison is given of the following two variants: 1) uniaxial creep test results
for a nickel-based B1900+Hf superalloy at high temperatures and 2) calculation based on the
constitutive equations with the inclusion of isotropic damage models.

Key words: elasto-viscoplastic, Bodner–Partom, damage, FEM.

1. Introduction

The Bodner–Partom constitutive model belongs to the group of unified theo-
ries, proposed by Bodner and Partom [7] at the beginning of the 1970s. These
constitutive equations have been frequently utilized in modelling of the elasto-
viscoplastic hardening of a number of materials, with a great many practical
engineering applications [2]. Its application in the elasto-viscoplastic static and
dynamic analysis of plates and shells is shown in many examples: Kłosowski
et al. [21] and [23], Sansour and Kollmann [30], Woźnica [39], Kłosowski
[20], Stoffel [34] and [35], Sansour and Wagner [31] and [32], Steck [33],
Kłosowski and Woźnica [22]. Description of the behaviour of glassy poly-
mers (see e.g.: Frank and Brockman [16], Zaïri et al. [42]) and technical
coated fabrics (see e.g.: Kłosowski et al. [24]) is also shown with reference to
the presented model. On the other hand, Chełmiński and Gwiazda [14] stud-
ied application to the model of Bodner–Partom monotonicity of operators of the
viscoplastic response.

In the present paper the author makes a detailed investigation of modelling
of continuum damage for application in the elasto-viscoplastic Bodner–Partom
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model. In the second part of the paper, which is preceded by an introduction, the
detailed description of the model is given. In the third part the author proposes
an application of the continuum damage model proposed by Lemaitre [25]
to the elasto-viscoplastic constitutive equations of the Bodner–Partom model.
Next section concerns the description of the finite element procedure which was
used for the open commercial FE program implementation. The last part gives
numerical simulation examples of the creep tests for B1900+Hf alloy.

2. Bodner–Partom equations

At the beginning it is necessary to assume the isotropic material and strain
additivity, where the total strain rate ε̇ is decomposed into the elastic part ε̇

E

and the inelastic part ε̇
I according to the formula

(2.1) ε̇ = ε̇
E + ε̇

I .

Therefore, the relation between the stress rate σ̇ and strain rate ε̇
E , for the

assumed isotropic material, is defined as:

(2.2) σ̇ = B∗ : ε̇
E = (1 −D) · B :

(
ε̇ − ε̇

I
)
,

where D ∈ 〈0, 1〉 is the scalar parameter of the isotropic damage and B∗ is the
effective tensor of elasticity for the damaged material, which is expressed by the
standard elasticity tensor B, reduced by the damage parameter.

Since Kachanov [19] and Rabotnov [29] have proposed the concept
of effective stress, numerous damage models have been developed (see e.g.:
Kachanov [18] or Lemaitre [26]). Most of the investigations on continuum
damage use a power law for the damage equation evolution. Bodner and Chan
[6] proposed an alternative functional form of the evaluation equation which
leads to an exponential equation for damage development:

(2.3) Ḋ =
h

H
·
[
ln

(
1

D

)(h+1)/h
]
·D · Q̇,

where h and H are the damage material parameters and Q is the multiaxial
stress function obtained from the equation included in [17]:

(2.4) Q̇ =
(
α1 · σ+

max + α2 · J (σ) + α3 · tr (σ)+
)z
,

where σ+
max and tr (σ)+ are the maximum principal tensile stress and the first

stress invariant, respectively. Next α1, α2, α3, z are the material constants.
It should be noted that the parameters α1, α2 and α3 satisfy the condition
α1 + α2 + α3 = 1.0.
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It is necessary to point out that Bodner and Chan [6], besides of the
isotropic damage model, described the procedure considering the directional
damage by the load-history dependent softening variables. In this procedure
the directional damage is expressed by the second-order symmetric tensor with
a scalar effective value.

The inelastic strain rate ε̇
I in the Bodner–Partom model is calculated ac-

cording to the equation

(2.5) ε̇
I =

3

2
· ṗ · σ

′

J (σ′)
,

where ṗ is the equivalent plastic strain, σ
′ and J (σ′) =

√
3

2

(
σ
′ : σ

′
)

are the

deviatoric parts of stress and the stress invariant. It should be noted that in
the literature it is possible to find two ways of calculating ṗ – the rate of the
equivalent plastic strain, which includes the isotropic damage evolution (see e.g.
[6] and [7] for details)

(2.6) ṗ =
2√
3
·D0 · exp




−1

2
·





(
R+

(
X :

σ

J (σ)

))
· (1 −D)

J (σ′)





2·n

· n+ 1

n




,

or

(2.7) ṗ =
2√
3
·D0 · exp




−1

2
·





(
R+

(
X :

σ

J (σ)

))
· (1 −D)

J (σ′)





2·n



,

where the material parameters D0 and n represent the limiting plastic strain rate
and the strain rate sensitivity parameter, respectively. The isotropic hardening
R is given as

(2.8) Ṙ = m1 · (Z1 −R) ·
(
σ : ε̇

I
)
−A1 · Z1 ·

(
R− Z2

Z1

)r1

,

where m1, A1, r1, Z1 and Z2 are the material parameters. The material constants
m1, A1, r1 are the hardening rate coefficient, recovery coefficient, and recovery
exponent for isotropic hardening, respectively. The values Z1 and Z2 are the
limiting value of isotropic hardening and the fully recovered value of isotropic
hardening, respectively.

Subsequently, the kinematic hardening X is defined as

(2.9) Ẋ = m2 ·
(

3

2
· Z3 ·

σ

J (σ)
− X

)
·
(
σ : ε̇

I
)
−A2 · Z1 ·

3

2
·





2

3
J (X)

Z1





r2

· X

J (X)
,
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where m2, A2, r2, Z3 are material parameters. The material constants m2, A2,
r2 are the hardening rate coefficient, recovery coefficient, recovery exponent for
kinematic hardening, respectively, and Z3 is the limiting value of the kinematic
hardening. Additionally, at the beginning of calculations the initial value of the
isotropic hardening is assumed as R (t = 0) = Z0. It should be noted that the

relation
(
σ : ε̇

I
)
, used in Eq. (2.8) and Eq. (2.9), is called the plastic work rate.

In this described model the 20 parameters have to be determined; 14 pa-
rameters of the base model: E, ν, D0, n, Z0, Z1, Z2, Z3, m1, m2, A1, A2, r1,
r2, and 6 parameters of damage evolution: h, H, α1, α2, α3, z. In the work [8]
Bodner proposed the concept of reduction of the number of parameters, where
Z0 = Z2 = Z, A1 = A2 = A and r1 = r2 = r. According to this assumption 11
parameters of base model have to be determined: E, ν, D0, n, Z0 = Z2 = Z, Z1,
Z3, m1, m2, A1 = A2 = A, r1 = r2 = r. Detailed description of the identifica-
tion procedure for the material parameters is described by Chan et al. [11] and
Woźnica and Kłosowski [40].

In the work [6], Bodner and Chan investigated a nickel based super alloy
B1900+Hf. For this material the uniaxial creep test results at various temper-
atures are given. The material constants for Bodner–Partom constitutive equa-
tions have been established, see Table 1. It should be noted that the damage
evolution, under constant stress conditions (creep tests), was described by the
equation:

(2.10) D = exp

[
−H
Q

]h

,

where the stress function Q has the simplified form:

(2.11) Q = t · σz.

Table 1. Parameters for Bodner–Partom model for B1900+Hf [6].

base parameters of the model

temp. E ν D0 n Z0 m1 Z1 A1 temp.
T [◦C] [MPa] [−]

�
s−1

�
[−] [MPa]

�
MPa−1

�
[MPa]

�
s−1

�
T [◦C]

871 141525 0.3 104 1.03 2400 0.270 3000 0.0055 871

982 125391 0.3 104 0.85 1900 0.270 3000 0.02 982
1093 107539 0.3 104 0.70 1200 0.270 3000 0.25 1093

base parameters of the model damage parameters
temp. Z2 r1 m2 Z3 A2 r2 H h z

T [◦C] [MPa] [−]
�
MPa−1

�
[MPa]

�
s−1

�
[−] [(MPa)z · s] [−] [−]

871 2400 2.0 1.52 1150 0.0055 2.0 2 · 1027 1.0 8.3
982 1900 2.0 1.52 1150 0.02 2.0 4 · 1024 1.0 8.3

1093 1200 2.0 1.52 1150 0.25 2.0 5 · 1020 1.0 8.3
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3. Proposed approach of damage evolution
in Bodner–Partom model

The author of the present paper proposed the application of the damage
concept described by Lemaitre [25] in the Bodner–Partom model. The damage
evolution is specified by the following expression:

(3.1) Ḋ =

(
Y

S

)s

· ṗ,

where the variables s, S are the damage material parameters and ṗ is the rate
of the equivalent plastic strain assumed according to Eqs. (2.6) or (2.7). The
function Y , used in Eq. (3.1), is specified by the Young’s modulus E, Poisson’s
ratio ν, the current values of damage D, the Huber–Mises equivalent stress σeq

and the hydrostatic stress σH , and is called the damage strain energy release
rate. It is expressed by the equation

(3.2) Y =
σ2

eq

2 · (1 −D)2 · E
·
(

2

3
· (1 + ν) + 3 · (1 − 2 · ν) ·

(
σH

σeq

)2
)
.

The function of the energy density Y , in above equation, in the case of uniaxial
stress state can be rewritten as

(3.3) Y =
σ2

2 · (1 −D)2 · E
·

The proposal of Lemaitre damage evolution is not the only one which can be
found in the literature (see e.g.: Tai [36], Wang [38], Chandrakanth [12] and
[13], Dhar [15], Bonora [9], Xiao [41], Życzkowski [43]), where the authors
propose alternative versions of the Eq. (3.1).

The damage model proposed by Lemaitre [25] is successfully applied to

the Chaboche model [10], see e.g.: Amar and Dufailly [1]. It should be

noted that the Chaboche model is an extension of the Perzyna law [28], based

on the orthogonal condition in the plastic law, which requires an established

yield criterion. On the other hand in the Bodner–Partom model the existence

is assumed of the inelastic deformation from the beginning of the deformation

process, without references to the yield limit.

Identification of the values of damage material parameters s and S is based

on the concept proposed by Amar and Dufailly [1]. The present author also

investigates the identification and validation of the damage parameters for the

Lemaitre model, described in the paper [3]. Referring to paper [1], the value

of the parameter s is chosen arbitrarily; only the factor S has to be deter-

mined. It should be noted that only the parameter S is accepted as temperature-

dependent.
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At the beginning of the identification process, the numerical simulation of

the uniaxial tensile tests were performed on the basis on the known material

parameters (see Table 1) for the Bodner–Partom model with damage. From the

numerical simulation the rupture time tr was defined. Then we can make the

following transformation of the Eq. (3.1):

(3.4)

Ḋ · (1 −D)2·s =

(
σ2

2 · E · S

)s

· ṗ,

1∫

0

(1 −D)2·s dD =
1

2 · s+ 1
=

tr∫

0

(
σ2

2 · E · S

)s

· ṗ dt

which leads to the specified value of the parameter S:

(3.5) S =
(2 · s+ 1)1/s

2 · E ·




tr∫

0

(
σ2·s · ṗ

)
dt




1/s

.

In this variant of identification, the value of the parameter s = 3.0 [−] is

predetermined. According to the assumed procedure, the following damage pa-

rameters for the investigated superalloy B1900+Hf are specified and given in

Table 2. The basic parameters for Bodner–Partom model are known and have

been collected in Table 1. The detailed identification procedure of the damage

parameters s and S, for the Lemaitre model of damage evolution, is described

by the author in the paper [3].

Table 2. Damage parameters of the Bodner–Partom model for B1900+Hf.

temp. S s

T [◦C] [MPa] [−]

871 0.900 3.0
982 0.275 3.0

1093 0.023 3.0

In practical applications it is necessary to specify the value of the critical

damage Dc, which indicates the limit of the theory. It should be noted that this

factor must be lower than 1.0. It usually lies between 0.2 and 0.8, depending on

the type of material [25].

It is worth pointing out that in the proposed approach, the damage parameter

has the additive character. It is dependent on the rate of the equivalent plastic

strain, see Eq. (3.1), when in the concept proposed by Bodner and Chan the

damage is directly calculated as a function of time and stresses, see Eq. (2.10).

However, both concepts belong to the group of the isotropic continuum damage

models.
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4. Description of applied program and procedure

In the numerical analysis the MSC.Marc system was used. To apply the
Bodner-Partom model to the MSC.Marc system the user-defined subroutines
UVSCPL [37] are applied. The fundamental part of the algorithm used in the
implementation of UVSCPL subroutines is presented in Figs. 1 and 2 in the
form of flow charts. Early this subroutine was used successfully by the author for
implementation of the Chaboche model with damage [4] and for the introduced
Bodner–Partom model without damage (see e.g.: [2] and [5]).

[step 1] →





∆X =
∆t

2
·
(
Ẋj−1 + Ẋj

)
, Xj = Xj−1 + ∆X

∆R =
∆t

2
·
(
Ṙj−1 + Ṙj

)
, Rj = Rj−1 + ∆R





[step 2] → [σ′

jj, J (σ′

jj) , J (σ′

j) , J (Xj)]

[step 3] → Dj = exp ·
[
− H

(t · σz)

]h

[step 4] →




ṗj =

2√
3
·D0 · exp




−1

2
·





(
R+

(
Xj :

σj

J (σj)

))
· (1 −Dj)

J
(
σ

′

j

)





2·n

· n+ 1

n









[step 5] →
[
ε̇

I
j =

3

2
· ṗj ·

σ
′

j

J (σ′
j)

]

[step 6] →
[
Ẇ I

j = σj : ε̇
I
j

]

[step 7] →



Ẋj = m2 ·
(

3

2
· Z3 ·

σj

J (σj)
− Xj

)
· Ẇ I

j −A2 · Z1 ·
3

2
·





2

3
· J (Xj)

Z1





r2

· Xj

J (Xj)





[step 8] →
[
Ṙj = m1 · (Z1 −Rj) · Ẇ I

j −A1 · Z1 ·
(
Rj − Z2

Z1

)r1
]

[step 9] →
[
∆ε

I
j = ε̇

I
j · ∆tj

]

[step 10] →
[
∆σj = (1 −Dj) · B ·

(
∆εj − ∆ε

I
j

)]

Fig. 1. Flow chart of the UVSCPL subroutine with the damage model proposed by Bodner
and Chan.
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[step 1] →





∆X =
∆t

2
·
(
Ẋj−1 + Ẋj

)
, Xj = Xj−1 + ∆X

∆R =
∆t

2
·
(
Ṙj−1 + Ṙj

)
, Rj = Rj−1 + ∆R

∆D =
∆t

2
·
(
Ḋj−1 + Ḋj

)
, Dj = Dj−1 + ∆D





[step 2] →
[
σ

′

j , J
(
σ

′

j

)
, J (σj) , J (Xj)

]

[step 3] →




ṗj =

2√
3
·D0 · exp




−1

2
·





(
Rj +

(
Xj :

σj

J (σj)

))
· (1 −Dj)

J (σ′
j)





2·n

· n+ 1

n









[step 4] →
[
ε̇

I
j =

3

2
· ṗj ·

σ
′

j

J (σ′
j)

]

[step 5] →
[
Ẇ I

j = σj : ε̇
I
j

]

[step 6] →



Ẋj = m2 ·
(

3

2
· Z3 ·

σj

J (σj)
− Xj

)
· Ẇ I

j −A2 · Z1 ·
3

2
·





2

3
· J (Xj)

Z1





r2

· Xj

J (Xj)





[step 7] →
[
Ṙj = m1 · (Z1 −Rj) · Ẇ I

j −A1 · Z1 ·
(
Rj − Z2

Z1

)r1
]

[step 8] → Yj =
σ2

eq

2 · (1 −Dj)
2 · E

·
(

2

3
· (1 + ν) + 3 · (1 − 2 · ν) ·

(
σH

σeq

)2
)

[step 9] → Ḋj =

(
Y

S

)s

· ṗj

[step 10] →
[
∆ε

I
j = ε̇

I
j · ∆tj

]

[step 11] →
[
∆σj = (1 −Dj) · B ·

(
∆εj − ∆ε

I
j

)]

Fig. 2. Flow chart of the UVSCPL subroutine with the proposed damage evolution in the
Bodner–Partom model.
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5. Numerical simulation of creep tests for B1900+Hf alloy

In the paper two concepts of the damage evolution in the Bodner–Partom

model are described. Numerical simulations of strain-time relations based on the

constitutive equations with the damage models are performed for the nickel-

based superalloy B1900+Hf. The results of numerical simulations obtained from

the procedure described by Bodner and Chan (see Fig. 1, B–P v1) are compared

with the proposed procedure (see Fig. 2, B–P v2).

Fig. 3. Creep curves for B1900+Hf at 871◦ C, σ = 517 [MPa] = const.

Fig. 4. Damage parameter evolution for B1900+Hf at 871◦ C, σ = 517 [MPa] = const.
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Like in the paper [6], the numerical simulations of the uniaxial creep tests at

various temperatures (see Fig. 3, Fig. 5, Fig. 7) were carried out. Additionally the

damage evolution parameters for these variants of simulation are given in Fig. 4,

Fig. 6 and Fig. 8. The strain-time functions obtained from the two investigated

damage models gave similar results (very small differences can be observed only)

in the considered range of time. The functions of the damage evolution (see

Fig. 4, Fig. 8 and Fig. 6) also gave small differences.

Fig. 5. Creep curves for B1900+Hf at 982◦ C, σ = 283 [MPa] = const.

Fig. 6. Damage parameter evolution for B1900+Hf at 982◦ C, σ = 283 [MPa] = const.
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Fig. 7. Creep curves for B1900+Hf at 1093◦ C, σ = 79.5 [MPa] = const.

Fig. 8. Damage parameter evolution for B1900+Hf at 1093◦ C, σ = 79.3 [MPa] = const.

6. Concluding remarks

A new approach is proposed to the problem of continuum damage modelling

for application in elasto-viscoplastic Bodner–Partom constitutive equations. The

proposed method combines the damage model developed by Lemaitre and the

Bodner–Partom model. The results obtained in numerical simulations of creep

tests for B1900+Hf confirms the validity of the approach. Moreover, the ob-

tained results encourage the author to continue the outlined research based on



126 A. AMBROZIAK

broader experimental data. Such experiment can provide a perspective of appli-

cation of other types of damage evolution equation to various elasto-viscoplastic

constitutive models.

Acknowledgments

The research was performed as part of the Polish-French cooperation program

Polonium 2005 (KBN 5598.II/2004/2005) and the Polish-German cooperation

program (KBN/DAAD 2004/2005 no. 09).

Calculations presented in the paper have been performed at the Academic

Computer Centre in Gdańsk (TASK).

The study was supported by the European Community under the FP5 Pro-

gramme, key-action “City of Tomorrow and Cultural Heritage” (Contract No.

EVK4-CT-2002-80005). This support is greatly acknowledged.

References

1. Amar G., Dufailly J, Identification of viscoplastic and damage constitutive equations,
European Journal of Mechanics, 2, 197–218, 1985.

2. Ambroziak A., Application of elasto-viscoplastic Bodner-Partom constitutive equations

in finite element analysis, Computer Assisted Mechanics and Engineering Sciences (ac-
cepted).

3. Ambroziak A., Identification and validation of damage parameters for elasto-viscoplastic

Chaboche model, Engineering Transactions, 55, 1, 1–26, 2006.

4. Ambroziak A., Numerical modelling of elasto-viscoplastic Chaboche constitutive equa-

tions using MSC.Marc, Task Quarterly, 2, 167–178, 2005.

5. Ambroziak A., Viscoplastic analysis of damped vibrations of circular plate, [in:] Shell

Structures: Theory and applications, W. Pietraszkiewicz, C. Szymczak [Eds.], Taylor
and Francis Group, (Balkema – Proceedings and Monographs in Engineering, Water and
Earth Sciences), 445–449, 2005.

6. Bodner S.R., Chan K.S., Modelling of continuum damage for application in elastic-

viscoplastic constitutive equations, Engineering Fracture Mechanics, 25, 705–712, 1986.

7. Bodner S.R., Partom Y., Constitutive equations for elastic-viscoplastic strain-

hardening materials, Journal of Applied Mechanics, ASME, 42, 385–389, 1975.

8. Bodner S.R., Review of a unified elastic-viscoplastic theory, Unified Constitutive Equa-
tions for Creep and Plasticity, K. Miller [Ed.], Elsewier, 273–301, 1987.

9. Bonora N., A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics,
58, 11–28, 1997.

10. Chaboche J.–L., Constitutive equations for cyclic plasticity and cyclic viscoplasticity,
International Journal of Plasticity, 5, 247–302, 1989.



MODELLING OF CONTINUUM DAMAGE FOR APPLICATION ... 127

11. Chan K.S., Bodner S.R., Lindholm U.S., Phenomenological modelling of hardening

and thermal recovery in metals, Journal of Engineering Material and Technology, 110,
1–8, 1988.

12. Chandrakanth S. and Pandey P.C., An exponential ductile continuum damage model

for metals, International Journal of Fracture, 72, 293–310, 1995.

13. Chandrakanth S. and Pandey P.C., An isotropic damage model for ductile materials,
Engineering Fracture Mechanics, 50, 457–465, 1995.

14. Chełmiński, K., Gwiazda, P., Monotonicity of operators of viscoplastic response: Ap-

plication to the model of Bodner-Partom, 3, 191–208, 1999.

15. Dhar S, Sethuraman R. and Dixit P.M., A continuum damage mechanics model for

void growth and micro-crack initiation, Engineering Fracture Mechanics, 53, 917–928,
1996.

16. Frank G.J., Brockman R.A., A viscoelastic-viscoplastic constitutive model for glassy

polymerst, International Journal of Solids and Structures, 38, 5149–5164, 2001.

17. Hayhurst D.R., Creep rupture under multi-axial state of stress, Journal of Mechanical
Physical Solids, 20, 381–390, 1972.

18. Kachanov L.M., Introduction to continuum damage mechanics, Martinus Nijhoff Pub-
lishers, Dordecht, 1986.

19. Kachanov L.M., Time of rupture process under creep conditions, TVZ Akad. Nauk. S.S.R.
Otd. Tech. Nauk., 8, 26–31, 1958.

20. Kłosowski P., Nonlinear numerical analysis and experiments on vibrations of elasto-

viscoplastic plates and shells [in Polish], Politechnika Gdańska, Gdańsk 1999.

21. Kłosowski P., Weichert D., Woznica K., Dynamic of elasto-viscoplastic plates and

shells, Archive of Applied Mechanics, 5, 326–345, 1995.

22. Kłosowski P., Woźnica K., Numerical treatment of elasto viscoplastic shells in the

range of moderate and large rotations, Computational Mechanics, 34, 194–212, 2004.

23. Kłosowski P., Woźnica K., Weichert D., Comparison of numerical modelling and

experiments for the dynamic response of circular elasto-viscoplastic plates, European Jour-
nal of Mechanics A/Solid, 19, 343–359, 2000.

24. Kłosowski P., Zagubień A., Woźnica K., Investigation on rheological properties of

technical fabric Panama, Archive of Applied Mechanics, 9–10, 661–681, 2004.

25. Lemaitre J., A continuous damage mechanics. Model for ductile fracture, Journal of
Engineering Materials and Technology, 107, 83–89, 1985.

26. Lemaitre J., A course on damage mechanics, Springer-Verlag, New York 1992.

27. Miller A.K. [Ed.], Unified constitutive equations for creep and plasticity, Elsevier Ap-
plied Science, London 1987.

28. Perzyna P., Fundamental problems in viscoplasticity, Advances in Mechanics, 9, 243–
377, 1966.

29. Rabotnov Y.N., Creep problems of structural members, North–Holland, Amsterdam
1969.



128 A. AMBROZIAK

30. Sansour C., Kollmann F.G., Large viscoplastic deformations of shells. Theory and

finite formulation, Computational Mechanics, 6, 512–525, 1998.

31. Sansour C., Wagner W., A model of finite strain viscoplasticity based on unified consti-

tutive equations. Theoretical and computational considerations with applications to shell,
Computer Methods in Applied Mechanics and Engineering, 191, 423–450, 2001.

32. Sansour C., Wagner W., Viscoplasticity based on additive decomposition of logarithmic

strain and unified constitutive equations. Theoretical and computational considerations

with reference to shell applications, Composite Structures, 81, 1583–1594, 2003.

33. Steck E.A., A stochastic model for the high-temperature plasticity of metals, Interna-
tional Journal of Plasticity, 1, 243–258, 1985.

34. Stoffel M., An experimental method to validate viscoplastic constitutive equations in

the dynamic response of plates, Mechanics of Materials, 37, 1210–1222, 2005.

35. Stoffel M., Nichtlineare Dynamik von Platten, der Rheinisch-Westfälischen Technischen
Hochschule Aachen, Aachen, 2000.

36. Tai W.H. and Yang B.X., A new microvoid-damage model for ductile fracture, Engi-
neering Fracture Mechanics, 25, 377–384, 1986.

37. Users handbook: MSC.MARC Volume B: Element library and MSC.MARC Volume D:

User subroutines and special routines, Version 2003, MSC.Software Corporation 2003.

38. Wang T.-J., Prediction of sheet forming limits using a new continuum damage mechanics

criterion for ductile fracture, Engineering Fracture Mechanics, 51, 275–279, 1995.

39. Woźnica K., Dynamique des structures elasto-viscoplastique, Cahiers de Mechanique,
Lille, 1998.

40. Woźnica K., Kłosowski P., Evaluation of viscoplastic parameters and its application

for dynamic behaviour of plates, Archive of Applied Mechanics, 70, 561–570, 2000.

41. Xiao Y.C., Li S. and Gao Z., A continuum damage mechanics model for high cycle

fatigue, International Journal of Fatigue, 20, 503–508, 1998.

42. Zaïri F., Woźnica K., Naït-Abdelaziz M., Phenomenological nonlinear modelling of

glassy polymers, Compites Rendus Mecanique, 333, 359–364, 2005.

43. Życzkowski M., Creep damage evolution equations expressed in terms of dissipated

power, International Journal of Mechanical Science, 42, 755–769, 2000.

Received July 18, 2005; revised version March 27, 2006.



ENGINEERING TRANSACTIONS • Engng. Trans. • 55, 2, 129–153, 2007
Polish Academy of Sciences • Institute of Fundamental Technological Research

WAVE POLYNOMIALS IN ELASTICITY PROBLEMS

A. M a c i ą g

Department of Mathematics

Faculty of Management and Computer Modelling

Kielce University of Technology

Al. 1000–lecia P.P. 7, Poland
e-mail: matam@tu.kielce.pl

The paper demonstrates a new technique of obtaining the approximate solution of the
two- and three-dimensional elasticity problems. The system of equations of elasticity can be
converted to the system of wave equation. In this case, as solving functions (Trefftz functions),
the so-called wave polynomials can be used. The presented method is useful for a finite body
of a certain shape. Then the obtained solutions are coupled through initial and boundary con-
ditions. Recurrent formulas for the two- and three-dimensional wave polynomials and their
derivatives are obtained. The methodology for solution of systems of partial differential equa-
tions with common initial and boundary conditions by means of solving functions is presented.
The advantage of using the method of solving functions is that the solution exactly satisfies
the given equation (or system of equations). Some examples are included.

Key words: elasticity, Trefftz method, wave equation, wave polynomials.

1. Introduction

The method of solving functions applied for linear partial differential equa-
tions has been developed recently. The key idea of the method is to determine
functions (polynomials) satisfying a given differential equation and fitted to the
governing initial and boundary conditions. In this sense it is a variant of the
Trefftz method [1, 2].

The method was first described in the paper [3] where it was applied to one-
dimensional heat conduction problems. Heat polynomials were used for solving
unsteady heat conduction problems in [4]. The method is continued in the Carte-
sian coordinate system in [5, 6], describing heat polynomials for the two- and
three-dimensional case. Application of heat polynomials in polar and cylindri-
cal coordinates is shown in the papers [7–9]. Application of this method to in-
verse heat-conduction problems is described in [5–11]. Reference [12] contains the
highly interesting idea of using heat polynomials as a new type of finite-element
base functions.
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The work [13] deals with numerous cases involving other differential equations
such as the Laplace, Poisson, Helmholtz and one-dimensional wave equations.
Dimensionless wave polynomials for solving the two-dimensional wave equation
are presented in [14, 15] and three-dimensional wave equation in [16, 17]. The
wave functions can be obtained by using symbolic operations (for example in
Maple or Mathematica) or inverse operations. These techniques are described
correspondingly in [19, 20] and [21, 22]. Basically a linear differential equations
(or system of equations) can be solved by means of various methods. Some of
them are better for infinite bodies and others are suitable for finite bodies but
of simple shape. The method presented here is useful for finite bodies but the
shape of the body can be more complicated.

In Sec. 2 two- and three-dimensional wave polynomials and their properties
in the Cartesian coordinate system are considered. Section 3 contains equations
of elasticity. The method applied for a system of equations is presented in Sec. 4.
In Sec. 5 some examples are discussed. Concluding remarks are given in Sec. 6.

2. Wave polynomials

The elasticity problems will be solved by means of wave polynomials. The
papers [14, 16] show the way to obtain two- and three-dimensional wave equation
for dimensionless wave equation. In engineering practice it is often convenient to
use the dimensional wave equation. Analogously to the papers mentioned above,
the dimensional wave polynomials can be obtained. There are two methods to
obtain the wave polynomials. The first one is using a “generating function”.
The second one (giving the error estimator) is the expansion of the function
satisfying the wave equation in Taylor series. Both methods lead to equivalent
wave polynomials.

2.1. Two-dimensional wave polynomials

2.1.1. Generating function. Let us consider the wave equation

(2.1)
1

v2

∂2w

∂t2
=
∂2w

∂x2
+
∂2w

∂y2
.

By using the separating variables method, we get a function called a generating
function for wave polynomials

(2.2) g = ei(ax+by+cvt)

satisfying Eq. (2.1) when c2 = a2 + b2. The power series expansion for (2.2) is

(2.3) ei(ax+by+cvt) =
∞∑

n=0

n∑

k=0

n−k∑

l=0

S(n−k−l)kl(x, y, t)a
n−k−lbkcl,

where S(n−k−l)kl(x, y, t) are polynomials of variables x, y, t containing v.
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Substituting c2 = a2 + b2 in (2.3), we obtain

(2.4) ei(ax+by+ct) =
∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

R(n−k−l)kl(x, y, t)a
n−k−lbkcl.

The real and imaginary parts of polynomials R satisfy Eq. (2.1) and are called
wave polynomials:

(2.5)
P(n−k−l)kl(x, y, t) = ℜ(R(n−k−l)kl(x, y, t)),

Q(n−k−l)kl(x, y, t) = ℑ(R(n−k−l)kl(x, y, t)),

e.g.

(2.6)

P000(x, y, t) = 1, Q000(x, y, t) = 0,

P100(x, y, t) = 0, Q100(x, y, t) = x,

P010(x, y, t) = 0, Q010(x, y, t) = y,

P001(x, y, t) = 0, Q001(x, y, t) = vt,

P200(x, y, t) = −x
2

2
− v2t2

2
, Q200(x, y, t) = 0,

P110(x, y, t) = −xy, Q110(x, y, t) = 0,

P101(x, y, t) = −vxt, Q101(x, y, t) = 0,

P011(x, y, t) = −vyt, Q011(x, y, t) = 0,

P020(x, y, t) = −y
2

2
− v2t2

2
, Q020(x, y, t) = 0, . . .

Notice that here R002 does not appear, because l < 2 (see Eq. (2.4)).

2.1.2. Partial derivatives of wave polynomials. To obtain the recurrent for-
mulas of partial derivatives for wave polynomials we follow analogously as in [14].
Because function (2.4) is analytical, the Taylor series on the right-hand side of
(2.4) is convergent. Therefore we can differentiate consecutive terms

∂g

∂x
= iag =

∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

∂R(n−k−l)kl

∂x
an−k−lbkcl,

hence

∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

iR(n−k−l)kla
n−k−l+1bkcl =

∞∑

n=0

n∑

k=0

n−k∑

l=0

l<2

∂R(n−k−l)kl

∂x
an−k−lbkcl,
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and
∂R(n−k−l)kl

∂x
= iR(n−k−l−1)kl,

so that finally

(2.7)

∂P(n−k−l)kl

∂x
= −Q(n−k−l−1)kl,

∂Q(n−k−l)kl

∂x
= P(n−k−l−1)kl.

Similarly we get

(2.8)

∂P(n−k−l)kl

∂y
= −Q(n−k−l)(k−1)l,

∂Q(n−k−l)kl

∂y
= P(n−k−l)(k−1)l,

and

(2.9)

∂P(n−k)k0

∂t
= −vQ(n−k−2)k1 − vQ(n−k)(k−2)1,

∂P(n−k−1)k1

∂t
= −vQ(n−k−1)k0,

∂Q(n−k)k0

∂t
= vP(n−k−2)k1 + vP(n−k)(k−2)1,

∂Q(n−k−1)k1

∂t
= vP(n−k−1)k0.

The starting values for the derivatives (2.7), (2.8) and (2.9) are obtained either
from (2.6) or directly by putting zero instead of the polynomial, in which any of
its subscripts takes a negative value.

2.1.3. Recurrent formulas for wave polynomials. In numerical practice the
recurrent formulas are very useful. Theorem 1 enables us to obtain the two-
dimensional wave polynomials.

Theorem 1: Let P000 = 1, Q000 = 0 and P(n−k−l)kl = Q(n−k−l)kl = 0 when
any subscript is negative. Then, the polynomials

(2.10) P(n−k)k0 =
1

n
(−xQ(n−k−1)k0 − yQ(n−k)(k−1)0

− vtQ(n−k−2)k1 − vtQ(n−k)(k−2)1),
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(2.11) P(n−k−1)k1 =
1

n
(−xQ(n−k−2)k1 − yQ(n−k−1)(k−1)1 − vtQ(n−k−1)k0),

(2.12) Q(n−k)k0 =
1

n
(xP(n−k−1)k0 + yP(n−k)(k−1)0

+ vtP(n−k−2)k1 + vtP(n−k)(k−2)1),

(2.13) Q(n−k−1)k1 =
1

n
(xP(n−k−2)k1 + yP(n−k−1)(k−1)1 + vtP(n−k−1)k0),

satisfy the wave equation (2.1).

P r o o f. For relation (2.10) we assume that all polynomials on the right-
hand side either satisfy Eq. (2.1) or equal zero. Substituting (2.10) in (2.1)
we get

x




1

v2

∂2Q(n−k−1)k0

∂t2
−
∂2Q(n−k−1)k0

∂x2
−
∂2Q(n−k−1)k0

∂y2
︸ ︷︷ ︸

=0





+ y




1

v2

∂2Q(n−k)(k−1)0

∂t2
−
∂2Q(n−k)(k−1)0

∂x2
−
∂2Q(n−k)(k−1)0

∂y2
︸ ︷︷ ︸

=0





+ vt




1

v2

∂2Q(n−k−2)k1

∂t2
−
∂2Q(n−k−2)k1

∂x2
−
∂2Q(n−k−2)k1

∂y2
︸ ︷︷ ︸

=0





+ vt




1

v2

∂2Q(n−k)(k−2)1

∂t2
−
∂2Q(n−k)(k−2)1

∂x2
−
∂2Q(n−k)(k−2)1

∂y2
︸ ︷︷ ︸

=0





+
2

v

(
∂Q(n−k−2)k1

∂t
+
∂Q(n−k)(k−2)1

∂t

)
= 2

∂Q(n−k−1)k0

∂x
+ 2

∂Q(n−k)(k−1)0

∂y
,

hence

∂Q(n−k−2)k1

∂t
+
∂Q(n−k)(k−2)1

∂t
= v

(
∂Q(n−k−1)k0

∂x
+
∂Q(n−k)(k−1)0

∂y

)
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and according to (2.7), (2.8) and (2.9), we obtain

vP(n−k−2)k0 + vP(n−k)(k−2)0 = v(P(n−k−2)k0 + P(n−k)(k−2)0).

This proves the theorem. The proof for (2.11), (2.12), and (2.13) is similar.
Starting values of the polynomials (2.10)–(2.13) can be obtained either from

(2.6) or directly by putting zero instead of the polynomial in which any of its
subscripts takes a negative value.

2.1.4. Expansion of the function satisfying wave equation in Taylor series.
Another way to obtain the wave polynomials is to expand the function satisfying
the wave equation in Taylor series. Similarly as for other equations [13] and
for dimensionless wave equation [14], the wave polynomials can be obtained by
means of Taylor series for the function w. Let the function w(x, y, t) satisfy
the wave equation (2.1). We assume that w ∈ CN+1 in the neighborhood of
(x0, y0, t0). Let x̂ = x − x0, ŷ = y − y0, t̂ = t − t0. Then, the Taylor series for
function w and for N = 2 is

(2.14) w(x, y, t) = w(x0, y0, t0) +
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂w

∂t
t̂+

∂2w

∂x2

x̂2

2

+
∂2w

∂y2

ŷ2

2
+
∂2w

∂t2
t̂2

2
+

∂2w

∂x∂y
x̂ŷ +

∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂t
ŷt̂+R3.

Eliminating the derivative
∂2w

∂t2
by Eq. (2.1) we obtain

(2.15)

w(x, y, t) = w(x0, y0, t0) +
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂w

∂t
t̂+

∂2w

∂x2

(
x̂2

2
+
v2t̂2

2

)

+
∂2w

∂y2

(
ŷ2

2
+
v2t̂2

2

)
+

∂2w

∂x∂y
x̂ŷ +

∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂t
ŷt̂+R3.

The coefficients following the derivative terms on the right-hand side represent,
within the accuracy of a constant, the non-zero wave polynomials (2.6). As a so-
lution of (2.1) we take a linear combination of wave polynomials. Therefore the
constants in the polynomials are insignificant. Similarly, we get polynomials for
N = 3, 4, ....

The procedure described above is important. If w is the solution of the prob-
lem described by Eq. (2.1) and the corresponding initial and boundary condi-
tions and if w is analytical, then we can control the accuracy of approximation by
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the properties of Taylor series. Moreover, using this procedure we can separate
the stationary and nonstationary parts of expansion. For example, substituting
∂2w

∂x2
=

∂2w

v2∂t2
− ∂2w

∂y2
into (2.14) we obtain

w(x, y, t) = w(x0, y0, t0) +
∂w

∂x
x̂+

∂w

∂y
ŷ +

∂2w

∂y2

(
ŷ2

2
− x̂2

2

)
+

∂2w

∂x∂y
x̂ŷ

+
∂w

∂t
t̂+

∂2w

∂t2

(
x̂2

2v2
+
t̂2

2

)
+
∂2w

∂x∂t
x̂t̂+

∂2w

∂y∂t
ŷt̂+R3.

The coefficients 1, x̂, ŷ,
ŷ2

2
− x̂2

2
, x̂ŷ are harmonic polynomials and satisfy the

Laplace equation (stationary part) and coefficients t̂,
x̂2

2v2
+
t̂2

2
, x̂t̂, ŷt̂ satisfy

the wave equation (nonstationary part).

2.2. Three-dimensional wave polynomials

The wave polynomials for three-dimensional wave equation

(2.16)
1

v2

∂2w

∂t2
=
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

we obtain in a similar manner. Recurrent formulas for partial derivatives of wave
polynomial are

(2.17)

∂P(n−k−l−m)klm

∂x
= −Q(n−k−l−m−1)klm,

∂Q(n−k−l−m)klm

∂x
= P(n−k−l−m−1)klm.

(2.18)

∂P(n−k−l−m)klm

∂y
= −Q(n−k−l−m)(k−1)lm,

∂Q(n−k−l−m)klm

∂y
= P(n−k−l−m)(k−1)lm,

(2.19)

∂P(n−k−l−m)klm

∂z
= −Q(n−k−l−m)k(l−1)m,

∂Q(n−k−l−m)klm

∂z
= P(n−k−l−m)k(l−1)m,
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(2.20)

∂P(n−k−l)kl0

∂t
= −vQ(n−k−l−2)kl1 − vQ(n−k−l)(k−2)l1 − vQ(n−k−l)k(l−2)1,

∂P(n−k−l−1)kl1

∂t
= −vQ(n−k−l−1)k0,

∂Q(n−k−l)kl0

∂t
= vP(n−k−l−2)kl1 + vP(n−k−l)(k−2)l1 + vP(n−k−l)k(l−2)1,

∂Q(n−k−l−1)kl1

∂t
= vP(n−k−l−1)kl0.

Theorem 2 enables us to obtain the three-dimensional wave polynomials
P(n−k−l−m)klm) and (Q(n−k−l−m)klm.

Theorem 2: Let (P0000 = 1) and (Q0000 = 0). Let (P(n−k−l−m)klm =
Q(n−k−l−m)klm = 0) when any subscript is negative. Then, the polynomials

(2.21) P(n−k−l)kl0 = − 1

n
(xQ(n−k−l−1)kl0 + yQ(n−k−l)(k−1)l0

+ zQ(n−k−l)k(l−1)0 + vtQ(n−k−l−2)kl1 + vtQ(n−k−l)(k−2)l1

+ vtQ(n−k−l)k(l−2)1),

(2.22) P(n−k−l−1)kl1 = − 1

n
(xQ(n−k−l−2)kl1

+ yQ(n−k−l−1)(k−1)l1 + zQ(n−k−l−1)k(l−1)1 + vtQ(n−k−l−1)kl0),

(2.23) Q(n−k−l)kl0 =
1

n
(xP(n−k−l−1)kl0 + yP(n−k−l)(k−1)l0

+ zP(n−k−l)k(l−1)0 + vtP(n−k−l−2)kl1 + vtP(n−k−l)(k−2)l1

+ vtP(n−k−l)k(l−2)1),

(2.24) Q(n−k−l−1)kl1 =
1

n
(xP(n−k−l−2)kl1 + yP(n−k−l−1)(k−1)l1

+ zP(n−k−l−1)k(l−1)1 + vtP(n−k−l−1)kl0)

satisfy the wave equation (2.16).

We prove Theorem 2 similarly to Theorem 1.
For example, from formulas (2.21)–(2.24) we get

(2.25)
P0000 = 1,

Q1000 = x, Q0100 = y, Q0010 = z, Q0001 = vt,
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(2.25)
[cont.]

P2000 = −x
2

2
− v2t2

2
, P1100 = −xy, P1010 = −xz,

P1001 = −vxt, P0200 = −y
2

2
− v2t2

2
, P0110 = −yz,

P0101 = −vyt, P0020 = −z
2

2
− v2t2

2
, P0011 = −vzt, . . .

and

Q0000 = P1000 = P0100 = P0010 = P0001 = Q2000 = Q1100 = Q1010

= Q1001 = · · · = 0

Notice that there is no R0002 because m < 2.

3. Equations of elasticity

In general, elasticity problems are described by the following system of equa-
tions [18]:

(3.1) µ∇2u + (λ+ µ)grad div u + X = ρü

where u – displacement vector, X – body force vector, ∇ – nabla operator, µ, λ, ρ
– constants. If we omit the body forces, we obtain

(3.2) µ∇2u + (λ+ µ)grad div u = ρü.

Equations (3.2) are completed by initial and boundary conditions for displace-
ments and/or stresses. The relationship between the displacements and stresses
is given by Hooke’s law:

(3.3) σij = 2µεij + λδijεkk

where εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
– strain tensor. The system of equations (3.2) can

be simplified by substitution:

(3.4) u = grad φ+ rot Ψ

Then we obtain

(3.5)

(
∇2 − 1

v2
1

∂2

∂t2

)
φ = 0,

(3.6)

(
∇2 − 1

v2
2

∂2

∂t2

)
ψi = 0, i = 1, 2, 3



138 A. MACIĄG

where v2
1 =

λ+ 2µ

ρ
, v2

2 =
µ

ρ
. The Eqs. (3.5) and (3.6) are wave equations, but

for a finite domain they are still coupled by initial and boundary conditions. The
main purpose of this work is to solve the system of (3.5), (3.6) by means of to
solve functions’ method.

4. Method of solving functions

The wave-polynomial method discussed below belongs to the class of Tre-
fftz methods. As a solution of each wave equation (3.5), (3.6) we take a linear
combination of the corresponding wave polynomials. The succeeding non-zero
polynomials satisfying Eqs. (3.5) and (3.6) we denote correspondingly by V 0

n

and V i
n, i = 1, 2, 3

As approximations for the solution of Eqs. (3.5) and (3.6) we take corre-
spondingly

(4.1) φ ≈ φ̂ =
N∑

n=1

c0nV
0
n

and

(4.2) ψi ≈ ψ̂i =
N∑

n=1

cinV
i
n, i = 1, 2, 3.

Then

(4.3) u ≈ û = grad φ̂+ rot Ψ̂.

Because polynomials Vn satisfy the corresponding wave equation, also the linear
combination satisfies this equation. The coefficients cn in (4.1) and (4.2) are
chosen so that the error of fulfilling the given boundary and initial conditions
corresponding to Eqs. (3.5) and (3.6) is minimized (see examples).

5. Examples

Some examples presented in this section show the application of the method
of solving functions in elasticity. The first two concern the two-dimensional and
the next two the three-dimensional elasticity problems. In all examples presented
here the constants are established as follows: λ = 1011 [Pa], µ = 8 · 1010 [Pa],
ρ = 8000 [kg/m3].
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5.1. Example 1 – two-dimensional problem in a square

First we consider the plane state of strain when the strain tensor depends
on time and two variables εij = εij(x, y, t), (i, j = 1, 2) and εi3 = 0, (i = 1, 2, 3).
Then

u = [ux(x, y, t), uy(x, y, t)]

=

[
∂φ(x, y, t)

∂x
+
∂ψ(x, y, t)

∂y
,
∂φ(x, y, t)

∂y
− ∂ψ(x, y, t)

∂x

]
,

(5.1)

σxx = (2µ+ λ)
∂ux

∂x
+ λ

∂uy

∂y
, σxy = µ

(
∂ux

∂y
+
∂uy

∂x

)
,

σyy = λ
∂ux

∂x
+ (2µ+ λ)

∂uy

∂y
, σzz = λ

(
∂ux

∂x
+
∂uy

∂y

)
.

The system of equations (3.5) and (3.6) has the form:

(5.2)
1

v2
1

∂2φ

∂t2
=
∂2φ

∂x2
+
∂2φ

∂y2
,

(5.3)
1

v2
2

∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
.

Let us consider the two-dimensional elasticity problem in a square (x, y) ∈ [0, 1]×
[0, 1], described by the system of Eqs. (5.2)–(5.3) and conditions:

(5.4) ux(x, y, 0) = ux0(x, y) = − x

10000
, uy(x, y, 0) = 0,

(5.5)
∂ux(x, y, 0)

∂t
=
∂uy(x, y, 0)

∂t
= 0,

(5.6) ux(0, y, t) = uy(0, y, t) = 0,

(5.7)
σxx = σxy = σyy = 0,

for x = 1, y = 0, y = 1.
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Fig. 1. Fixation of the square.

The problem described by relationships (5.2)–(5.7) can be solved approxi-
mately by means of the method of solving functions. Let us denote the non-zero
two-dimensional wave polynomials (2.6) by

V 0
1 = 1, V 0

2 = x, V 0
3 = y, V 0

4 = v1t, V 0
5 = −x

2

2
− v2

1t
2

2
, V 0

6 = −xy,

V 0
7 = −v1xt, V 0

8 = −v1yt, V 0
9 = −y

2

2
− v2

1t
2

2
, . . .

V 1
1 = 1, V 1

2 = x, V 1
3 = y, V 0

4 = v2t, V 1
5 = −x

2

2
− v2

2t
2

2
, V 1

6 = −xy,

V 1
7 = −v2xt, V 1

8 = −v2yt, V 1
9 = −y

2

2
− v2

2t
2

2
, . . . .

As the approximations for the solutions of Eqs. (5.2)–(5.3), we take correspond-
ingly

(5.8) φ ≈ φ̂ =

N∑

n=1

c0nV
0
n .

and

(5.9) ψ ≈ ψ̂ =
N∑

n=1

c1nV
1
n .

The coefficients cn in (5.8) and (5.9) are chosen so that the error of fulfilling
the boundary and initial conditions (5.4)–(5.7) is minimized. After applyting the
least squares method, the functional describing this error can be written in the
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time interval (0,∆t) as:

I = wu

1∫

0

1∫

0

{ [
ûx(x, y, 0) − ux0(x, y)

]2
+
[
ûy(x, y, 0)

]2
︸ ︷︷ ︸

cond.(5.4)

}
dydx(5.10)

+ wu

1∫

0

1∫

0

{[∂ûx(x, y, 0)

∂t

]2
+
[∂ûy(x, y, 0)

∂t

]2

︸ ︷︷ ︸
cond.(5.5)

}
dydx

+ wu

∆t∫

0

1∫

0

{ [
ûx(0, y, t)

]2
+
[
ûy(0, y, t)

]2
︸ ︷︷ ︸

cond.(5.6)

}
dydt

+ wσ

∆t∫

0

1∫

0

{ [
σ̂xx(1, y, t)

]2
+
[
σ̂xy(1, y, t)

]2
︸ ︷︷ ︸

cond.(5.7)

}
dydt

+ wσ

∆t∫

0

1∫

0

{ [
σ̂yx(x, 0, t)

]2
+
[
σ̂yy(x, 0, t)

]2
︸ ︷︷ ︸

cond.(5.7)

}
dxdt

+ wσ

∆t∫

0

1∫

0

{ [
σ̂yx(x, 1, t)

]2
+
[
σ̂yy(x, 1, t)

]2
︸ ︷︷ ︸

cond.(5.7)

}
dxdt.

The constants µ, λ are large. They appear in the second power by conditions
connected with stresses. Therefore in functional I we have to introduce weights
by each condition. The sum of all weights equals one. Because in functional (5.10)
there are six conditions connected with stresses and six conditions connected with
displacements, the weight wσ = 1/(6 · 1024).

The necessary condition to minimize the functional I is

(5.11)
∂I

∂c01
= · · · =

∂I

∂c0N
=

∂I

∂c11
= · · · =

∂I

∂c1N
= 0.

The linear system of equations (5.11) can be written as

(5.12) AC = B

where C = [c01, . . . , c
0
N , c

1
1, . . . , c

1
N ]T and

A =

[
A1 A2

A3 A4

] } ∂I
∂c0i

} ∂I
∂c1i

︸︷︷︸
c0j

︸︷︷︸
c1j

.
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For example, the elements of matrix A2 are

a2
i,j = wu

1∫

0

1∫

0

{
∂V 0

i (x, y, 0)

∂x

∂V 1
j (x, y, 0)

∂x
− ∂V 0

i (x, y, 0)

∂y

∂V 1
j (x, y, 0)

∂x

+
∂2V 0

i (x, y, 0)

∂x∂t

∂2V 1
j (x, y, 0)

∂y∂t
− ∂2V 0

i (x, y, 0)

∂y∂t

∂2V 1
j (x, y, 0)

∂x∂t

}
dydx

+

1∫

0

∆t∫

0

{
wu

(
∂V 0

i (0, y, t)

∂x

∂V 1
j (0, y, t)

∂y
− ∂V 0

i (0, y, t)

∂y

∂V 1
j (0, y, t)

∂x

)

+ wσ

(
2µ

(
(2µ+ λ)

∂2V 0
i (1, y, t)

∂x2
+ λ

∂2V 0
i (1, y, t)

∂y2

)
∂2V 1

j (1, y, t)

∂x∂y

+ 2µ2∂
2V 0

i (1, y, t)

∂x∂y

(
∂2V 1

j (1, y, t)

∂y2
−
∂2V 1

j (1, y, t)

∂x2

))}
dtdy

+ wσ2µ

1∫

0

∆t∫

0

{
µ
∂2V 0

i (x, 0, t)

∂x∂y

(
∂2V 1

j (x, 0, t)

∂y2
−
∂2V 1

j (x, 0, t)

∂x2

)

−
(

(2µ+ λ)
∂2V 0

i (x, 0, t)

∂y2
+ λ

∂2V 0
i (x, 0, t)

∂x2

)
∂2V 1

j (x, 0, t)

∂x∂y

+ µ
∂2V 0

i (x, 1, t)

∂x∂y

(
∂2V 1

j (x, 1, t)

∂y2
−
∂2V 1

j (x, 1, t)

∂x2

)

−
(

(2µ+ λ)
∂2V 0

i (x, 1, t)

∂y2
+ λ

∂2V 0
i (x, 1, t)

∂x2

)
∂2V 1

j (x, 1, t)

∂x∂y

}
dtdx.

From Eq. (5.12) we obtain the coefficients cn. In practice it turns out that

this system of linear equations is indeterminate. Nevertheless, for different val-

ues of the parameter we get the same solution. In the time intervals (∆t, 2∆t),

(2∆t, 3∆t),. . . , we proceed analogously. Here, the initial condition for time inter-

val ((m − 1)∆t,m∆t) is the value of function u at the end of interval

((m− 2)∆t, (m− 1)∆t). All results below have been obtained for ∆t = 0.00016.

Then v1∆t = 0.91214034, v2∆t = .5059644256. We obtain an approximation

in the entire time interval (0,∆t). For example, Fig. 2 shows an approxima-

tion of displacement ux by polynomials from order 0 to 9 for times a) t = 0,
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b) t = 0.00008, c) t = 0.00014. Figures 2 show that the initial and boundary

conditions for displacement ux are well approximated
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Fig. 2. Approximation of displacement ux for time a) t = 0, b) t = 0.00008, c) t = 0.00014.
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Fig. 3. Approximation of displacement uy for time a) t = 0, b) t = 0.00008, c) t = 0.00014.

Figure 3 show an approximation of displacement uy by polynomials from

order 0 to 9 for times a) t = 0, b) t = 0.00008, c) t = 0.00014. Figures 2 and 3

shows that the the physical character of the displacement is preserved.

In approximations (5.8) and (5.9) we take all wave polynomials of orders

from 0 to K. Table 1 shows the value of functional I which depends on the order

K. The error decreases when the number of polynomials in the approximation

increases.

Table 1. I dependence of the polynomial order.

Order K 1 2 3 4 5

I 0.139 · 10−9 0.234 · 10−13 0.233 · 10−13 0.211 · 10−13 0.166 · 10−13
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5.2. Example 2 – two-dimensional problem in a triangle

The majority of analytical methods used for solving partial differential equa-

tions are effective for simple shapes of the body (square, circle, cube or sphere).

Solving functions’ method can be applied for more complicated domains. The

only difficulty for such a shape may be the calculation of the integrals

determining the coefficients cn – for most shapes this does not create any

problem.

Similarly as in Sec. 5.1, we consider a plane state of strain when the strain

tensor depends on time and two variables. Let us consider the two-dimensional

elasticity problem in a triangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x, described by the

system of Eqs. (5.2)–(5.3) and conditions:

(5.13) ux(x, y, 0) = ux0(x, y) =
y(1 − y)(1 − x− y)

1000
, uy(x, y, 0) = 0,

(5.14)
∂ux(x, y, 0)

∂t
=
∂uy(x, y, 0)

∂t
= 0,

(5.15) ux(x, 0, t) = uy(x, 0, t) = ux(x, 1 − x, t) = uy(x, 1 − x, t) = 0,

(5.16) σxx(0, y, t) = σxy(0, y, t) = 0.

@
@

@
@

-

6

���������

���������
1 x

1

y

Fig. 4. Fixation of the triangle.

Similarly as in Sec. 5.1, approximations for the solution of Eqs. (5.2)–(5.3)

we take correspondingly (5.8) and (5.9). The coefficients cn in the linear com-

binations are chosen such that the error in fulfilling the boundary and initial

conditions (5.13)–(5.16) is minimized. The functional describing this error is
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similar to (5.10). Here we have other domains for integrals:

I = wu

1∫

0

1−x∫

0





[ûx(x, y, 0) − ux0(x, y)]

2 + [ûy(x, y, 0)]2
︸ ︷︷ ︸

cond.(5.13)





dydx(5.17)

+ wu

1∫

0

1−x∫

0






[
∂ûx(x, y, 0)

∂t

]2

+

[
∂ûy(x, y, 0)

∂t

]2

︸ ︷︷ ︸
cond.(5.14)





dydx

+ wu

∆t∫

0

1∫

0

{[ûx(x, 0, t)]2 + [ûy(x, 0, t)]
2

︸ ︷︷ ︸
cond.(5.15)

dxdt

+ wu

√
2

∆t∫

0

1∫

0

[ûx(x, 1 − x, t)]2 + [ûx(x, 1 − x, t)]2︸ ︷︷ ︸
cond.(5.15)

}dxdt

+ wσ

∆t∫

0

1∫

0

{[σ̂xx(0, y, t)]2 + [σ̂xy(0, y, t)]
2

︸ ︷︷ ︸
cond.(5.16)

}dydt

There are two conditions connected with stresses and eight conditions con-

nected with displacements. Therefore in functional I the weight wσ = 2/1023.

The sum of all weights equals one. We obtain the coefficients cn in the same

manner as in Sec. 5.1. All results below have been obtained for ∆t = 0.00016[s].

Figure 5 shows the initial condition for displacement ux a) the exact solution,

b) an approximation by polynomials from order 0 to 9, c) the difference between

a) and b). Figure 5 shows that the initial condition for displacement ux is well

approximated. Figure 6 shows an approximation of displacement uy(0, y, t) in

time by polynomials from order 0 to 9. Let uK denote the approximation of

uy(0, y, t) by polynomials of order from 0 to K. We define the average, relative

difference between solutions uK and uK−1:

D(K) =

√√√√√√√√

∆t∫

0

1∫

0

(uK(0, y, t) − uK−1(0, y, t))2dydt

∆t∫

0

1∫

0

(uK−1(0, y, t))2dydt
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Fig. 5. Initial condition for displacement ux: a) exact, b) approximation, c) difference.
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Fig. 6. Approximation in time of displacement uy(0, y, t).

Table 2 shows the difference D(K) which depends on the order K. The error

decreases when the number of polynomials in the approximation u increases. It

suggests that the method is convergent.

Table 2. Error dependence of the polynomial order.

Order K 3 5 7 9
D(K) 201.2 1.235 1.256 0.558

Stresses can be calculated by means of formula (3.3). For example, Fig. 7

shows the approximation of stress σxx by polynomials of order from 0 to 9 for

times a) t = 0.00001, b) t = 0.00008, c) t = 0.00011. Figures 6 and 7 show that

the physical character of the displacements and stresses is preserved.
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Fig. 7. Approximation of stress σxx for times a) t = 0.00001, b) t = 0.00008, c) t = 0.00011.

5.3. Example 3 – three-dimensional problem in a cube

The method presented here can be also applied to three-dimensional elasticity

problems. Let us consider the elasticity problem described for a cube (x, y, z) ∈
[0, 1] × [0, 1] × [0, 1] by the system of Eqs. (3.5)–(3.6) and conditions:

(5.18)

ux(x, y, z, 0) = 0, uy(x, y, z, 0) = 0,

uz(x, y, z, 0) = ux0(x, y, z) = − z

10000
,

(5.19)
∂ux(x, y, z, 0)

∂t
=
∂uy(x, y, z, 0)

∂t
=
∂uz(x, y, z, 0)

∂t
= 0,

(5.20) ux(x, y, 0, t) = uy(x, y, 0, t) = uz(x, y, 0, t) = 0,

σxx(0, y, z, t) = σxy(0, y, z, t) = σxz(0, y, z, t) = 0,

σxx(1, y, z, t) = σxy(1, y, z, t) = σxz(1, y, z, t) = 0,

σyx(x, 0, z, t) = σyy(x, 0, z, t) = σyz(x, 0, z, t) = 0,(5.21)

σyx(x, 1, z, t) = σyy(x, 1, z, t) = σyz(x, 1, z, t) = 0,

σzx(x, y, 1, t) = σzy(x, y, 1, t) = σzz(x, y, 1, t) = 0.

The problem described by relationships (5.18)–(5.21) can be solved approxi-

mately by means of the method of solving functions. Let us denote the non-zero
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two-dimensional wave polynomials (2.25) as

V 0
1 = 1, V 0

2 = x, V 0
3 = y, V 0

4 = z, V 0
5 = v1t, V 0

6 = −x
2

2
− v2

1t
2

2
,

V 0
7 = −xy, V 0

8 = −xz, V 0
9 = −v1xt, V 0

10 = −y
2

2
− v2

1t
2

2
,

V 0
11 = −yz, V 0

12 = −v1yt, V 0
13 = −z

2

2
− v2

1t
2

2
, V 0

14 = −v1zt, . . .

and

V i
1 = 1, V i

2 = x, V i
3 = y, V i

4 = z, V i
5 = v2t, V i

6 = −x
2

2
− v2

2t
2

2
,

V i
7 = −xy, V i

8 = −xz, V i
9 = −v2xt, V i

10 = −y
2

2
− v2

2t
2

2
,

V i
11 = −yz, V i

12 = −v2yt, V i
13 = −z

2

2
− v2

2t
2

2
, V i

14 = −v2zt, . . . i = 1, 2, 3

Notice that we take the same polynomials for Eqs. (3.6). As approximations for

the solution of Equations (3.5)–(3.6) we take correspondingly

(5.22) φ ≈ φ̂ =
N∑

n=1

c0nV
0
n .

and

(5.23) ψi ≈ ψ̂i =
N∑

n=1

cinV
i
n, i = 1, 2, 3.

The coefficients cn in (5.22) and (5.23) are chosen so that the error for fulfill-

ing the boundary and initial conditions (5.18)–(5.21) is minimized. Further we

progress as in Secs. 5.1 and 5.2. Of course, here we have more conditions. There-

fore the functional I and matrices A, C and B are “bigger”. In functional I we

introduce weights by each condition. In this case there are fifteen conditions

connected with stresses and nine conditions connected with displacements – the

weight wσ = 15/1022.

All results below have been obtained for ∆t = 0.00016. Figure 8 shows an

approximation of displacement uz(x, 0.5, z, t) by polynomials from order 0 to 4

for time a) t = 0, b) t = 0.0001, c) t = 0.00016. Figures 8 show that the initial

and boundary conditions are well approximated.

Figure 9 shows an approximation of displacement ux(x, y, 0.5, t) by polynomi-

als of order from 0 to 4 for times a) t = 0, b) t = 0.0001, c) t = 0.00016. Figures

8 and 9 show that the physical character of the displacement is preserved.
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Fig. 8. Approximation of displacement uz(x, 0.5, z, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00016.
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Fig. 9. Approximation of displacement ux(x, y, 0.5, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00016.

5.4. Example 4 – three-dimensional problem in a triangular prism

Let us consider the elasticity problem described in a triangular prism

0 ≤x≤ 1, 0 ≤ y ≤ 1 − x, 0 ≤ z ≤ 1 by the system of Eqs. (3.5)–(3.6) and

conditions:

(5.24)

ux(x, y, z, 0) = 0, uy(x, y, z, 0) = 0,

uz(x, y, z, 0) = ux0(x, y, z) = − z

10000
,

(5.25)
∂ux(x, y, z, 0)

∂t
=
∂uy(x, y, z, 0)

∂t
=
∂uz(x, y, z, 0)

∂t
= 0,
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(5.26) ux(x, y, 0, t) = uy(x, y, 0, t) = uz(x, y, 0, t) = 0,

(5.27)

σxx(0, y, z, t) = σxy(0, y, z, t) = σxz(0, y, z, t) = 0,

σyx(x, 0, z, t) = σyy(x, 0, z, t) = σyz(x, 0, z, t) = 0,

σzx(x, y, 1, t) = σzy(x, y, 1, t) = σzz(x, y, 1, t) = 0,

σxx(x, 1 − x, z, t) = σxy(x, 1 − x, z, t) = σxz(x, 1 − x, z, t) = 0,

σyy(x, 1 − x, z, t) = σyz(x, 1 − x, z, t) = σzz(x, 1 − x, z, t) = 0.

The problem described by relationships (5.24)–(5.27) can be solved in the

same manner as in Secs. 5.1, 5.2 and 5.3. In this case we have other domain for in-

tegrals in functional I where there are fourteen conditions connected

with stresses and nine conditions connected with displacements – the weight

wσ = 14/1022.

All results given below given have been obtained for ∆t = 0.00016.

Figure 10 shows the approximation of displacement ux(x, y, 0.5, t) by poly-

nomials of order from 0 to 4 for times a) t = 0, b) t = 0.0001, c) t = 0.00015.

Figure 10 shows that the physical character of the displacement is preserved.

Figure 11 shows an approximation of displacement uz(x, x, z, t) by polynomi-

als of order from 0 to 4 for times a) t = 0, b) t = 0.0001, c) t = 0.00016.

Figures 11 shows that the initial and boundary conditions for uz are well ap-

proximated.
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Fig. 10. Approximation of displacement ux(x, y, 0.5, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00015.
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Fig. 11. Approximation of displacement uz(x, x, z, t) for time a) t = 0, b) t = 0.0001,
c) t = 0.00016.

6. Concluding remarks

As a rule, the elasticity problems are difficult. A new simple technique for
solving these two- and three- dimensional problems has been developed. The
method of solving functions presented in this paper is a straightforward method
for solving elasticity problems in finite bodies. This method is also useful when
the shape of the body is complicated. We must calculate the integrals deter-
mining the coefficients cn. For most shapes this does not present any problem.
The simple examples presented in this paper show that in the obtained approx-
imations, the physical character of displacements and stresses is preserved. The
solution, which is a linear combination of wave polynomials, satisfies exactly
the wave equation and approximately – the initial and boundary conditions.
The next step of the research should be the application of this method to ther-
moelasticity problems. Moreover, wave polynomials can be used as finite-element
base functions.
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Brake systems have become increasingly complex. They must not only slow down or stop
a vehicle under extreme conditions within short distances, but also reduce the effort exerted
by the driver. This phenomenon is difficult to approach because it depends on the vehicle’s
architecture. This is why, in this paper, the first part will give the basis for modelling of the
complete vehicle including the frame and the tires, in a 3D format. A 2D control law model will
be synthesized to obtain the best performances for road behaviour. This control law is based
on the theory of Linear Quadratic control (LQ). It is also extended to cover the 3D vehicle
model. The last part gives the numerical simulation results which demonstrate the effectiveness
of this law for vehicle performances.

Key words: active suspensions, optimal control, brakes, vehicle dynamics, angular dynamics,
comfort.

Notations

Ms rigid body mass of half-car,
Mnsv, Mnsr masses respectively of the front axle and the rear axle,

lv, lr distances from center of gravity to vehicle front wheel, respectively,
and to vehicle rear wheel,

Ip vehicle pitch inertia about center of gravity,
θ vehicle pitch angle about center of gravity,
h height of center of gravity from the road,

zsv, zsr vertical displacements, respectively of the front
and the rear of the rigid body,

żsv, żsr vertical velocities, respectively of the front
and the rear of the rigid body,

zrv, zrr vertical displacements respectively of the front and rear axle,
żrv, żrr vertical velocities, respectively of the front and rear axle,
ztv, ztr road displacements, respectively on the front and rear wheel,
ksv, ksr spring constant of the secondary suspensions, respectively front

and rear,
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bsv, bsr damping coefficients of the secondary suspensions, respectively
front and rear,

ktv, ktr spring constant of the primary suspensions, respectively front and rear,
btv, btr damping coefficients of the primary suspensions, respectively

front and rear,
fav, far friction forces ,respectively of the front and rear wheels,
fzv, fzr normal forces, respectively of the front and rear wheels,
uv, ur active control forces, respectively of the front and rear wheels,
x, ẋ, ẍ position, velocity and acceleration of the vehicle,

wav, war angular velocity, respectively of the front and rear wheels,
ẇav, ẇar angular acceleration, respectively of the front and rear wheels,
Tbv, Tbr front and rear disc brake torque, respectively,

Jv, Jr inertias, respectively of the front and rear wheels,
r effective tyre radius,

1. Introduction

Many theoretical and experimental works propose applications of optimal
control theories for the active control of mechanical systems and structures vi-
brations. Several works, such as those of Karnopp [1, 2, 3], in the field of vehicle
suspensions have made it possible to show the performances obtained by active
systems for vehicle comfort and stability improvements.

The interesting results obtained by this type of work on vehicle suspensions
led us to raise the question of its possible application to other problems. This
study proposes to extend its use to the improvement of road behaviour. Dur-
ing the braking phase for example, there are longitudinal and transverse load
transfers, causing pressure loss on certain wheels. It is necessary to add a supple-
mentary load on each unloaded wheel and discharge those which are overloaded.
According to the Coulomb law (T = µ.N), if one manages to increase the normal
force (N), the force of friction (T ) should also increase. That would contribute
to adding loads to the discharged wheels and to obtain good deceleration of the
vehicle.

For the same purpose, several mechanisms have already been installed on
road vehicles. These mechanisms, such as ABS (Anti-lock Braking System) and
ESP (Electronic Stability Program), have proved their effectiveness in improving
the stopping distance and handling of vehicles. In the braking field, car manu-
facturers and the scientific community have optimized the parameters of vehicles
to obtain effective braking and optimal reduction to the braking distance. Since
people drive ever faster, it would be interesting to develop an innovative system
adapted to this trend in driver behaviour. This paper offers then a new concept
which is able to increase safety and to improve handling, and which could be
added to the existing powerful systems (ABS, ESP...).

In this contribution, we propose a method which consists in increasing the
friction force between the tire and the road while acting on the suspension.
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For this purpose, we use a control law which will act on some of the vehicle
degrees of freedom. This action represents the behaviour of an actuator which
increases the normal force on the contact surface (between the tyre and the
road), and which will affect the frictional forces. A study conducted in France
by the car manufacturer Renault, on the circumstances of accidents, revealed
that 36% of accidents take place in a straight line, 18% at roads intersections
and 46% in curves. The greatest share of accidents occur in curves because of
instabilities caused by the action of the driver, or by external actions. Among
the instabilities caused by external actions, one can consider two cases. In the
first case, the vehicle is in low adherence zone (in a discontinuous manner).
A loss can then occur in the tracking forces on one or more tyres, generating
instability. In the second case, the vehicle can also be subjected to aerodynamic
disturbances, generating an additional yaw motion which could be a source of
instability. Concerning instabilities caused by the driver, it corresponds mainly
to the situation in which the driver imposes two or several successive changes of
direction of the vehicle. This case could occur when trying to avoid an obstacle,
a change of lane in an urgent situation or at an intersection in the presence of
another vehicle. We will use the latter example in our simulations because the
suspensions are strongly strained.

The work offered here uses optimal control features, takes into account the
existing knowledge in terms of vehicle dynamics in order to put them in op-
erational form and applicable to the design problem of vehicles. Models were
developed to design the control device and to simulate the operation of the sys-
tem in order to evaluate the law of control. Considering the optimal control
principles, we proposed an active control law for various cases of constraints.
This law is meant to significantly improve vehicle handling. Simulations were
carried out in the braking phase because the vehicle’s suspension is also strained
when avoiding an obstacle. The paper is organized as follows: Sec. 2 gives basic
equations describing the vehicle dynamics. It includes all relevant components
description and details. Section 3 discusses deeply the cost functional represent-
ing the optimal vehicle in terms of braking capacities and performances. Section
4 offers some numerical simulations and includes main situations in an attempt
to check the robustness of the proposed solution. Section 5 concludes the paper.

2. Vehicle Dynamics Model

2.1. Vehicle dynamics concept

To understand the concepts which will be referred to in this paper, we intro-
duce here some elementary notions related to vehicle dynamics. Two reference
frames are needed. The first reference frame is related to the road. The second
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reference is fixed at the mass center G of the vehicle. We define the angle of
rolling as being the rotation around the longitudinal axis (GX), the angle of
pitch as being the rotation around the transverse axis (GY ) and the angle of
yaw, like that of rotation, around the vertical axis (GZ).

It is important to define the variables which will characterize the state of the
vehicle. Among them are the parameters which will be useful for the study of
contact between the wheel and the ground and those concerning to the tyres.
The angle between the tyre and the vertical axis is the steering angle (α) and the
angle between the velocity vector and the longitudinal axis is the drift angle (γ).

To simplify and reduce the calculations for asymmetrical braking, we study
the dynamic behaviour of a vehicle whose trajectory is circular.

Fig. 1. Angular dynamics.

We assume in this model that the angles between the right wheel and the
left wheel of the same axle are identical. δ1 and δ2 denote the drift angles of
the right axle and the rear axle. δ is the drift angle at the mass center. If we
impose a steering angle α, the vehicle runs in a circle whose radius is equal to
R = L/[α− (δ2 − δ1)]. If the drift angles of the right axle and the rear axle
are known, the behaviour of the vehicle can be predicted. If (δ2 − δ1) < 0, the
vehicle is oversteering or if (δ2 − δ1) > 0, the vehicle is understeering. And if
(δ2 − δ1) = 0, the vehicle is on the trajectory.
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If the vehicle is on a circular trajectory and we accelerate, if it is necessary
to add steering to maintain the trajectory, the vehicle is understeering. On the
other hand, if it is necessary to decrease steering, then the vehicle is oversteering.
And there is a critical velocity beyond which the vehicle becomes unstable. It is
necessary in this case to steer right in order to go left. This variation of angle,
which characterizes the mode established in turns is called angular dynamics.
Angular dynamics can be defined as being the partial derivative of the steering
angle compared to transverse acceleration. Under these conditions, the vehicle
remains on a circular trajectory of radius R at constant. The angular dynamics
is expressed by:

da =
dα

dγt

where γt represents transverse acceleration. The sign of angular dynamics gives
then the character of the vehicle. In order to simulate the behaviour of the tyres
on a road, it is essential to know their characteristics. We introduce the concept
of sliding. Sliding g represents a percentage. If the wheel is blocked and the vehi-
cle is not stopped, then the sliding is equal to – 100%. But if the wheel slips and
the vehicle is stopped, then the sliding is equal to 100%. For good adherence,
Fig. 2 resulting from Pacejka’s tyre model shows that friction force is maximum
when sliding is around 10%.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

slip coefficient (%)

F
ric

tio
n 

fo
rc

e 
en

 N

Normal force = 1 kN
Normal force = 2 kN
Normal force = 3 kN

Fig. 2. Friction force according to the slip coefficient.



160 T. R. ORI, M. N. ICHCHOU, P. GBAHA, L. JEZEQUEL

All the forces of the ground acting on the tyre can be divided into three
principal components: Fx represents the trail of braking when the force is opposed
to the wheel movement (during braking) or acceleration when it goes in the
direction of the movement, Fy is the lateral force of guiding. It is related to
the value of pneumatic drifts. Fz is the vertical load which acts on the tyre. It
depends on the static weight of the vehicle but also on its dynamic state. It is
greatly influenced by the transfers of load during acceleration, braking or curves.

2.2. Model and equations of the vehicle

This model [4, 5] includes the rigid mass of the vehicle’s body and the four
unsprung masses. It has 22 degrees of freedom, (xG, yG, zG, θ, ϕ, ψ) for the
vehicle’s body, (xij , yij , zij) for each unsprung mass and (wij) for each wheel in
rotation. We can simulate the dynamic behaviour of a vehicle in real time using
this model. Thus, it facilitates experimentation on controlled frame systems using
a control simulator, integrating the reactions of a real driver.

The index i = 1 is for the front wheel-axle unit, i = 2 is the rear wheel-axle
unit. The index j = 1 is for the left-hand side, and j = 2 for the right-hand side.

Fig. 3. Model of the complete vehicle.
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2.2.1. Rigid mass of the vehicle. To determine the general equations of the
model’s movements in 3D, we used Lagrange equations [6]. Thus the equations
of the vehicle’s body are :

Ix′x′

∂2θG

∂t2
=

2∑

i=1

(li1Fzi1 − li2Fzi2) +

2∑

i,j=1

hijFyij +M.g.h ∗ sin θ,(2.1)

Iy′y′

∂2ϕG

∂t2
=

2∑

j=1

(L2Fz2j − L1Fz1j) −
2∑

i,j=1

hijFxij ,(2.2)

Iz′z′
∂2ψG

∂t2
=

2∑

i=1

(li2Fxi2 − li1Fxi1) +
2∑

j=1

(L1Fy1j − L2Fy2j).(2.3)

For the unsprung masses (i, j = 1, 2), we can write:

(2.4) Mnsij z̈ij = −Csij(żij − żcij) − ksij(zij − zcij) − kpij(zij − zpij) − Faij ,

where Faij represents the active force element to be controlled, Fxij , Fyij and
Fzij represent the suspension forces under the wheels according to (Gx′),(Gy′)
and (Gz′)axis of reference R′(G, x′, y′, z′) related to the vehicle mass center, Csij

represents the damping of the secondary suspensions, ksi and kpi are respec-
tively the stiffnesses of the secondary suspensions and the primary suspensions.
Ix′x′ , Iy′y′ , Iz′z′ are respectively the inertias of the rigid body according to the
axes of the R′(G, x′, y′, z′) reference related to the mass center of the vehicle.
h1j and h2j are respectively the vertical distances from the ground to the axis of
rolling at the front wheel-axle unit and the rear wheel-axle unit and h represents
the vertical distance from the ground to the center of gravity of the unsprung
mass. L1 and L2 are respectively the horizontal distances from the gravity center
to the axis of rolling at the front wheel-axle unit and the rear wheel-axle unit
and lij are the distances between the rolling axis and the vertical one which
passes through the gravity center of each unsprung mass. Ms and Mnsij are re-
spectively the masses of the rigid body and the unsprung masses ij. θ, ϕ and ψ
are respectively the angle of roll, the angle of pitch and the angle of yaw of the
rigid body. zpij is the vertical road displacement and g is gravity.

The equations of the inertia center of the vehicle’s movement which are ob-
tained from the fundamental relation of dynamics are:

(2.5) M.ẍG −M.ψ̇ẏG =
2∑

i,j=1

Fxij ,
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M.ÿG + ψ̇ẋG =

2∑

i,j=1

Fyij ,(2.6)

M.z̈G =
2∑

i,j=1

Fzij −M ∗ g,(2.7)

with

M = Ms +

2∑

i,j=1

Mnsij .

The velocities of the gravity center in the reference R′ are expressed by:

{
ẋG = V. cos δ,

ẏG = V. sin δ,

and accelerations after linearization are:
{
ẍG = V̇ (1 − δ2/2) − V δ̇ δ − ψ̇ V δ,

ÿG = V̇ δ + V δ̇ + ψ̇ V,

where δ represents the drift of the pneumatic and V represents the longitudinal
velocity of the vehicle.

To study the vehicle’s displacement in 3D, it is imperative to define a refer-
ence frame in which one will be able to consider the displacements in a straight
line, but also the movements of yaw, pitch and roll. The selected references are:
R(ω, x, y, z), the direct and fixed Galilean reference frame which is related to the
ground reference frame. R(G, x′, y′, z′), the reference frame related to the mass
center of the vehicle and obtained by rotation of angle ψ around the axis (G, z′).
R′′(G, x′′, y′′, z′′), the reference frame related to the mass center of the vehicle and
obtained by rotation of angle ϕ around the axis (G, y′′). And R′′′(G, x′′′, y′′′, z′′′),
the reference frame related to the mass center of the vehicle and obtained by
rotation of angle θ around the axis (G, x′′′).

The dynamic equations of the vehicle are established in the reference frame
R′′′. These equations are then expressed in the reference frame R, by using a
matrix of passage P , linearized to the first order.

P =





1 −ψ ϕ

ψ 1 −θ
−ϕ θ 1



 .

These equations are those of vehicle’s body.
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2.2.2. Wheels. The model of tyres used is a Pacejka model [7, 8], which
allows the representation of tyre behaviour by taking account of the longitu-
dinal/transverse coupling. The angles which we will refer to are those which are
necessary for Pacejka’s model and used for simulation. (G, xr, yr, zr) represents
the reference frame of the wheel.

Fig. 4. Diagram of the tyre seen from above.

The pneumatic drifts (δpij) are expressed in the following way:

(2.8) δpij = arctan

(
~V0.~yr

~V0.~xr

)
− αij

where αij is the steering of the wheel’s direction caused by the driver. The
vertical efforts under each wheel are expressed in the following way

(2.9) Fzij = −kpij(zij − zpij) − cpij(żij − żpij) + Fzsij ,

where Fzsij is the static effort due to the load under each wheel. The forces given
in the reference frame of each wheel are those of Pacejka’s model. The passage of
the efforts in the wheel reference frame to the frame R′ is expressed as follows:

Fxrij = Fxij cosαij − Fyij sinαij ,(2.10)

Fyrij = Fyij cosαij + Fxij sinαij .(2.11)
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The pneumatic slip is defined by the following relation:

(2.12) g =






(R.w − V ) ∗ 100

V
if R.w < V,

(R.w − V ) ∗ 100

R.w
if R.w > V.

All these equations enabled us to develop a software to simulate the road behav-
iour of a vehicle.

2.3. Description of the simulation software

The system is integrated in a simulation environment consisting of a com-
plete model of the vehicle and is called VDS (Vehicle Dynamics Software). This
model was developed by the structures and systems dynamics team of the Ecole
Centrale de Lyon. This model enables simulation of the dynamic behaviour of
a vehicle in real time, and thus allows experimentation on the frame using a con-
trol simulator, integrating the reactions of a real driver and the aerodynamics.

The model of tyre is also integrated in the tool for simulation and it takes ac-
count of the longitudinal/transverse coupling. The simulation tool was developed
under MATLAB/Simulink.

3. Control laws developments

The objective of control is to find a suitable law to increase the normal force.
We therefore minimize the vertical quadratic acceleration of the front and rear
hubs and we limite the energy contribution necessary for control.

The parameters obtained for the front wheel on the 2D model is placed on
the two front wheels of the 3D model. We proceed in the same way for the rear
wheels. This is why the study of the control law was carried out on a 2D model.

The front and rear normal forces depend on movements in the vertical plane,
which is the case of the displacements of the rigid body and the unsprung masses.
We then separate the entry vector into two state vectors, one with the elements
moving vertically and the other with the elements moving horizontally.

3.1. Model used

This model [9, 10, 11] of vehicle is composed of three rigid bodies. The sus-
pended mass represents the rigid body and the two unsprung masses represent
the front and rear axles. This model includes 9 (DOF) degrees of freedom: three
degrees of freedom for the rigid body (x, z, θ), two degrees of freedom for each
unsprung mass (x, z), one degree of freedom for the rotation (w) of each wheel.
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Fig. 5. Half car model.

The dynamic system can be expressed in the following form:
In the vertical plane,

(3.1) Ż = A1.Z +B1.U +B2(Z).F +B3.W

with A1(8 ∗ 8), B1(8 ∗ 2), B2(8 ∗ 2) as a function Z and B3(8 ∗ 4).
In the horizontal plane,

(3.2) Ẋ = A2.X +B4.F +D.T

with A2(6 ∗ 6),B4(6 ∗ 2) and D(6 ∗ 2).
The vectors X and Z are:

X =





x
ẋ
wav

ẇav

war

ẇar




, Z =





zsv − zrv

żsv
zrv − ztv
żrv

zsr − zrr

żsr
zrr − ztr
żrr





.

The choice of vectors was made for a suitable search for our control law, which
constitutes an important stage of this study.
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3.2. Expression of the criterion

The control law [12, 13] that we formulate is based on the minimization
of a quadratic criterion for a linear dynamic system. This control provides the
expression of the optimal forces according to the state variables of the system.
Knowing the performance criterion and the equations of the system, we are able
to identify the optimal forces to be applied for better road behaviour, regardless
of the constraints related to the road state and the stochastic nature of the
disturbances.

The variables to be minimized in our model are of two types: accelerations
of the unsprung masses (z̈rv and z̈rr), which would isolate the vehicle cockpit
from irregularities in the road, thus making it possible to improve comfort of
the passenger, and vertical displacements of the suspensions (zsv − zrv) and
(zsr − zrr). To optimize the energy contribution necessary for the control forces,
we have added the expressions J5 and J6 in the criterion of performance defined
below. We define the criterion of performance as follows [14]:

J1,J2: being the quadratic evaluation of the front and rear accelerations re-
spectively weighting the constants q1 and q2.

(3.3) J1 = lim
T→∞

1

T
E

T∫

0

q1(z̈rv)
2dt

(3.4) J2 = lim
T→∞

1

T
E

T∫

0

q2(z̈rr)
2dt

J3,J4: averages of squares of relative displacements between the rigid body
and the axle, balanced respectively at the front and rear by the constants q3
and q4.

(3.5) J3 = lim
T→∞

1

T
E

T∫

0

q3(zsv − zrv)
2dt

(3.6) J4 = lim
T→∞

1

T
E

T∫

0

q4(zsr − zrr)
2dt

J5,J6: these terms are useful for limiting the control forces uv(t), ur(t) and
thus controlling the strain energy of the suspension.

(3.7) J5 = lim
T→∞

1

T
E

T∫

0

ρv(uv)
2dt
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(3.8) J6 = lim
T→∞

1

T
E

T∫

0

ρr(ur)dt.

The coefficients ρv, ρr and qi (i = 1, ..., 4) are numerical constants whose values
give predominance to one or the other of the performances to be achieved. The
expression of the criterion will thus be

J =
6∑

i=1

Ji.

The square averages of these accelerations reveal a coupling and the index of
performance can then be put in the form

(3.9) J = lim
T→∞

1

T
E

T∫

0

(UT .R.U +XT .Q.X + 2.XT .N.U)dt.

with

Q =





q3 + q1.a
2
1 a1.a2.q1 a1.a3.q1 a1.a4.q1 0 0 0 0

a1.a2.q1 q1.a
2
2 a2.a3.q1 a2.a4.q1 0 0 0 0

a1.a3.q1 a2.a3.q1 q1.a
2
3 a3.a4.q1 0 0 0 0

a1.a4.q1 a2.a4.q1 a3.a4.q1 q1.a
2
4 0 0 0 0

0 0 0 0 q4 + q2.a
2
5 a5.a6.q2 a5.a7.q2 a5.a8.q2

0 0 0 0 a5.a6.q2 q2.a
2
6 a6.a7.q2 a6.a8.q2

0 0 0 0 a5.a7.q2 a6.a7.q2 q2.a
2
7 a7.a8.q2

0 0 0 0 a5.a8.q2 a6.a8.q2 a7.a8.q2 q2.a
2
8





,

R =

(
ρv + q1.a

2
10 0

0 ρr + q2.a
2
9

)
, N =





a1.a10.q1 0

a1.a10.q1 0

a1.a10.q1 0

a1.a10.q1 0

0 a5.a9.q2

0 a5.a9.q2

0 a5.a9.q2

0 a5.a9.q2





,
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a1 = −ksv/Mnsv; a6 = −bsr/Mnsr;

a2 = −bsv/Mnsv; a7 = −ktr/Mnsr;

a3 = −ktv/Mnsv; a8 = (bsr − btr)/Mnsr;

a4 = (bsv − btv)/Mnsv; a9 = 1/Mnsr;

a5 = −ksr/Mnsr; a10 = 1/Mnsv.

The values used in the calculation of the criterion are given below [15]:

Ms = 730.0 kg, Ip = 1230.0 kg.m2,

r = 0.3 m, Jv = 1.4 kg.m2,

Jr = 1.0 kg.m2, ksv = 19960.0 N/m,

ksr = 17500.0 N/m, bsv = 1050.0 N.s/m,

bsr = 900.0 N.s/m, lv = 1.011 m,

lr = 1.803 m, h = 0.508 m,

Mnsv = 40.0 kg, Mnsr = 35.0 kg,

ktv = 175500.0 N/m, ktr = 175500.0 N/m,

btv = 1500.0 N.s/m, btr = 1500.0 N.s/m.

The determination of the elements uv(t) and ur(t) and the law of control consists
of finding the matrix which is the solution of the Riccati equation below:

(3.10) P (t).A1 +AT
1 .P (t) +Q− P (t).B1.R

−1.BT
1 .P (t) = 0

where P , Q and R are defined, symmetrical and positive matrices. The command
which minimizes this criterion of performance is :

(3.11) U(Z, t) = G(t).Z(t) with G(t) = −R−1.BT
1 .P (t)

Elements uv(t) and ur(t) are written in the form:

(
uv

ur

)
= G.Z.

Generally, the development of a suspension is a compromise between the
minimization of two variables (acceleration and vertical displacement), but the
minimization of vertical displacement does not appear on the same level. So the
choice of the ponderation coefficients, and thus of the optimal law, determines
the control performance. As there is no suitable criterion for determining the
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parameters, their adjustment is thus made in a dichotomic way. For the law of
control, we choose the ponderation coefficients with the following values:

ρv = 1.75.10−9, ρr = 1.75.10−9,

q1 = 10−8, q2 = 10−8, q3 = 0.9, q4 = 2.1,

We then examine the shape of the curves to decide on the effectiveness of the
law of control.

4. Simulation

Active suspension control is intended to help the driver to deal with extreme
driving situations generally leading to a loss of control of the vehicle, and thus
an accident. Extreme situations targeted by a trajectory control system are for
light vehicles, in the case of under and over-steering. The system equipped with
an active suspension has to keep the vehicle on its trajectory, materialized by the
steering wheel and guided by the driver. The command law synthesized in the
previous paragraph was integrated on a vehicle. Among the emergency situations
studied, we present the one which consists of avoiding an obstacle and then we
will compare the behaviour of the active suspension-equipped vehicle with the
behaviour of the one without such a system.

4.1. Skirting–cutting in

In the following, simulations correspond to the voluntary behaviour of the
driver when an obstacle suddenly appears, as shown below (Fig. 6). The vehicle
rolls at a speed of 130 km/h. On seeing the obstacle, the driver brakes one second
later, steering the driving wheel to the left at a 60 degrees angle, then steers back
to put the vehicle on its initial trajectory again.

Fig. 6. The driver’s maneuver.
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During maneuvering the driver keeps his foot on the brake. This occurs with
good grip corresponding to a dry road. The results obtained for vertical suspen-
sion control (as shown in Figures b) are compared with those without control
(as shown in Figures a).

4.2. Results

Responding automatically to the driver’s instruction, the vehicle is deceler-
ated by pressing the brakes to around −9 m/s2. This strong deceleration happens
abruptly and leads to a loss of grip. The loss of grip decreases the braking. This
leads to a loss of longitudinal deceleration (γx) after 3 seconds (Fig. 7a) in favour
of acceleration (γy). While in Fig. 7b, the longitudinal deceleration (γx) of the
controlled vehicle holds until the end of the maneuvering and the side accelera-
tion is near zero after 3.5 seconds. Under these conditions, the vehicle equipped
with active suspensions will follow the desired trajectory more easily and its
wheels will transmit the lateral effort to the ground.

When the driver steers the wheel to the left, a lateral load transfer occurs
which tends to unload the left-hand front and rear wheels in favour of the right-
hand front and rear wheels. And braking generates a transfer of longitudinal load
from the rear wheels to the front ones. The left rear wheel, unloaded from a large
share of its load, is then on the verge of losing contact with the road. This wheel
cannot therefore transmit any effort to the ground and for severe decelerations
( > – 8 m/s2), it quickly locks (Fig. 8a).

The right-hand rear wheel, partly unloaded from its load by the longitu-
dinal transfer, also locks equally during the braking phase. The wheel cannot
compensate the transversal effort lost at the level of the left rear wheel.

With the deceleration imposed by the driver of the non-controlled vehicle,
the longitudinal transfer generates an additional overload on the right front
wheel which saturates completely. Longitudinal friction forces are thus stronger
(Fig. 11a). The left front wheel unloaded during the turn receives the same
braking order as the right front wheel. Under these conditions, the left front
wheel blocks itself quite quickly (slipping = −100%) and thus cannot transmit
any lateral effort. The right front wheel, saturated and greatly longitudinally
stressed, cannot provide enough lateral effort to compensate the blocking of the
left front wheel. All four wheels are then blocked (Fig. 8a).

The active force synthesized by the control law and drawn in Fig. 8c, in-
stantly balances the load of the suspended mass by adding an additional load
when a wheel becomes unloaded, and by releasing the wheel when it is satu-
rated.

Through its action, the active force allows the left front and rear wheels to
return to a slip value (−10%) easing the driver’s maneuvering.
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Fig. 7. a) Accelerations of non-controlled vehicle; b) Accelerations of controlled vehicle.
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[Fig. 8a,b].
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Fig. 8. a) Slip coefficient of non-controlled vehicle; b) Slip coefficient of controlled vehicle;
c) Active force

Figure 9a shows the roll, pitch and yaw angles of the uncontrolled vehicle

and Fig. 9b displays the same angles for the controlled vehicle. The roll on the

controlled vehicle is lower than on the non-controlled one. This result means that

the lateral load transfer is lower on our controlled vehicle. It is also the case for

pitch which is lower on the controlled vehicle. This decreases the longitudinal

load transfer. The front wheels will thus be less loaded and the rear ones less

unloaded. The reduction of roll and pitch increases the vehicle stability, makes

it more confortable and enables better braking thanks to better distribution of

the load on the wheels.

When we analyze the rotation around axis (Gz) during the maneuver, the

controlled vehicle has less yaw at the end of the maneuver, than the vehicle

without control. This means that the non-controlled vehicle is far from the initial

direction of its movement. The driver will have more difficulty putting his vehicle

back to its initial direction. This generates a large lateral drift of the vehicle’s

center of gravity (Fig. 10a). Whereas the controlled vehicle has a lower drift

angle at the center of gravity (Fig. 10b). It will be easier for the driver in this

case to return to the initial direction of his movement.
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Fig. 9. a) Angles of non-controlled vehicle; b) Angles of controlled vehicle.
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Fig. 10. a) Non-controlled vehicle: lateral drift of vehicle’s center of gravity; b) Controlled
vehicle: lateral drift of vehicle’s center of gravity.
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Longitudinal transfer during braking saturates the front wheels and unloads
the rear ones. Furthermore, light vehicle manufacturers tend to load the front
more than the rear. The friction of the front wheels becomes greater than that
of the rear wheels (Fig. 11a and Fig. 11b).The exponential increase of drift at
the center of gravity and the locking of the wheels of the non-controlled vehicle
lead to an important loss of friction forces of the front wheels (Fig. 11a).

In Fig. 11b it can be seen that the longitudinal braking of the controlled
vehicle is not decreased. This is caused by a decrease of the slip of the left front
wheel and also to a hold of the transverse acceleration at around 0 m/s2.

For the vehicle without control, all wheels are locked, the center of gravity
drift is high and the longitudinal deceleration is impaired. Under these condi-
tions, the vehicle will have great difficulty responding to the driver’s orders. The
controlled vehicle holds its longitudinal deceleration until the end of the maneu-
ver. Moreover, the drift at the center of gravity is lower than in the case of the
non-controlled vehicle. The left front and rear wheels do not lock and so they
compensate the locking of the two other wheels to ensure the trajectory desired
by the driver.

In Fig. 12, the trajectories seen in the two previous cases are superposed.
The non-controlled vehicle cannot respond to the driver’s orders. It moves 4

m sideways, which can cause it to leave the road. Whereas the controlled vehicle
perfectly follows the desired trajectory.
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[Fig. 11a].



IMPROVEMENT OF HANDLING BY MEANS ... 177

b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

time (s)

F
ric

tio
n 

fo
rc

es
 (

N
)

front left
front right
rear left
rear right

Fig. 11. a) Friction forces of non-controlled vehicle; b) Friction forces of controlled vehicle.
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Fig. 13. Total power consumed.

Figure 13 shows the total instant power consumed by the four wheels during

the maneuver.

It never exceeds 200 W, what is very reasonable. Energy consumption is a pri-

mary factor if the system is to be put in use because current vehicles occasionally

have high consumption levels. A system adding greatly to energy consumption

has little chance of acceptance.

Many maneuver simulations have been conducted, notably while turning or

driving in a straight line. The results of all these trials show that the controlled

suspension system gives a better trajectory hold and better respect of the angle

order of the steering wheel, with low friction, which is a clear ad-vantage.

5. Conclusion and perspectives

In this study we have analyzed, modelled and simulated an active suspension

to improve the traction of a car during the braking phase.

Our margin for obtaining satisfying results was limited. Indeed today’s tyres

are employed at around 95% of their maximum efficiency. As tyres are designed

to endure up to 110% of their capability, we can add a reasonable supplementary

load.
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From the general results of the optimization, an active command law on

a nonlinear system was synthesized. As these theoretical laws are only rarely

applied to real systems, we had to devise the control strategies integrating the

technological constraints linked to the structure control. For example, taking

into account the energy failure for the control of some structures, considering

the measurability of states or ascertaining the stability and observability of the

systems to be controlled. A control law was validated on the numerical model of

real structures in the field of automotive suspensions.

For a good description of a vehicle on the verge of slip, it appears necessary to

use a non-linear tyre model and a description of the vehicle taking into account

at least the longitudinal and lateral speeds, the yaw, pitch accelerations, the

rotations of the four wheels and the maximum side slip of the tyres.

In this study, we have obtained an improvement of traction thanks to piloted

suspensions. This was done without any loss of comfort. A numerical study con-

sisting of associating these piloted suspensions with existing active safety systems

(ABS, ESP, . . . ) may be undertaken for application in the future vehicles.
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Three different theoretical models for the analysis of movements of granular media caused
by the gravity forces only are critically discused. In each of them the motion is treated as a
purely kinematical problem. It has been shown that in application to varoius practical prob-
lems, they lead to different displacements patterns (e.g. funnel or mass flow, formation of shear
bands or a flow without such bands). Examples of applicaion illustrate the discussion.

1. introduction

In numerous important practical problems, the movement of granular me-
dia is caused by gravity forces only. The movements in bins and hoppers, sand
avalanches, subsidence of terrain caused by underground exploitation are the
typical examples. It seems to be reasonable to treat such motions as purely kine-
matic processes. It is interesting to note that recently in physics, the movement
of grains in sand piles is used as an illustration of the so-called “self-organized
process” – see e.g. [1, 2]. In these papers the analysis was limited to the move-
ments of grains in a pile of sand. More applications of engineering significance
have been discussed in [3], among them an analysis of movement of granular
materials in hoppers.

The method used in the mentioned papers is based on the “discrete cellular
automata” concept, which is much simpler than continuous differential equations,
as stated in [1]. To illustrate the idea of “self-organized criticality”, the authors
of [1] considered a “pile of sand” built by randomly adding a grain at a time.
When the slope of the pile reaches a critical value called the “angle of repose”,
the added sand will slide down.

A theoretical model based on this concept will be used in the following Sec. 2
for the analysis of movements of loosely packed granular material in a hopper
and for similar problems.

An analogous model for densely packed granular media will be discussed in
Sec. 3. Section 4 is devoted to the discussion of a probabilistic treatment of the
problem.
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2. A model for loosely packed granular media

The theoretical model (cellular automaton) mentioned above is shown in
Fig. 1. It is composed of a number of identical cicrular (spherical) “grains” form-
ing a regular, loosely packed array. The movements of grain in the model are
governed by two simple rules:

1. If an empty space is located under that occupied by a grain, the grain
moves downwards filling the empty place – cf. Fig. 1b

2. The difference of the heights of two neighbouring columns of grains cannot
be larger than the diameter of a single grain. When it is larger, the upper
grain falls down to the lower position in the next column – cf. Fig. 1c.

Fig. 1.

Using the two rules one can solve numerous problems of practical significance.

As an example let us analyse displacements of grains in a bin. The initial stage

of motion is shown in Fig. 2a when four grains have left the outlet. In Fig. 2b is

presented a more advanced stage of the movement. The medium flows through

a vertical funnel, while the rest of the bulk remains motionless. Thus the model

predicts the well-known phenomen of the often observed so-called funnel flow in

hoppers – see e.g. [4–7].

Let us note that this simple model does not predict the existence of any hor-

izontal interaction (pressure) between the granular medium and the container’s

wall. The stress state in the medium reduces everywhere to uniaxial compression

increasing towards the bottom. This unrealistic result is caused by the specific

arrangement of grains in the model.

As a next example, let us consider the problem of terrain subsidence caused

by partial tectonic translation of bedrock uder the sand-like layer resting on it

– Fig. 3. The empty space formed by this translation must be filled by granular

medium of the upper layer.
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Fig. 2.

Fig. 3.
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The solution is shown in Fig. 4. Elememts of granular medium have been
presented in a cuboidal form. Such a presentation assures better visualization of
the shape of deformed upper surface of the medium.

Fig. 4.

3. A model for densely packed granular material

A regular dense packing of elements of a granular medium is shown in Fig. 5a.
As an illustrating example let us assume that at the bottom, the container
is equipped with a feeder moving downwards. When the bottom of the feeder
moves, the grains of the medium above it also move until each of them reaches
the position assuring the smallest possible potential energy (the lowest possible
position). Using this simple rule we can find the momentary translation vectors
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for all particles. They are shown in Fig. 5b and c for two subsequent positions
of the bottom of the feeder. Comparing these patterns of translations with those
shown previously in Fig. 2, one can see that the present model leads to a solution
with the “mass flow” instead of the funnel motion predicted by the previous
model.

Fig. 5.

A more advanced example of momentary movement in a hopper is shown
in Fig. 6. When calculating the momentary translation vectors of particular
elements in an assembly of grains, we must often arbitrarily decide which of
the adjacent grains moves towards the empty place below. Thus the procedure
of determining the translation vectors is influenced by certain random factors.
Slightly different translation patterns may result from the calculation procedure.
In Fig. 6 is presented one of the possible solutions. It corresponds to the stage
when fourteen elements have left the outlet of the bin.
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Fig. 6.

Let us note that during the flow of grains the packing of them becomes less

dense. Such a loosening of the packing has been observed in deformed granular

materials in experiments performed with the use of X-ray method – see e.g.

[8–11].

The pattern of particle translation and loosening of the packing was also

experimentally investigated in [12]. In a simulation test an assembly of coins has

been used. The coins were located on a glass plate in the initially horizontal

position. Then the plate was inclined with respect to the horizontal plane. The

coins slid downwards due to gravity forces. The obtained translation pattern of

coins was similar to that shown in Fig. 6.

Using this model we can calculate the forces of interaction between the

medium and a retaining wall. This can be done when the friction between the

grains and the surface of the wall is neglected. In Fig. 7 are presented the cal-

culated interaction forces. It was assumed that the weight G of a single grain

is equal to unity (G = 1). To the right of the row A − B of grains, the sys-

tem of interaction forces reduces to the uniaxial compression in vertical direc-

tion. Within the triangle A − B − C this system is disturbed by contact of

grains with the wall. It is seen that the influence of the contact is strongly lo-

calized.
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Fig. 7.

Using the model discussed in this section we can solve numerous two-dimensio-

nal problems. However, application of the model to the analysis of three-dimensio-

nal problems may prove to be difficult.

The model allows us to determine a general layout of the system of slip-lines

(displacements discontinuity). Two simple examples are presented in Fig. 8. They

concern the movements of elements of the model caused by displacement of the

retaining wall. In Fig. 8a the wall slightly rotates about the point at the bottom.

In the triangle ABC there appear several slip-lines. Such an effect has been

confirmed in numerous experiments – cf.e.g. [9–10]. In the case shown in Fig.

8b, when the wall has been slightly shifted horizontally, the movement of the

medium reduces to a displacement of the triangle ABC as a rigid body along

the single slip-line B − C.
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Fig. 8.

4. Stochastic finite cells model for granular media

The stochastic model is based on the concept of J. Litwiniszyn [13–15].

According to this concept displacements in a granular medium caused by grav-

ity forces are of the mass character of random changes of mutual contacts

between the particles. Consequently, the displacements of particles are ran-

dom.

As the starting point let us imagine a device composed of a number of plates

(layers) resting one on the other. Each plate is formed by a regular array of

cuboidal cells with square holes (Fig. 9). The cells in subsequent plates are

arranged with respect to each other in such a manner that central axes of the

holes in a plate coincide with the common line of four corners of cells in the plate

located just below or above.

Let us assume, similarly as in the so-called Galton’s board (cf.e.g. [16]) for

two-dimensional cases, that small balls falling down from a particular cell in a

plate and striking the common vertical edges of four cells in the plate below

are randomly directed into one of these cells with the probability equal to 1/4.

The random path of consecutively falling balls is repeated for each plate below.

Finally the balls fall at random into one of the separate containers at the bottom.

The distribution of the number of balls in these containers shown at the bottom

of Fig. 9 approaches the circular normal distribution.
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Fig. 9.

Litwiniszyn analysed an inverse two-dimensional problem, in which cavities

existing in the bulk of a loose medium migrated randomly upwards to the upper

surface of the bulk. This idea has been generalized for three-dimensional cases.

In this generalized procedure, systems of finite cells were used to calculate the

formation of local depressions in the upper surfaces of granular media, in which

there exist systems of cavities [17, 18].

As an example of application of the finite cells procedure, in Fig. 10 is shown

a step-wise approximation of the deformed upper surface of the layer of a granular

medium, resting on the bedrock with the initial narrow cuboidal cavity. The

cavity has been divided into eighteen units. In the calculating procedure, these

unit cavities are assumed to migrate randomly upwards through an assumed

system of plates with cells such a those shown in Fig. 9.
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Fig. 10.

Using the stochastic finite cells procedure it is possible to calculate the dis-

placement vectors of the particles of the medium – cf. [18]. The calculated vectors

in the longer symmetry plane are shown in Fig. 11.

Let us notice that the finite cells model leads to realistic solutions even if the

initial cavity is located very deeply. In such cases the model discussed in Sec. 2

gives unrealistic results concerning the funnel flow of the medium.

Fig. 11.
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5. Concluding remarks

In all three theoretical models of granular media, their movements caused

by gravity fores without any external action are treated as a purely kinematical

problem. Application of each of these models is limited to a certain class of

problems.

The model discussed in Sec. 2 predicts the so-called funnel flow observed

sometimes in bins and hoppers. However, it cannot be used in the cases when

the so-called mass flow is expected. As an example let us mention the motion in

a bulk of granular medium leading to filling a deeply located empty space.

The model of a densely packed granular medium (Sec. 3) predicts mass

flow of the medium. It gives good results when it is used for the analysis of

two-dimensional problems. Its application to three-dimensional cases is difficult.

However, using it in two-dimensional problems we can rationally analyses the

pressure exerted by the medium on the retaining walls. Note that the previous

model (Sec. 2) does not predict any pressure between the medium and the wall.

Moreover, the model predicts formation of shear bands in the medium often

observed in experimental tests.

The stochastic finite cells model (Sec. 4) predicts the mass flow of the medium

and may be used for the analysis of any three-dimensional problem. However, it

does not predict formation of shear bands in the granular medium.
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