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The aim of the paper is to propose an improved procedure of damage material parameters
identification of the Chaboche model, coupled with the concept of isotropic damage model
proposed by Amar and Dufailly [2]. The proposed approach has been implemented into sub-
routines of the FE MSC.Marc code, as the user’s viscoplastic subroutine UVSCPL, and has
been used to perform FE static and dynamic computations. The paper gives a brief descrip-
tion of the Chaboche model including damage. The results are also presented of FE dynamic
analyses using the respective UVSCPL subroutine. Analyses have been made for the nickel-
based superalloy INCO718 and for steel. The numerical examples prove that the proposed
identification approach is effective and the numerical implementation is correct.
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1. Introduction

The identification of material parameters and numerical modelling of ma-
terial damage by means of continuum mechanics is the subject of the present
paper. The continuum damage mechanics deals with the microscale-defined dam-
age variables as an effective surface density of cracks or the density of cavity
intersections with a plane. For reference, see e.g. Kachanov [17] or Lemaitre
[24], where the authors focused on the extensive study of continuum damage
mechanics.

Since Kachanov [18] introduced in 1958 the concept of effective stress to
describe the rupture process under creep conditions, many theories of the con-
tinuous damage mechanics have been developed, regarding the concept of the
isotropic damage variable (see e.g. Rabotnov [31], Hayhurst and Leckie [16],
Lemaitre and Plumtree [25], Leckie [21], Simo and Ju [32], Fotiu et al.

[14], Skrzypek et al. [33]). In the present paper, the isotropic damage concept
is used (see Lemaitre [23] for details), which defines the surface density of mi-
crocracs and microcavities. For the sake of this concept the material damage
parameters are specified. This approach is introduced into the FE procedure
with the Chaboche model employed.
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2. Chaboche model equations

In the 1960s Perzyna [29] proposed the elasto-viscoplastic constitutive
model, based on the orthogonal condition in the plastic law. The extension of
the Perzyna law is the constitutive model proposed by Chaboche [12]. The
Chaboche model is based on the assumption of the strain additivity

(2.1) ε̇ = ε̇
E + ε̇

I ,

where ε̇ is the total strain rate, ε̇
E is the elastic strain rate and ε̇

I is the inelastic
strain rate.

The isotropic damage expressed by the scalar parameter fulfils the condition
D ∈ (0, 1). Based on the damage model proposed by Kachanov [18], the
effective tensor of elasticity B

∗ for damaged material may be represented by the
standard elasticity tensor B reduced by the damage parameter

(2.2) B
∗ = (1 −D) · B.

Therefore, the relation between the stress and strain rate for the assumed
isotropic model of material can be expressed as follows:

(2.3) σ̇ = (1 −D) · B : ε̇
E = B

∗ :
(

ε̇ − ε̇
I
)

.

Consequently, the nominal stress rate σ̇ is replaced by the effective stress rate
σ̇∗ in the damaged material, according to the formula

(2.4) σ̇
∗ =

σ̇

1 −D
.

Replacing the initial stress by the effective stress in the constitutive equations
of the undamaged material makes it possible to consider the case of damage.
Therefore the damage evolution D, proposed by Lemaitre [23], is expressed by
the equation

(2.5) Ḋ =

(

Y

S

)s

· ṗ.

The variables s and S are the damage material parameters, which are specified
on the basis of experimental tests. The rate of the equivalent plastic strain ṗ
will be specified in the next part of the paper. The function Y is determined by
the Young’s modulus E, the Poisson’s ratio ν and the current values of damage
D, the Huber–Mises equivalent stress σeq and the hydrostatic stress σH . This
function is called the damage strain energy release rate. It is expressed by the
equation

(2.6) Y =
σ2
eq

2 · (1 −D)2 · E
·
(

2

3
· (1 + ν) + 3 · (1 − 2 · ν) ·

(

σH
σeq

)2
)

.
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In isothermal conditions, the inelastic strain rate ε̇
I in the basic variant of the

Chaboche model can be expressed by the following formula

(2.7) ε̇
I =

3

2
· ṗ · σ

′ − X
′

J (σ′ − X′)
.

The rate ṗ is defined by the equation (see e.g. Amar and Dufailly [2])

(2.8) ṗ =

〈

J (σ′ − X
′)

1 −D
−R− k

K

〉n

where k, K and n are material parameters. The material constant k corresponds
to the initial yield stress, while the factor R describes the isotropic hardening.
Following σ

′ and X
′ are the deviatoric parts of stress tensor and back-stress

tensor. Additionally, the invariant J (σ′ − X
′) is specified as

(2.9) J
(

σ
′ − X

′
)

=

√

3

2
(σ′ − X′) : (σ′ − X′).

The evolution of the isotropic hardening R is defined by

(2.10) Ṙ = b · (R1 −R) · ṗ,

while the kinematic X hardening is described as

(2.11) Ẋ =
2

3
· a · ε̇I − c · X · ṗ.

The variables b, R1 and a, c are the material parameters, which have to be spec-
ified on the basis of laboratory tests. It should be noted that it is necessary to
establish eleven material parameters in the presented model: two elastic parame-
ters E and ν, seven inelastic parameters k, n, K, c, a, b, R1, and two additional
damage parameters S, s.

The detailed description of several variants of the Chaboche model, with the
material parameters specified, was given by the present author in [4] and [37].
The constitutive equations of the Chaboche model, with respect to a hierarchy
of various models, were presented by Chaboche in [12] and Woznica in [36].
Aktaa and Schinke [1] applied the damage model proposed by Hayhurst
[16] to the Chaboche model. In the paper [11] Brocks and Lin extended the
Chaboche viscoplastic law to a finite strain form based on an internal dissipation
inequality. The authors assumed a multiplicative decomposition of the deforma-
tion gradient into elastic and inelastic parts. In order to numerically investigate
the extended viscoplastic law, finite element algorithm and several examples were
presented.
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3. Application of the Chaboche model to FE open code

In the numerical analysis the MSC.Marc system has been used. It is a multi-
purpose, FEA program for advanced engineering simulations, ready to be ex-
tended by user’s subroutines. In order to apply the Chaboche model to the
MSC. Marc system, the user-defined subroutines UVSCPL [34] were applied,
with the inelastic strain rate and the stress increments specified. The main part
of the algorithm used in the UVSCPL subroutine is presented in the form of
a flow chart, in two variants. In Fig. 1 the undamaged Chaboche model is
shown and in Fig. 2 the damage is considered. The present author used this
UVSCPL procedure for static and dynamic analysis with the Chaboche model
(see e.g. [6] and [38]). It should be noted that the values of time functions should
be calculated in each step of iteration.

∆X =
∆t

2
·
(

Ẋt−∆t + Ẋt

)

, Xt = Xt−∆t + ∆X

∆R =
∆t

2
·
(

Ṙt−∆t + Ṙt

)

, Rt = Rt−∆t + ∆R

⇓
σ
′

t,X
′

t, J (σ′

t − X
′

t), J (σ′

t), tr (σt)

⇓

ṗt =

〈

J(σ′
t − X

′
t) −Rt − k

K

〉n

⇓

ε̇
I
t =

3

2
· ṗt ·

σ
′
t − X

′
t

J (σ′
t − X′

t)

⇓

Ẋt =
2

3
· a · ε̇It − c · Xt · ṗt

⇓
Ṙt = b · (RI −Rt) · ṗt

⇓
∆ε

I
t = ε̇

I
t · ∆tt

⇓
∆σt = B · (∆εt − ∆ε

I
t )

Fig. 1. Flow chart of the UVSCPL subroutine – Chaboche model.
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∆X =
∆t

2
·
(

Ẋt−∆t + Ẋt

)

, Xt = Xt−∆t + ∆X

∆R =
∆t

2
·
(

Ṙt−∆t + Ṙt

)

, Rt = Rt−∆t + ∆R

∆D =
∆t

2
·
(

Ḋt−∆t + Ḋt

)

, Dt = Dt−∆t + ∆D

⇓
σ
′

t,X
′

t, J (σ′

t − X
′

t), J (σ′

t), tr (σt),σeq, σH

⇓

ṗt =

〈

(J(σ′
t − X

′
t)/1 −Dt) −Rt − k

K

〉n

⇓

ε̇
I
t =

3

2
· ṗt ·

σ
′
t − X

′
t

J (σ′
t − X′

t)

⇓

Ẋt =
2

3
· a · ε̇It − c · Xt · ṗt

⇓
Ṙt = b · (RI −Rt) · ṗt

⇓

Yt =
σ2
eq

2 · (1 −Dt)2 · E
·
(

2

3
· (1 + ν) · +3 · (1 − 2 · ν) ·

(

σH
σeq

)2
)

⇓

Ḋt =

(

Yt
S

)s

· ṗt

⇓
B

∗

t = (1 −Dt) · B
⇓

∆ε
I
t = ε̇

I
t · ∆tt

⇓
∆σt = B · (∆εt − ∆ε

I
t )

Fig. 2. Flow chart of the UVSCPL subroutine – Chaboche model with damage.
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Additionally, at the beginning of a given time step ti, in the first iteration all
values with index t are taken as the final values from the previous step ti − ∆t.

It should be noted that other commercial FE codes exist; they enable us
to introduce the constitutive models defined by the user. For example, some
results can be specified of FE analyses. They are the user-defined material mod-
els UMAT, in the form of a subroutine introduced to the FE ABAQUS code
with the unified viscoplastic model proposed by Bodner and Partom [10]
and by Chaboche [13] for polycrystal alloys, and the creep model suggested
by Bertram and Olschewski [9] for single crystal alloys, coupled with the
anisotropic damage model. All these models are presented by Qi and Brock [30].

4. Identification of damage parameters

4.1. Concept of identification

The present author used the concept proposed by Amar and Dufailly [2]
in the process of identification of material parameters dealing with damage. In
this concept it is assumed that at the beginning of the identification process of
damage material parameters the basics constants for the Chaboche model are
specified. If the parameters: E, ν and k, n, K, c, a, b, R1 are known, the damage
material parameters can be specified. The detailed description of identification of
the material parameters for the Chaboche model is described e.g. by Kłosowski
[19] or Amar and Dufailly [2]. The design of experiments suitable for the para-
meter identification of the Chaboche material model under the uniaxial loading
and stationary temperature conditions has been proposed also by Furakawa
and Yagawa [15]. For the detailed studies of experimental methods in material
dynamics and impact, the author refers to the work [28].

The material parameters are usually identified on the basis of the uniaxial
tension tests. In the case of uniaxial tension tests, the stress tensor σ has one
non-vanishing component σ

(4.1) σ =









σ 0 0

0 0 0

0 0 0









,

while the Huber–Mises equivalent stress σeq = σ and the hydrostatic stress
σH = σ/3. Then the function of the energy density (Eq. (2.6)) can be rewritten as

(4.2) Y =
σ2

2 · (1 −D)2 · E
.
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For simplicity it has been assumed that rupture of the specimen is specified by
the rupture time tr, while D = 1.0. Additionally, in practical applications it is
necessary to specify the value of the critical damage Dc, which indicates the
limit of the theory. It should be noted that this factor must be lower than 1.0.
It usually lies between 0.2 and 0.8, depending on the type of material; see e.g.
Lemaitre [22]. Substituting Eq. (4.2) into Eq. (2.5) we obtain

(4.3)

Ḋ =

(

σ2

2 · (1 −D)2 · E · S

)s

· ṗ,

Ḋ · (1 −D)2·s =

(

σ2

2 · E · S

)s

· ṗ.

The author has assumed, as Amar and Dufailly in [2], that the value of
the parameter s is chosen arbitrarily; only the factor S has to be determined.
Then the interchange of variation is used; the Eq. (4.3) can be transformed to
the expressions

(4.4)

1
∫

0

(1 −D)2·s dD =
1

2 · s+ 1
=

tr
∫

0

(

σ2

2 · E · S

)s

· ṗ dt,

1

2 · s+ 1
=

(

1

2 · E · S

)s

·
tr
∫

0

σ2·s · ṗ dt ;

(2 · s+ 1)1/s = 2 · E · S · 1
(

tr
∫

0

σ2·s · ṗ dt
)1/s

.

Finally, we obtain the equation of the damage material parameter S

(4.5) S =
(2 · s+ 1)1/s

2 · E ·





tr
∫

0

(

σ2·s · ṗ
)

dt





1/s

.

We can notice that the parameter S depends on the parameter s and the
history of loading (directly on σ and ṗ). It is necessary to establish the rupture
time of the specimen tr form the uniaxial tensile tests. Additionally it is necessary
to obtain the value of the σj and ṗj at each time step. Calculations to the first
approximation of the value of the damage parameters have to be performed
without damage. To calculate the integral from Eq. (4.5), the present author
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used simple method of numerical integration, according to the formula

(4.6)

tr
∫

0

(

σ2·s · ṗ
)

dt =
n
∑

j=1

[

(σj)
2·s · ṗj · ∆tj

]

.

Therefore, in the next calculation step, knowing the value of the rupture
strain εr established in the laboratory test, the parameter S is calculated. The
first approximation of the parameter S is made on the basis of the Chaboche
model analysis without damage. According to Eq. (4.5), considering the evolu-
tion of the stress and ṗ, the first approximation of the damage parameter Si is
determined. The parameter S is evaluated from the following equation:

(4.7) Si+1 = Si ·
εexp
r

(εr)i
,

where εexp
r is the rupture strain, which has been established on the basis of the

experimental test; (εr)i and Si are the rupture strain and the value of damage
parameter S obtained in the i-th iteration of the numerical simulation (index i
specifies the number of approximation of the parameter S). In the above concept
of identification it is necessary to know the load history and the rupture time tr,
which corresponds to the rupture strain εr (leading to the rupture of specimen
of the investigated material).

4.2. Identification example – experiment simulation

In this section the present author is basing on the known material parame-
ters for Chaboche model with damage. For these known parameters the author
performed simulation of experiments of the uniaxial tensile tests, which are used
in the identification process of the damage parameters, according to the concept
of identification presented in the preceding section. At the beginning of the iden-
tification process of the damage parameters, the author assumed that the basic
parameters for Chaboche model are known (E, ν, k, n, K, c, a, b and R1).

Amar and Dufailly [2] presented the material parameters for nickel-based
superalloy INCO718 (at 650◦ C [2]): E = 162000.0 [MPa], ν = 0.3 [−],
k = 501 [MPa], b = 15.0 [−], R1 = −165.4 [MPa], a = 80000.0 [MPa],

c = 200.0 [−], n = 2.4 [−], K = 12790
[

(MPa · s)1/n
]

, S = 4.48 [MPa],

s = 3.0 [−]. On the basis of these material parameters, the authors performed
the simulation of the constant strain rate test for ε̇ = 0.01

[

s−1
]

(see Fig. 3,
“Experiment simulation”). The numerical calculation was performed for the truss
structure, subjected to the uniaxial tension test. The following geometrical para-
meters were assumed: length l = 1.0 [m] and cross-sectional area A = 0.001 [m2].
It should be noted that failure of the specimen happened suddenly, see Fig. 3.
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Fig. 3. Constant strain rate test for ε̇ = 0.01 s−1.

On the basis of the simulation of experiments performed for the constant
strain rate test ε̇ = 0.01

[

s−1
]

, the following rupture time texp
r = 1.92 [s] (which

corresponds to εexp
r = 0.0192 [–]) is established. For the purpose of the first

approximation of the damage parameters, the author carried out the numerical
calculations for the Chaboche model without damage to the limit of the strain
εexp
r (see Fig. 3). On the basis of these calculations the evolution of the stress

and the rate ṗ was specified, see Fig. 4.

Fig. 4. Stress and ṗ in the strain domain for ε̇ = 0.01 s−1.
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Additionally, at the beginning of the identification process, it was necessary
to assume the value of s. In the present investigation the author performed the
identification process for five assumed values of parameter s: 1.0; 2.0; 3.0; 4.0;
5.0. In these cases it is possible to observe evolution of the damage material
parameters. The values of parameters s may be specified optionally, but the au-
thor assumed them to be an integer S (the parameter s is the exponent in the
Eq. (2.5)). The first approximation of the parameter S (named S1 see Table 1), is
calculated on the basis of the Chaboche analysis without damage. The following
approximation Si, according to Eq. (4.7), is performed for the Chaboche model
coupled with damage. In each step of numerical calculations, strain (εr)i is spec-
ified and compared with the rupture strain obtained from laboratory tests. The
results of identification of the damage material parameters are given in Table 1.
It is possible to observe that the convergence of the parameter S is better for
higher values of the parameter s.

Table 1. Identification of damage parameters.

s = 1.0 [–]

i 1 2 3 4 5 6 7
Si [MPa] 0.179 0.200 0.219 0.232 0.250 0.260 0.265

(εr)i 0.0170 0.0175 0.0180 0.0183 0.0187 0.0190 0.0191
s = 2.0 [–]

i 1 2 3 4
Si [MPa] 1.99 2.10 2.15 2.20

(εr)i 0.0182 0.0187 0.0189 0.0191
s = 3.0 [–]

i 1 2 3 5
Si [MPa] 4.26 4.33 4.40 4.45

(εr)i 0.0189 0.0189 0.0190 0.0191
s = 4.0 [–]

i 1 2
Si [MPa] 6.15 6.25

(εr)i 0.0189 0.0191
s = 5.0 [–]

i 1 2
Si [MPa] 7.62 7.70

(εr)i 0.0190 0.0192

For each of the assumed values of the parameter s, parameters S are esti-
mated, see Table 1. For these pairs of damage material parameters, numerical
simulation of the uniaxial tension tests for ε̇ = 0.01 s−1 is performed, see Figs. 5
and 6. In spite of the same rupture strain εr specified for each pair of parameters
s and S, it is possible to observe small differences between strain vs. stress curves,
given in Figs. 5 and 6. These differences can be seen better on the background
of the strain vs. damage D curves.
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Fig. 7. Creep test for σ = 2000 [MPa] for different values of damage parameters.

Fig. 8. Creep test for σ = 2000 [MPa] for different values of damage parameters.

Similarly to the case of a constant strain rate, the damage parameters can

be determined on the basis of the creep tests. For that purpose the evolu-

tion of the stress and the rate ṗ (see Fig. 10) is performed. The parameter

S (see Eq. (4.5)) in the Chaboche model calculations without damage are ex-
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Fig. 9. Creep test for σ = 2000 [MPa] .

Fig. 10. Stress and ṗ in the time domain σ = const = 2000 [MPa].

ploited, see Fig. 9 (MSC_UVSCPL+Ch). On the basis of simulation of exper-

iments of the creep test, the rupture times tr = 1.045 [s] (which correspond to

εexp
r = 0.0171 [–]) are specified. Based on the stress and ṗ evolution (see Fig. 10)

the first approximation of the parameters S = 3.98 [MPa] is calculated for the

assumed value of s = 3.0 [–]. Next iteration of the numerical analysis gives the

final values of S = 4.45 [MPa].
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4.3. Identification example – direct experiment

In this section the present author identify the damage parameters for steel

at 20◦C, based on laboratory tests, performed by Kłosowski [19]. The ex-

perimental tests were carried out at the Department of General Mechanics of

RWTH Aachen. The following parameters for the basic variant of the Chaboche

model are taken for steel (see Kłosowski [19] for details): E = 223000 [MPa],

ν = 0.3 [–] and k = 210.15 [MPa], n = 9.51 [–], K = 14.085 [MPas1/n],

c = 38840 [–], a = 611700 [MPa], b = 16.74 [–], R1 = −138.48 [MPa].

Like in the former case (see preceding section), the damage material para-

meters for Chaboche model are specified on the basis of the constant strain rate

tests. According to the Eq. (4.5) and assuming the value of s = 2.0 [–], with

the following approximations considered, the parameter S = 0.4 [MPa] has been

specified.

The results of damage analysis for the estimated damage parameters

(s = 2.0 [–], S = 0.4 [MPa]) with two different strain rates ε̇ = 0.01
[

s−1
]

and ε̇ = 0.001
[

s−1
]

are given in Figs. 11 and 12. Good agreement has been

obtained of strain vs. stress curves from FE calculations and the experiment.

On the basis of numerical simulations the present author has observed that

the damage is indicated when the strain is equal to 0.01 [–]. The strains less than

0.01 [–] result in the zero value of the damage parameter D. There is no differ-

ence between the results obtained from the numerical simulations with damage

(MSC+UVSCPL+Ch+Dam) and without damage (MSC+UVSCPL+Ch), see

Fig. 13. This limit specified the strain at the damage threshold.

Fig. 11. Numerical simulation of the uniaxial tension test for ε̇ = 0.01
�
s−1

�
.
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Fig. 12. Numerical simulation of the uniaxial tension test for ε̇ = 0.001
�
s−1

�
.

Fig. 13. Numerical simulation of the uniaxial tension test for ε̇ = 0.01
�
s−1

�
to the εd.

In Table 2 the characteristic values of the ductile damage parameters for three

chosen types of steel are given. The strains εd and εr (see Table 2) specify the

strain at damage threshold and strain at failure, and Dc is the critical damage

(the value of damage parameter D at macrocracks initiation).
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Table 2. Characteristic ductile damage parameters.

Material εd [–] εr [–] Dc [–]

investigated steel 0.01 a) 0.45 b) 0.10 a)

steel XC 38 [23] 0.00 0.56 0.22

steel 30CD4 [23] 0.02 0.37 0.24

steel E24 [23] 0.50 0.88 0.17

a) parameters are established on the basis of numerical simulations of uniaxial tensile tests,
b) parameter is established on the basis of laboratory tests.

5. Numerical examples

5.1. Example 1

In this example the numerical analysis of circular steel plate under impact

load are investigated. According to symmetry of the structure and loading, a
quarter of the plate was analysed. The geometry of the plate used in the numeri-

cal calculations is shown in Fig. 14. In the analysis, the four-node shell elements
were applied (Element 139, see [34]). The verification was done of the assumed

boundary conditions and type of the analysis. For details see [3], where the au-
thor described the application of the Bodner–Partom constitutive equations in

the finite element analysis.

Fig. 14. Circular steel plate subjected to the impact pressure.
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For the examined material, the following parameters were assumed: the elas-
tic modulus E = 223000.0 [MPa], the Poisson’s ratio ν = 0.3 [–]; the thick-
ness of the steel plate t = 1 mm. Additionally, the following material pa-
rameters for Chaboche model were taken: k = 210.15 [MPa], n = 9.51 [–],
K = 14.085 [MPas1/n], c = 38840 [–], a = 611700 [MPa], b = 16.74 [–],
R1 = −138.48 [MPa], with the damage parameters s = 2.0 [–] and S = 0.4 [MPa]
estimated in the previous section.

The numerical calculations were performed using the proportional damping
matrix with the Rayleigh damping multipliers α = 3.46 · 10−6 and β = 27.32.
Parameters α and β are the stiffness matrix multiplier and the mass matrix
multiplier, respectively. They were calculated by the formula

(5.1)

α = 2 · (ξ2 · ω2 − ξ1 · ω1)

ω2
2 − ω2

1

,

β = 2 · ω1 · ω2 ·
(ξ1 · ω2 − ξ2 · ω1)

ω2
2 − ω2

1

,

assuming that for the value of critical damping, the first two frequencies were
given. The concept of specifying these multipliers is proposed in the paper [7].
To integrate the nonlinear equations of motion, the Newmark algorithm with
the time step ∆t = 5 · 10−7 was carried out.

Elasto-viscoplastic Chaboche model with damage is used to describe the be-
haviour of the steel plate under dynamic vibrations Fig. 15. These results of
numerical simulations are compared with the results of the experimental test,
which was performed in the impact pipe.

Fig. 15. Inelastic damped vibrations of the plate.
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It should be noted that the elastic solution (see Fig. 16) gives a completely
different response of the vibrations, while the Chaboche model calculations are
close to the experimental results. The maximum value of the damage parameter
in this case is about 0.002 [–], thus a non-damage state of the plate is observed.
Additionally, the velocity and acceleration plots (Figs. 17, 18) in the time domain
illustrate the dynamic behaviour of the plate under impact load.

Fig. 16. Elastic damped vibrations of the plate.

Fig. 17. Middle point velocity.
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Fig. 18. Middle point acceleration.

5.2. Example 2

At the beginning, the dynamic analysis of a rod subjected to the impact
force is presented. The elasto-viscoplastic constitutive equations of the Chaboche
model with damage are taken to describe the behaviour of the material. Numer-
ical calculations are performed for a simple truss structure, with the following
geometrical parameters: l = 1.0 [m] (length) and A = 0.001 [m2] (cross-section
area). One of the ends of the rod is fixed while the next end is free. The free end
of the truss element is subjected to impact forces F .

The dynamic analysis for three different values of the impact forces
F = 0.10 [MN] (see Fig. 20), F = 0.11 [MN] (see Fig. 21) and F = 0.12 [MN]
(see Fig. 22) is performed. The force is acting rapidly on the structures, in the
time t = 0.0 [s], see Fig. 19. For the calculation, the material constants, cor-
responding to the Chaboche model with the following damage constants were
taken (INCO718 at 650◦C [2], see also [20]): E = 159.0 [GPa], ν = 0.3 [–],
k = 514.21 [MPa], b = 60.0 [–], R1 = −194.39 [MPa], a = 170000.0 [MPa],

c = 500.0 [–], n = 4.0 [–], K = 1023.5
[

(MPa · s)1/n
]

, S = 4.48 [MPa],

s = 3.0 [–]. The reference calculations (named MSC_UWSCPL+Ch, see
Figs. 20, 21 and 22) were performed without damage, according to the FE pro-
cedure given in Fig. 1.

In the research, two variants of the Chaboche model analysis are compared
with each other: considering and neglecting the damage. In this case, small in-
fluence of damage is observed in the examined time range when the values of
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forces are F = 0.10 [MN] (see Fig. 20) and F = 0.11 [MN] (see Fig. 21). The
force F = 0.12 [MN] (see Fig. 22) results exceed the limiting damage value, the
specimen is destroyed. Evaluation of the damage parameter D, specified by Eq.
(2.5), as a function of time, is given in Fig. 23. Due to the merely numerical
character of the example, only the calculations for free vibrations are consid-
ered. To integrate the nonlinear equations of motion, in the present example the
Newmark algorithm [27] with the time step ∆t = 5 · 10−5 [s] is applied.

Fig. 19. Force factor value history diagram.

Fig. 20. Displacement diagram for F = 0.10 MN.
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Fig. 21. Displacement diagram for F = 0.11 MN.

Fig. 22. Displacement diagram for F = 0.12 MN.

In the second variant of calculations, geometry of the plate is taken from the
Example 1, see Fig. 14. In this case, the material parameters for INCO alloy at
650◦C are accepted for the description of the plate material. The evolution of
pressure in time domain is accepted according to Fig. 19. High value of the impact
pressure, p = 11.5 [105 Pa], was assumed for distinct presentation of application
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Fig. 23. Damage parameter evolution.

Fig. 24. Damage analysis with UVSCPL+UACTIV subroutines.
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Fig. 25. Displacement diagram with damage parameter evolution.

of the proposed procedure for damage analysis. It should be noted that the
subroutine UACTIV [34] was used to deactivate elements in the structure model,
when the value of the damage parameterD in all integration points of the element
is greater than the value of critical damage Dc. The vertical displacements for the
quarter of a plate are presented in Fig. 24. The elements close to symmetry lines
are deactivated due to evolution of the damage parameters, see Fig. 25. Then
the crack runs to a diagonal of the plate. Finally, the middle part of the plate
separates and moves rigidly. The author is aware of the fact that the detailed
investigation of the structure crack propagation is connected with dynamic crack
problems and the knowledge of explosions (see e.g. Nemitz [26], Basista and
Nowacki [8] and Włodarczyk [35] for details). Nevertheless, this calculated
example demonstrates practical applications of the presented procedure.

6. Conclusions and final remarks

In this study, the author proposed an improved concept of identification and
validation of damage parameters. A model of isotropic damage based on a con-
tinuum damage variable on the concept of effective stress, can be directly applied
in calculations. The procedures are presented to introduce the Chaboche model
considering damage, into the open commercial FE-program code. Identification is
made for nickel-based superalloy INCO718 and for steel by means of elastic mod-
ulus change caused by damage. The numerical examples prove that the Chaboche
law and the presented method of performing the numerical implementation, are
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effective. The future research should be concentrated on the development of the
FE procedure, with emphasis placed on temperature influences and criterion for
crack extension.

It is worth pointing out that the presented damage approach with the concept
of damage parameters identification has been successfully used by the present
author to describe the damage evaluation in the elasto-viscoplastic constitutive
equations of the Bodner–Partom model, (for details see [5]).
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INFLUENCE OF TRANSVERSE SHEARING AND ROTARY INERTIA
ON VIBRATIONS OF A FIBROUS COMPOSITE BEAMS

J. G o ł a ś

University of Technology and Life Sciences in Bydgoszcz

S. Kaliskiego 7, 85-796 Bydgoszcz, Poland

The aim of the paper was determination of the influence of transverse shear deformation
and rotary inertia on the natural frequencies and on the values of displacements of beams made
of fibrous composites reinforced with layers of long fibres. It was assumed that the matrix of
the composite beam possesses linear elastic and transversally isotropic properties. Moreover, a
reinforcement in the form of layers composed of long fibres symmetrically located in the cross-
section was considered. In order to describe the displacement and strain state of the matrix,
the Timoshenko theory was applied. Using the complete analytical solutions obtained in the
paper, the accuracy analysis of the results was performed and compared with the theory of
Bernoulli beams.

Key words: dynamics of composite beam, transverse shear effect.

1. Introduction

Fibrous composites are playing an increasing role as construction materials
in a wide variety of applications. They are used in civil engineering and chemical,
aerospace and shipbuilding industries. The composites composed of the matrix
reinforced with long fibres (see Fig. 1), are characterized by high strength capa-
bility, lightness and significant transversal non-homogeneity.

Technical application of fibrous composite materials requires to take into
considerations their shear deformation vulnerability in order to carry out the
strength calculations [1–6]. Theoretical and experimental investigations show
that the use of the classical assumption about the non-deformability of the nor-
mal section makes the values of the calculated displacements (deflections) lower.
On the other hand, it increases both the critical loads and the natural frequen-
cies [3]. The errors connected with neglecting the influence of shear deformation
on the vibrations of fibrous composite beam follow not only from the relation
h/l and the load type but also from the relation Er/E (Young’s modulus of
the fibres to Young’s modulus of the matrix) and from the fibre density and its
location in the cross-section [4, 5].
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Fig. 1. Construction element reinforced with the layers of long fibres.

The aim of this study is to determine the influence of the transverse shear de-
formations and rotary inertia on the natural frequencies and on the displacement
field of beams made of fibrous composites reinforced by layers of long fibres.

The composite can be defined as a material consisting of at least two compo-
nents. The first component constitutes the main phase (matrix). The second one,
immersed in the matrix, constitutes the fibrous phase (2-nd phase). The fibrous
phase consists of any amount of families. The family is a group of long fibres
lying in the planes parallel to the neutral axis of the beam. The fibres belonging
to the family are thin, straight and so densely packed that a continuous model
can be assumed. We assume that the two phases meet the continuity criteria
both in the sense of displacements and strains. As a consequence of the above
assumptions, we can take into consideration a theoretical model in the form of a
continuous double-phase medium. In such model the continuum of the 1-st phase
is immersed in the continuum of the 2-nd phase. The idea of the model presented
herein was taken from the papers by Holnicki-Szulc [7] and Świtka [8].

The dynamic problem of beams and plates made of transversally isotropic
material has been investigated by a number of authors, e.g. Nowacki [9],
Kączkowski [10], Szcześniak [11, 12], Jemielita [13]. For a wide literature
review of the problem see [10, 12, 13].

2. Formulation of the problem

Let us analyse the transverse vibration problem of a fibrous composite pris-
matic beam (cross-section b × h) in xz-plane (see Fig. 2). Applying the Timo-
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shenko theory, displacements of any point of the cross-section can be described
using the equations

(2.1)
ux (x, z, t) = u (x, t) + zψ (x, t) ;

uy (x, z, t) = 0; uz (x, z, t) = w (x, t) ;

where u and w denote respectively horizontal and vertical components of the
displacement vector for points lying on the neutral axis. The ψ is the angle of
rotation of the cross-section.

Fig. 2. Simply supported beam loaded by transverse load p(x, t) and by axial load S(t):
a) model, b) example of the symmetric reinforcement of the cross-section with two pairs

of long fibre families.

The strains of the beam are given by

(2.2) εx =
∂ux
∂x

=
∂u

∂x
+ z

∂ψ

∂x
; γxz =

∂ux
∂z

+
∂uz
∂x

= ψ +
∂w

∂x
.

In this work we assume that the matrix is made of the transversally isotropic
perfectly elastic material obeying Hooke’s relations

(2.3) σx = Eεx; τxz = G′γxz.

The fibre phase (reinforcement) consists of symmetrically located vertical lay-
ers of fibrous families. Each family consists of continuous, straight fibres coincid-
ing with the x-axis and lying in planes z = zr (r = 1, 2, 3...), zr ∈ (−h/2, h/2).
The fibres of each family are thin, densely packed and support only axial loads.
We assume that the fibres are made of linear elastic material which much higher
strength coefficients than the coefficients of the matrix. The force in the r-th
family is given by

(2.4) Srx = jrErAr (εrx − εorx ) ,
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where εrx, ε
or
x , E

r, Ar and jr mean respectively the unit elongation, the ini-
tial distortion, the Young’s modulus, the cross-section area of the fibre and the
amount of fibres in the family.

We assume in the paper a perfect adherence between the matrix surface and
the fibres surfaces, so that the resultant internal forces in the composite beam
can be calculated as a sum of forces in the beam’s components.

(2.5) N =

∫

A

σxdA+
∑

r

Srx; M =

∫

A

σxzdA+
∑

r

Srxz
r; T =

∫

A

τxzdA.

Making use of Eqs. (2.2), (2.3), (2.4) and assuming the amount of i equal pairs
of fibre families to be symmetrically located in the cross-section at the distances
zr = ±e1, ± e2, ....± ei; ei ∈ (0, h/2), and also neglecting initial elongation
of the fibres, Eqs. (2.5) take the form

(2.6) N = B
∂u

∂x
; M = D

∂ψ

∂x
; T = G′Ak

(

ψ +
∂w

∂x

)

,

where

(2.7) B = EA+ 2ijrErAr, D = EJ + 2jrErAr
∑

i

e2i

represent the respectively the tension/compression stiffness of the beam and its
bending stiffness [6]. Moreover A = bh; J = bh3/12; G′ – shear modulus of
the matrix, k = 5/6.

We formulate the equations of motion of a straight prismatic beam based on
the Hamilton principle. The assumption that the variations of displacements for
the times t0 and t1 are equal to zero, gives the following variational equation:

(2.8)

t1
∫

t0







l
∫

0

[

−
(

∂N

∂x
− ρAü

)

δu−
(

∂M

∂x
− T − ρJψ̈

)

δψ

−
(

∂T

∂x
− S

∂2w

∂x2
+ pz − ρAẅ

)

δw

]

dx

+Nδu|l0 +Mδψ|l0 +

(

T − S
∂w

∂x

)

δw|l0

}

dt = 0,

to be satisfied for any value of functions δu, δψ and δw. In the above expression
pz = p (x, t) denotes the external transversally distributed load, S (t) denotes
the external axial force, symbol ρ denotes density and ρJψ̈ is the moment of
rotary inertia. Dots denote differentiation with respect to the time coordinate t.
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The Eq. (2.8) implicates the system of three equations of motion:

(2.9)

∂N

∂x
− ρAü = 0,

∂M

∂x
− T − ρJψ̈ = 0,

∂

∂x

(

T − S
∂w

∂x

)

− ρAẅ = −p (x, t) ,

and the appropriate natural boundary conditions. Analysing the uncoupled prob-
lem of axial and transverse vibration, we obtain in the first case two combinations
of possible conditions for each boundary. In the case of pure transverse vibration,
the number of combinations of boundary conditions is equal to four. The initial
conditions correspond to the displacements u, ψ and w, and their velocities.

3. Influence of the rotary inertia on the natural frequencies

First of all let us determine the order of magnitude of the influence of the
cross-section rotary inertia ρJψ̈ on the transverse natural frequencies of a com-
posite beam.

Using the equations of motion (2.9) we obtain, taking into consideration
the constitutive equations (2.6) and eliminating the variable ψ, the following
differential equation describing the eigenvalue problem

(3.1) D
∂4w

∂x4
+ ρAẅ − ρJ

∂2ẅ

∂x2
− ρD

G′k

∂2ẅ

∂x2
+
ρ2J

G′k

····

w = 0.

The 3-rd and 5-th components in Eq. (3.1) express the influence of the rotary
inertia and the 4-th component corresponds to the influence of the transverse
shear deformation.

In the case of a simply supported beam, the Eq. (3.1) will be satisfied if

(3.2) w (x, t) = Ane
−iωnt sinαnx, n = 1, 2, 3, ...

where An denotes the deflection amplitude, ωn means the natural frequency and

αn =
nπ

l
.

Substituting (3.2) into (3.1) gives

(3.3) β2α4
n − ω2

n −
J

A
α2
nω

2
n −

D

G′kA
α2
nω

2
n +

ρJ

G′kA
ω4
n = 0,

where β2 =
D

ρA
.
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If we take into consideration only the first two components in the Eq. (3.3),
then we will obtain the formula to calculate the natural frequencies of a slender
beam obeying the Bernoulli hypothesis

(3.4) ω2
n = β2α4

n, n = 1, 2, 3, ...

In the expression (3.4) the influence of the shear deformations and the rotary
inertia effect is not taken into account.

Substituting (3.4) into the last component of (3.3), as the first approximation,
we notice that this component can be treated as a small 2-nd order term with
respect to other components, so it can be neglected [9].

Making use of the above remarks, the Eq. (3.3) gives

(3.5) ωn =
βα2

n
√

1 +
J

A
α2
n

(

1 +
D

G′kJ

)

≈ βα2
n

[

1 − 1

2

J

A
α2
n

(

1 +
D

G′kJ

)]

,

n = 1, 2, 3, ...

If we assume in (3.5) the value of inertia J to vanish, we will obtain the formula
to calculate the natural frequencies respecting only the influence of the shear
deformation

(3.6) ωnp =
βα2

n
√

1 + n2π2ζ
≈ βα2

n

(

1 − 1

2
n2π2ζ

)

.

Taking G
′

= ∞ we obtain the expression

(3.7) ωnb ≈ βα2
n

(

1 − 1

2

J

A
α2
n

)

,

respecting only the influence of the rotary inertia.
Let us apply the following coefficient in (3.6):

(3.8) ζ =
D

G′kAl2
.

It characterizes the shear deformability of the composite beam [6]. By using

(2.7)2 and taking E
/

G
′

= 2 (1 + ν), the coefficient ζ becomes

(3.9) ζ =
(1 + ν)h2

5l2

(

1 + 24nrµr
∑

i

e2i
h2

)

.
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Equation (3.9) shows that the coefficient ζ strongly depends on the para-
meters h/l, nr = Er/E (Young’s modulus of the fibres to Young’s modulus of
the matrix), µr = jrAr/A (density of fibre packages in the r-th family) and
ei/h (location of the family of fibres in the cross-section). Figure 3 presents the
diagram of the coefficient ζ as a function of the beam slenderness l/h and of the
ratio Er/E with ν = 0.30; µr = 0.02; i = 2, e1 = 0.45h and e2 = 0.35h.

Fig. 3. Coefficient ζ as a function of the beam slenderness l/h and of the ratio
of Young’s moduli Er/E.

The relative errors εp and εb resulting from neglecting of the influence of shear
deformations and rotary inertia with respect to the natural frequency (3.4) of the
slender composite beam are as follows, if we take into account (3.6) and (3.7):

εp =
|ωn − ωnp|

ωn
· 100% =

1

2
n2π2ζ · 100%,(3.10)

εb =
|ωn − ωnb|

ωn
· 100% =

n2π2J

2l2A
· 100%.(3.11)

The relation

(3.12)
εp
εb

=
D

G′kJ
=

E

G′k

(

1 + 24
∑

i

nrµr
e2i
h2

)
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states how much the influence of the shear deformation is greater than the in-
fluence of the rotary inertia. Taking for example E/G′ = 2.6; i = 2 (two pairs
of identical fibre families in the cross-section), nr = 20; µr = 0.02 (4% of re-
inforcement), e1 = 0.45h; e2 = 0.35h we obtain εp/εb = 12.85. This leads to
the conclusion that for the composite beams with reinforcement by layers of long

fibres, the influence of shear deformation on the natural frequencies is at least

one order of magnitude greater than the influence of rotary inertia.

Taking into account the above conclusion we will neglect the influence of the
rotary inertia of the cross-section on the vibration of composite beams.

The relative error εp caused by neglecting the influence of shear deformation
with the length of deformation wave l/n = 10h and 5h (where h denotes the
cross-section height), is equal to 5.3% and 21.1% respectively (keeping remaining
input values unchanged). So we can easily observe that the error is significant
and increases in proportion to the coefficient ζ.

Thus, taking into account the influence of shear deformations only, we obtain
the natural frequencies for a simply supported composite beam in the form (3.6).
The associated eigenmodes are expressed in the form

(3.13) Wn (x) = An sinαnx; Ψn (x) = Bn cosαnx.

4. Harmonically forced vibration

In the case of beam vibration forced by transverse load p (x, t) = p (x) e−iωt,
neglecting the influence of axial loads and rotary inertia, the system of Eqs. (2.9)
transforms into the system of uncoupled equations of motion

(4.1)

∂4w

∂x4
+
ρA

D

(

1 − ζl2
∂2

∂x2

)

ẅ =
1

D

(

1 − ζl2
∂2

∂x2

)

p (x, t) ,

∂4ψ

∂x4
+
ρA

D

(

1 − ζl2
∂2

∂x2

)

ψ̈ = − 1

D

∂

∂x
p (x, t) .

As a result of the load acting harmonically, the displacement w (x, t) and the
angle of rotation ψ (x, t) varies also harmonically

(4.2) w (x, t) = W (x) e−iωt; ψ (x, t) = Ψ (x) e−iωt.

Substituting (4.2) into (4.1) gives the following ordinary differential equa-
tions:

(4.3)

d4W (x)

dx4
− ω2 ρA

D

(

1 − ζl2
d2

dx2

)

W (x) =
1

D

(

1 − ζl2
d2

dx2

)

p (x) ,

d4Ψ (x)

dx4
− ω2 ρA

D

(

1 − ζl2
d2

dx2

)

Ψ (x) = − 1

D

dp (x)

dx
,
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completed by the appropriate boundary conditions. For a simply supported beam

we should assume W (0) = W (l) = 0 and
dΨ (0)

dx
=
dΨ (l)

dx
= 0.

Taking

(4.4)

W (x) =
∞
∑

n=1

An sinαnx;

Ψ (x) =
∞
∑

n=1

Bn cosαnx;

p (x) =

∞
∑

n=1

pn sinαnx

and making use of the Fourier transform [9] in order to solve the Eqs. (4.3), leads
to the following solution of the equations of motion (4.1):

(4.5)

w (x, t) =
2

l

e−iωt

ρA

∞
∑

n=1

sinαnx

ω2
n

(

1 − ω2

ω2
n

)

l
∫

0

p (u) sinαnudu,

Ψ (x, t) = −2

l

e−iωt

ρA

∞
∑

n=1

αn cosαnx

(1 + n2π2ζ)ω2
n

(

1 − ω2

ω2
n

)

l
∫

0

p (u) sinαnudu,

where ω denotes the frequency of excitation and ωn denotes the natural vibration
frequency.

In the case of the load being uniformly distributed along the beam
p (x, t) = pe−iωt or for the concentrated load p (x, t) = Pδ (x− ξ) e−iωt acting in
the section x = ξ, we obtain respectively

(4.6)

w (x, t) =
4pe−iωt

lD

∑

n=1,3,5,...

(

1 + n2π2ζ
)

α5
n

(

1 − ω2

ω2
n

) sinαnx,

Ψ (x, t) = −4pe−iωt

lD

∑

n=1,3,5,...

cosαnx

α4
n

(

1 − ω2

ω2
n

) ,
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and

(4.7)

w (x, t) =
2Pe−iωt

lD

∞
∑

n=1

(

1 + n2π2ζ
)

α4
n

(

1 − ω2

ω2
n

) sinαnx sinαnξ,

Ψ (x, t) = −2Pe−iωt

lD

∞
∑

n=1

cosαnx sinαnξ

α3
n

(

1 − ω2

ω2
n

) .

The solutions describing the harmonic motion problem for simply supported
composite shearing-sensitive beam we have obtained above, can be used to eval-
uate the solutions of the slender reinforced beam problem. We just need to
eliminate the shear deformation γxz by substituting G

′ → ∞ or ζ = 0 into
Eqs. (3.6), (3.8), (4.1), (4.3), (4.5), (4.6) and (4.7). If we assume additionally
Ar = 0 (elimination of the fibre phase), we will obtain appropriate solutions for
the homogeneous beam [9].

The limiting case when ω → 0 gives the static problem. Thus, considering
the uniformly distributed load p or the concentrated load P acting in the mid-
span of the beam, we will obtain the following extremal values of displacement
components using (4.6) and (4.7):

w (l/2) =
5

384

pl4

D
(1 + 9.6ζ) ; Ψ (0) = − pl3

24D
= −Ψ (l) ,(4.8)

w (l/2) =
Pl3

48D
(1 + 12ζ) ; Ψ (0) = − Pl2

16D
= −Ψ (l) .(4.9)

Taking additionally ζ = 0 leads to the solution of the slender beam obeying
the Bernoulli hypothesis.

5. Parametric study

The aim of the analysis is to determine the influence of shear deformations
on the values of deflections of the composite beam we deal with in this paper.
As we have mentioned before, the girders made of fibrous composites are rein-
forced using fibres characterised by much better mechanical properties than the
matrix properties. The fibres exhibit significant shear deformability. The use of
Bernoulli hypothesis is suitable for isotropic slender beams. Because of it, a di-
rect application of this hypothesis to solve the fibrous composite beam problem
seems to be inappropriate and leads to significant errors.
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The relative error connected with omitting the shear deformations to be
calculated for extremal deflections

(5.1) ε =
|w − wB|
|wB|

· 100%,

taking into account (4.8) and (4.9) becomes, in the case of uniformly distributed
load,

(5.2) ε = 9.6ζ · 100%.

For the concentrated load, the relative error

(5.3) ε = 12ζ · 100%

is 25% greater than the distributed load error. In the Eq. (5.1), symbol wB de-
noting the deflection calculated according to the slender beams theory was used.

In order to demonstrate the influence of the beam slenderness changes l/h
and of the ratio nr = Er/E on the value of the error ε to be committed, let us
take for example the data identical as before (see Fig. 3).

The calculated values of the error ε are presented in Table 1 and visualised
in Fig. 4.

Fig. 4. Influence of the beam slenderness changes l/h and of the ratio nr = Er/E on the
value of the relative error ε caused by disregarding the transverse shear deformations effect.
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Table 1.

ε %
l/h

25 20 15 10 8 4

nr =
Er

E

10 1.02 1.60 2.84 6.39 9.98 39.9

20 1.65 2.57 4.57 10.3 16.1 64.3

50 3.52 5.49 9.77 22.0 34.3 137.3

100 7.05 10.4 18.4 41.4 64.7 265.2

200 12.88 20.1 35.7 80.4 125.6 502.3

300 19.12 29.8 53.1 119.3 186.4 745.7

6. Conclusions

The complete analytical results obtained in the paper as well as the analysis
carried out show that considering the influence of the transverse shear deforma-
tions in the dynamic problem of fibrous composite beams reinforced by layers of
long fibres, strongly influences the natural frequencies and displacements to be
calculated.

This influence depends mainly on the vulnerability parameter ζ which strongly
depends on the parameters h2

/

l2, nr = Er/E, µr = jrAr/A (density of fibres’
locations in the r-th family) and ei/h (location of the family of fibres in the
cross-section) and on the way the load is distributed.

The influence of shear deformations on the behaviour of a homogenous beam
(without reinforcement) with the ratio l/h ≥ 10 is negligible. An important fact
we have presented in the paper is that for the composite beam possessing the
same slenderness ratio, this influence is significant and may reach the values
greater than 100% (see Table 1).

However, the influence of the rotary inertia on the eigenvalues of composite
beams is over ten times smaller than the influence of shear deformations. Thus
it may be neglected.
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Damage constitutive equations are formulated to model the evolution of grain boundary
and plasticity-induced damage for free-cutting steels under hot forming conditions. During
high temperature, high strain rate deformation, material degradation has characteristics of
both creep damage at grain boundaries, and ductile damage surrounding hard inclusions. This
has been experimentally observed and is reported in the companion paper. This paper describes
the development of unified viscoplastic-damage constitutive equations, in which the nucleation
and growth of both damage types are considered independently. The effects of deformation rate,
temperature, and material microstructure on damage evolution are modelled. The proposed
damage evolution equations are combined with a viscoplastic constitutive equation set, enabling
the evolution of dislocation hardening, recovery, recrystallisation, grain size, and damage to be
modelled. This set of unified, mechanism-based, viscoplastic damage constitutive equations is
determined from experimental data of a free-machining steel for the temperature range 1173–
1373 K. The fitted model is then used to predict damage and failure features of the same
material tested using a set of interrupted constant strain rate tests. Close agreement between
the predicted and experimental results is obtained for all the cases studied.

Key words: creep damage, ductile damage, constitutive equations, hot metal forming, vis-
coplasticity.

Notations

εp plastic strain,
εT total strain,

A1, A2, γ1 material constants in plastic strain rate law,
d average grain size,
d0 material constant for grain size dependence,
R isotropic hardening parameter,
k material yield stress,
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S recrystallised fraction,
ρ̄ normalised dislocation density,
ρ̄c material-dependent critical dislocation density for recrystallisation,
x recrystallisation onset parameter,

H1, λ1 material constants in recrystallisation law,
δ1, δ2 material constants in dislocation accumulation law,
Cr, δ3 material constants in dislocation recovery law,
CS material constant in dislocation annihilation by recrystallisation law,
X1 material constant in recrystallisation onset law,
B material constant in isotropic hardening law,

G1, ψ1 material constants in normal grain growth law,
G2, ψ2 material constants in grain size evolution law,

E Young’s modulus of material,
σ residual stress,

DT total damage,
DGB grain boundary damage,

DN
GB , D

G
GB grain boundary damage nucleation and growth,
η grain size dependence parameter for grain boundary damage,
dc critical grain size parameter for grain boundary damage,

a1, a2, a3, n1 material constants in grain boundary damage accumulation law,
a4 material constant in grain boundary damage nucleation law,
n2 material constant in grain boundary damage growth law,

DPi plasticity-induced damage,
DN

Pi, D
G
Pi plasticity-induced damage nucleation and growth,
a5 material constant in plasticity-induced damage accumulation law,

a6, n3, n4 material constants in plasticity-induced damage growth law,
Qp, Qac, QGG activation energy for i) dislocation-based plasticity,

ii) dislocation recovery, iii) grain growth,
QGB , QPi activation energy for i) grain boundary damage,

ii) plasticity induced damage,
κ, T heat constant, temperature.

1. Introduction

Damage modelling is now recognised as a powerful tool for the understand-
ing and prediction of the initiation of macro-cracks in materials processing. Hot
metal forming processes inadvertently cause a concentrated build-up of micro-
damage within the working material at areas, where hydrostatic stress is pos-
itive [1]. It is the accumulation of this damage that can cause macro-cracking
observed on feedstock during rolling. Macroscopic cracks are formed when micro-
damage features reach a critical density and start to coalesce. In commercial
rolled steels, a uniform, high-quality product is essential. To achieve this, regions
with a high damage density are removed, a process which is expensive and waste-
ful. By using a damage model to accurately determine the critically damaged
region, yield can be increased and specified mechanical properties of processed
materials achieved. To enable the grain boundary damage and plasticity-induced
damage observed from experimentation of hot metal working conditions to be
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modelled, relevant damage models for high temperature creep, plasticity and
superplasticity are outlined first.

Since the original work on damage accumulation during high temperature
creep by Kachanov [2], continuum damage mechanics (CDM) has been applied
to a range of deformation conditions. For the case of high temperature creep in
which viscoplastic straining occurs predominantly by grain boundary sliding due
to the grain boundary diffusion process, damage has been identified as occurring
by several damage mechanisms, with the dominant mechanism depending on
both the material and the strain rate. The damage types have been independently
studied and modelled, for instance damage due to mobile dislocations in creep
has been modelled by using the equation form [3]:

(1.1) Ḋ = C (1 −D)2 ε̇c

in which D represents damage in a unit area (varying from an undamaged state
of D = 0 to a totally damaged state at D = 1), ε̇c is the creep strain rate, and C
is a material constant. Damage due to creep constrained cavity nucleation and
growth (occurring at grain boundaries) is typically represented by

(1.2) Ḋ = Wε̇c,

where W is a material constant [4]. If high temperature creep takes place under
high stress levels, cavity growth is the dominant damage mechanism. According
to Cocks and Ashby [5], damage due to cavity growth at grain boundaries is
modelled by

(1.3) Ḋ = β

(

1

(1 −D)n
− (1 −D)

)(

σe
σ0

)

· ε̇0

in which σ0 and n denote material constants, ε̇0 is the material creep rate, and
β is a material parameter related to hydrostatic stress.

Deformation at low temperatures occurs predominantly by the formation
and slip of dislocations within grains. Under these conditions, ductile damage
nucleates and grows around the second phase and other matrix discontinuities
that attract a localised build up of dislocations. Detailed studies of ductile void
growth have been conducted by Rice and Tracey [6] and Gurson [1]. Rice
and Tracey [6] proposed a damage model based on the radial growth char-
acteristics of a pre-existing void in a unit cell, considering in detail the volu-
metric growth and shape changes of a void. Later, Gurson’s approximation of a
rigid-plastic solid containing spherical cavities [1] considered the micro-effects of
a growing void within a continuum lattice. The model gives a good representa-
tion of the early evolution of damage, however coalescence is presumed as being
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solely due to adjacent cavities meeting – which leads to a large discrepancy be-
tween the predicted and actual failure conditions [7]. Phenomenologically based
ductile damage models have also been developed to model the damage accu-
mulation due to large plastic deformation. By considering void nucleation and
growth as separate terms, damage can be represented by the form [8]:

(1.4) Ḋ = c · ε̇pe + (a1 + a2 ·D) · K
2

2E
· (εpe)2m · f

(

σH
σe

)

· ε̇pe

in which c,a1, and a2are material-dependant constants, and Kand m are harden-
ing parameters. The first term represents the rate of nucleation of new damage

sites, the second models the growth of existing voids. The function f

(

σH
σe

)

describes the stress state dependence of void growth.
Damage accumulation during superplastic deformation has been identified

at grain boundaries [9] and around hard particles both at grain boundaries and
within grains [10]. A damage model to predict damage during superplastic de-
formation occurring by void nucleation and growth around particles has been
developed by Khaleel [10] and takes the form:

(1.5) Ḋ = η · (1 −D) · ε̇p +
F (εp)

(1 −D)
· σ · ε̇p,

where η is usually taken as a material constant and F is a monotonic function
of plastic strain.

The models discussed above are designed to predict particular types of dam-
age evolution and damage mechanisms. In the companion paper, an experimen-
tal programme conducted on a free-cutting steel has identified the simultane-
ous presence of two discrete types of damage. Cracks and voids along grain
boundaries and at triple points of adjacent grains (referred to as grain boundary
damage in this paper) have similarities to those noted during high temperature
creep (e.g. [11]) and superplastic deformation. Damage surrounding hard inclu-
sions due to debonding of the inclusion/matrix interface is similar to a damage
example considered by Gurson [1] and others in ductile rupture conditions, as
well as that modelled by Khaleel [10] for superplastic deformation. The rate
of accumulation of each damage type is affected by temperature, strain rate,
and material (especially the presence of hard inclusions within the material),
but the two damage types react very differently to a change in deformation con-
ditions or material. In addition, many dynamic matrix-reorganisation processes
also affect damage development such as hardening by dislocation accumulation,
subsequent softening by recovery and recrystallisation processes, grain size reduc-
tion by recrystallisation, and normal grain growth. The main aim of this paper
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is to produce a damage model for hot deformation that is capable of following
the evolution and the macroscopic effect of the two damage types encountered
during uniaxial experimental testing.

The work presented in this paper concentrates on the identification of inter-
actions between the mechanisms of hot deformation and the accumulation of the
two damage types described above. A phenomenological model for grain bound-
ary and plasticity-induced damage is built and, by coupling this with a modified
version of Lin and Liu’s model for microstructure evolution in hot deformation
[12], a complete set of viscoplastic-damage constitutive equations is presented.
The constants within the viscoplastic damage constitutive equations are deter-
mined for a free-cutting steel over the temperature range of 1173–1373 K and
deformation rates of 0.1–10 s−1. The model is then used to predict the mate-
rial flow stress evolution of a set of interrupted constant strain rate tests, and
compared with experimental results.

2. Development of damage models

The response of the two damage mechanisms to factors such as temperature,
strain rate and grain size are not similar, and thus an independent mechanism
is assigned for each damage type. Damage accumulation is considered as being
homogeneous, and is treated as a phenomenological continuum model for simple
tension in the present work.

2.1. Damage equation set

The two damage mechanisms independently map the accumulation of each
damage type. Material failure is determined by the total damage, defined as
the sum of both damage types. Total damage is initially 0 representing the
undamaged state, and rises to a value of 0.9 at which point damage coalesces
and macrocracks develop, which is the criteria for material failure. The total
damage DT is in the form:

(2.1) DT = DGB +DPi (DT < 0.9).

Damage is accumulated by the nucleation of new damage sites and the growth of
pre-existing sites, thus the grain boundary damage, DGB, and plasticity-induced
damage, DPi, are represented as:

ḊGB = ḊN
GB + ḊG

GB,(2.2)

ḊPi = ḊN
Pi + ḊG

Pi(2.3)
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in which ḊN
GB and ḊG

GB are the rates of nucleation and growth of damage at grain
boundaries, ḊN

Pi and ḊG
Pi are the rates of nucleation and growth of plasticity-

induced damage.
The accumulation rate of grain boundary damage is highly dependent on

the grain size. If grains are large, there is less grain boundary sliding and
grain rotations under hot-deformation conditions and damage accumulation at
grain boundaries is slow. If grain size is very small (<10 µm), superplasticity
is achieved, grains can rotate and slide past each other with ease and damage
accumulation is again slow. A grain size between these two extremes will cause
the highest grain boundary damage accumulation rate. In addition, the band
of critical grain size is dependent of deformation rate (Fig. 1). Fast deforma-
tion favours dislocation-based plastic deformation, meaning that the grain size
to achieve grain boundary movement is relatively smaller, and superplasticity is
not easily achieved. In contrast, slow deformation favours grain boundary sliding
due to grain-boundary diffusion, and so the critical grain size becomes larger. To
reflect this, the equation to describe grain boundary damage accumulation has
been modified to reflect grain size, strain rate, as well as temperature-dependence
and is given by:

(2.4) ḊGB = η ·
(

ḊN
GB + ḊG

GB

)

in which the damage compliance variable,η, is defined as:

η = a1 · exp

(

−a2 ·
(

1 − d

dc

)2
)

,(2.5)

dc = a3 · (ε̇p)−n1 ,(2.6)

where a1, a2, a3 and n1 are constants. The characteristic curves of the compliance
variable ηare given in Fig. 1 with variations of grain size for different deformation
rates. For these calculations the values of constants are as given in Table 2.
Equation (2.6) calculates the critical grain size for which grain boundary damage
accumulation is at a maximum, which is a function of strain rate. Equation (2.5)
reduces the accumulation rate when the actual grain size is not at the critical
value. The highest grain boundary damage accumulation rate varies with grain
size and strain rates [Fig. 1].

Nucleation of grain boundary damage is encouraged when grains are harder
than the grain boundaries, leading to plastic deformation by grain boundary
movement, thus the damage nucleation variable is strongly influenced by dislo-
cation density (intra-grain hardness):

(2.7) ḊN
GB = a4 · (1 −DGB) · ˙̄ρ

in which a4 is a material constant.
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Fig. 1. Grain boundary damage compliance plotted against grain size for T = 1273 K.

Grain boundary damage grows so long as plastic deformation is taking place.
Cocks and Ashby [4] proposed an equation for the strain-controlled void
growth of creep damage; modified for the present work, the equation takes the
form:

(2.8) ḊG
GB =

[

1

(1 −DGB)n2
− (1 −DGB)

]

· ε̇p,

where n2 is a constant. Plasticity-induced damage is created by the accumulation
of dislocations around a hard inclusion. The nucleation of plasticity-induced
damage is thus directly related to the amount of dislocation-based deformation
experienced by the grain structure. A further consequence of this is that any
softening processes acting to reduce the density of dislocations will also have
a stabilising effect on nucleated voids. Using a similar term to that given in
(1.1), but substituting creep strain rate for dislocation evolution rate, the rate
of nucleation of plasticity-induced damage can be represented by:

(2.9) ḊN
Pi = (1 −DPi) · ˙̄ρ.

The growth rate of plasticity-induced damage is a function of grain size, strain
rate, and temperature, along with the amount of plasticity-induced damage that
has been created. A large grain size favours deformation by dislocation movement
and thus increases the rate of accumulation of plasticity-induced damage. For
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the same reason, high strain rates increase the growth rate of plasticity-induced
damage. The modelling equation is given as:

(2.10) ḊG
Pi = a6d

DPi

(1 −DPi)n3
· |ε̇p|n4 ,

where a6, n3 and n4 are constants.

2.2. Modelling the effect of damage on viscoplastic deformation

The basic model used for plastic strain is a hyperbolic sine law, with harde-
ning and grain size effects considered [12], of the form:

(2.11) ε̇p =
A1 · sinh [A2 · (σ −R− k)]

dγ1
,

where A1, A2, and γ1 are material constants. k is the initial yield stress of the
material and R is the isotropic hardening due to plastic deformation. γ1 charac-
terises the effect of grain size on the viscoplastic flow of the material.

Damage at grain boundaries reduces the load bearing section over which
a deformation force acts. This increases the effective stress according to the
common practice of dealing with creep damage. Plasticity-induced damage is
considered in much the same way; voids growing within grains will distribute
and focus flow stress away from the voids [7]. The localisation of stress into
the lattice generates more force to overcome grain hardening, when viewed from
outside the grain, this leads to a softer grain that is easier to deform. In other
words, plasticity-induced damage shrinks the yield surface of the material. Thus
considering the softening effects due to damage, Eq. (2.11) is written as:

(2.12) ε̇p = A1 · sinh

[

A2 ·
(

σ

(1 −DGB)
− (R+ k) · (1 −DPi)

)]

d−γ1

in which grain boundary damage increases the effective stress causing plastic de-
formation, and plasticity-induced damage decreases the effective material hard-
ness.

3. Development of unified viscoplastic-damage constitutive
equations

Unified constitutive equations for viscoplasticity have been developed for
many metal materials [13, 14]. The equations enable a wide range of time-
dependent phenomena to be modelled, such as strain hardening, stress relax-
ation and ratchetting [15], and in addition enable the important time-dependent
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effects, such as strain rates, recovery and creep to be modelled. This work in-
tends to develop a set of unified viscoplastic damage constitutive equations to
model the evolution of recrystallisation, dislocation density, hardening and grain
size, damage at grain boundaries and around the second phase particles, to ra-
tionalise their inter-relationships and effects on viscoplastic flow of materials.
The mechanism-based unified viscoplastic damage constitutive equations for hot
metal forming may take the form:

ε̇p = A1 · sinh

[

A2 ·
(

σ

1 −DGB
− (R+ k) · (1 −DPi)

)](

d

d0

)

−γ1

,(3.1)

Ṡ = H1 · (x · ρ̄− ρ̄c · (1 − S)) · (1 − S)λ1 ,(3.2)

ẋ = X1 · (1 − x) · ρ̄,(3.3)

˙̄ρ =

(

d

d0

)δ1

· (1 − ρ̄) · |ε̇p|δ2 − Cr · ρ̄δ3 −
CS · ρ̄
1 − S

Ṡ,(3.4)

Ṙ = 0.5 ·B · ρ̄−1/2 · ˙̄ρ ,(3.5)

ḋ =

(

G1

d

)ψ1

−G2 · Ṡ ·
(

d

d0

)ψ2

,(3.6)

σ = E · (εT − εp),(3.7)

ḊGB = η ·
(

[a4 · (1 −DGB) · ˙̄ρ] +

[(

1

(1 −DGB)n2
− (1 −DGB)

)

· |ε̇p|
])

,(3.8)

ḊPi = a5 ·
(

[(1 −DPi) · ˙̄ρ] +

[

a6 ·
DPi · d

(1 −DPi)
n3

· |ε̇p|n4

])

,(3.9)

ḊT = ḊGB + ḊPi.(3.10)

Grain boundary damage parameter η has been defined in Eq. (2.5). Tempe-
rature-dependent material parameters in the Eqs. (3.1)–(3.10) are defined in
Table 1.

Viscoplastic flow of the material is modelled using Eq. (3.1), which is a func-
tion of flow stress, σ, grain boundary damage, DGB, plasticity-induced damage,
DPi, isotropic hardening, R, and the average grain size, d. Equation (3.2) mod-
els the volume fraction of recrystallised grains during and after hot deformation.
The incubation time for recrystallisation is controlled by Eq. (3.3), which is di-
rectly related to the accumulation of normalised dislocation density. The volume
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Table 1. Temperature-dependent parameters.

k = k(0) · exp

�
Qp

κ · T

�
ρ̄c = ρ̄c(0) · exp

�
Qp

κ · T

�
Cr = Cr(0) · exp

�
−Qac

κ · T

�
X1 = X1(0) · exp

�
−Qac

κ · T

�
G1 = G1(0) · exp

�
−QGG

κ · T

�
E =

E(ref)

cosh2
�
K1 ·

�
T − T(ref)

��
α1 = α1(0) · exp

�
QGB

κ · T

�
α5 = α5(0) · exp

�
QPi

κ · T

�
fraction of recrystallisation variable, S, varies from 0 (no recrystallised grains)
to 1.0 (representing the fully recrystallised state).

The normalised dislocation density is defined by ρ̄ = (ρ− ρi) /ρ, where ρ
is the current dislocation density and ρi is the dislocation density for the vir-
gin material. When the plastic deformation is high, ρ ≫ ρi. Thus the range
of normalised dislocation density varies from 0 to 1.0. Equation (3.4) models
the evolution of the normalised dislocation density. The first term in the equa-
tion models the accumulation of dislocations due to viscoplastic deformation
|ε̇p| and the dynamic recovery of the dislocation density. The second term in the
equation represents the annealing process, which reduces the dislocation density.
Recrystallisation creates dislocation free grains, which results in the reduction of
average dislocation density. The evolution of the normalised dislocation density
due to recrystallisation is described by the third term of Eq. (3.4). The hardening
of the material due to plastic deformation is directly related to the dislocation
density and its evolution is given by Eq. (3.5). The effects of grain size on the
accumulation of dislocation density is controlled by (d/d0)

δ1 . Small grain size
facilitates the grain boundary sliding and grain rotation under viscoplastic de-
formation. Thus less strain is ‘carried by dislocations’. The average grain size
evolution is described by Eq. (3.6). The first term of the equation represents the
static grain growth and the second the grain refinement due to recrystallisation.
Flow stress is calculated from the elastic strain in the usual way; Eq. (3.7) along
with details of the above viscoplastic constitutive equations are given by Lin et

al. [12].
The grain boundary damage evolution is represented by Eq. (3.8). The ef-

fects of grain size and strain rates on grain boundary damage evolution are
controlled by the parameter η (Eqs. (2.5) and (2.6)). Nucleation and growth
rates of plasticity-induced damage are described by Eq. (3.9), which is directly
related to Eqs. (2.3), (2.9) and (2.10). The total damage evolution is given by
Eq. (3.10). The material constants, as indicated by the nomenclature and given
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in Table 2, are determined from experimental data using an Evolutionary Pro-
gramming (EP)-based optimisation technique developed by Li et al. [16] using
the objective function detailed by Lin et al. [17]. The details of the optimisation
process and the numerical procedure for this type of the problems are described
by Lin et al. [12] and Li et al. [16].

Table 2. Material constants for the free-cutting steel.

Constant Determined Value Constant Determined Value

A1

�
s−1

�
68.0 κ

�
J · mol−1 · K−1

�
8.31

A2

�
MPa−1

�
1.5e-2 Qp

�
J · mol−1

�
1.069e5

γ1 (−) 1.0 Qac

�
J · mol−1

�
4.082e5

k(0) (MPa) 6.81e-4 E(ref) (MPa) 1.27e5

H1

�
s−1

�
14.5 K1

�
K−1

�
2.0e-3

ρ̄c(0) (−) 1.10e-7 T(ref) (K) 1073

λ1 (−) 1.0 α1(0) (−) 1.3e-4

d0 (µm) 28.67 α2 (−) 1.1

δ1 (−) 1.02 α3 (µm) 18.0

δ2 (−) 1.5 n1 (−) 7.5e-2

Cr(0)

�
s−1

�
1.13e17 α4 (−) 3.8e-5

δ3 (−) 2.13 n2 (−) 4.66

CS (−) 1.0 α5(0) (−) 2.04e-3

X1(0)

�
s−1

�
1.44e17 α6

�
µm−1

�
2.33

B (MPa) 1.60e2 n3 (−) 14.0

G1(0) (µm) 6.401e4 n4 (−) 0.89

ψ1 (−) 0.875 QGG

�
J · mol−1

�
7.020e4

G2

�
s−1

�
26.61 QGB

�
J · mol−1

�
1.017e5

ψ2 (−) 0.90 QPi

�
J · mol−1

�
2.5e4

4. Modelling results and experimental validation

4.1. Experimental results for the determination of material parameters

Hot uniaxial tensile tests were performed to obtain the stress-strain relation-
ships for a range of constant strain rates and temperatures, which are used in
the determination of material constants within the equations. The experimental
programme was conducted on a Gleeble material simulator using a free-cutting
steel which contained hard manganese sulphide inclusions, evenly distributed
through the grain structure in the tested temperature range. The experimental
programme was identical to that described in detail in the companion paper
for a free-cutting steel. A 5-minute soaking process performed at 1473 K was
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used to create a uniform microstructure, after which constant strain rate tests
were conducted at strain rates between 0.1–10 s−1 at a temperature of 1273 K,
and at a strain rate of 1.0 s−1 at temperatures between 1173 and 1373 K. The
determined material constants are listed in Table 2.

Figure 2 shows experimental data plotted alongside the stress-strain curves
generated by the fitted equation set for a range of strain rates and temperatures.
The fitted model is consistent with test results, displaying good accuracy in the
prediction of flow stresses as well as strains at failure for all conditions given, with
strains at failure showing less than 5% discrepancy in all conditions. The peak
in flow stress followed by an extended ductility that is associated with dynamic
recrystallisation is prominent in low strain rate and high temperature stress-

Fig. 2. Comparison of experimental (symbols) and computed (curves) stress-strain rela-
tionships for (a) different strain rates at 1273 K and (b) different temperatures at ε̇ = 1.0 s−1.
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strain plots, becoming less prominent with increasing strain rate and decreasing
temperature.

It is understood that for high temperature, small grain size and low strain-
rate deformation conditions, the dominant deformation mechanism is through
grain boundary sliding and grain rotation. This results in inter-granular failure
due to the accumulation of grain boundary damage. If the deformation rate is
high, the grain size large and temperature is low, the strain is mainly carried
by dislocations and voids at inclusions can be observed. This is due to the ac-

Fig. 3. Change of dominant damage type with increasing strain rate: a) flow stress plot for 3
deformation conditions, b) grain boundary damage, c) plasticity-induced damage.
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cumulation of plasticity-induced damage. Calculations were carried out using
the determined viscoplastic damage constitutive equations with the same initial
grain size, different temperature and strain rates. Figure 3 shows the predicted
results for flow stress (a), grain boundary damage (b), and plasticity-induced
damage (c), for three loading conditions. are: (i) Low temperature and high
strain rate: T = 1173 K and ε̇T = 1.0 s−1; (ii) Medium temperature and strain
rate: T = 1213 K and ε̇T = 0.5 s−1; and, (iii) High temperature and low strain
rate: T = 1273 K and ε̇T = 0.1 s−1. When the total damage reaches 0.9, the
failure takes place. Figure 3 shows that, for the first case, plasticity-induced dam-
age is dominant over grain boundary damage. As the deformation temperature
increases and strain rate decreases, the balance damage state can be observed.
However, when the temperature increases further, grain boundary sliding defor-
mation mechanism plays more important role. This results in a high value of
grain boundary damage.

4.2. Experimental and modelled results of interrupted deformation tests

A second test set was conducted using an interrupted deformation programme.
The testpieces were soaked for 5 minutes at 1473 K and then deformed at a total
strain rate of 10 s−1 and a temperature of 1273 K. On reaching a pre-specified
strain, the test was interrupted. Deformation was halted and testpiece tem-
perature was maintained. During the interrupt period, metadynamic recovery
processes develop, simulating the microstructure development between succes-
sive passes of a multi-pass hot-rolling schedule. Interruptions lasting 0.3–10 s
were imposed once a true strain of 0.3 had been reached, corresponding with a
point in deformation at which recrystallisation nucleations are present, but dy-
namic recrystallisation (DRX) is not apparent. Once the desired interrupt time
is reached, the testpiece deformation was continued to failure.

The test programme was modelled using the developed equation set by em-
ulating the physical restrictions given in the tests. The model was started with
conditions of ε̇T = 10 s−1 and T = 1273 K. On reaching a strain εT = 0.3, the
conditions of the model were forced to ε̇p, ε̇T = 0 s−1. All other mechanisms and
conditions were left unrestrained, resulting in the metadynamic reorganisation
processes such as recovery and recrystallisation continuing to evolve, emulating
the material evolution in the test programme. After the predefined interrupt time
had passed, the model conditions were returned to ε̇T = 10 s−1 and deformation
continued as before, until the termination condition of damage coalescence was
reached.

The simulation of interrupted constant strain rate tests shows promising
results. Stress-strain plots correctly predict the general shape of the curves
(Fig. 4). The general trend exhibited by the strain at failure following reload-
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Fig. 4. Comparison of experimental (symbol) and computed (curves) interrupted flow stress
curves at ε̇ = 10 s−1 and T = 1273 K for interrupt periods of (a) 0.0 s, (b) 0.3 s, and (c) 5.0 s.

Fig. 5. Comparison of experimental (symbols) and computed (curve) strain at failure
against interrupt period for ε̇ = 10 s−1 and T = 1273 K.



58 J. LIN et al.

ing is correctly predicted (Fig. 5), with the predicted interrupt time leading to
maximum ductility falling only marginally short of the experimentally deter-
mined value. The complex relationship between the interrupt period and the
resulting reloading curve is interpreted within the model as the result of grain
size and dislocation density changes resulting from metadynamic recovery, re-
crystallisation (MDRX), and grain size changes. A detailed explanation of the
test results can be formed by splitting the material evolution into a number of
stages.

Stage 1: Strain is applied at a constant strain rate. As the testpiece is
strained, recrystallisation nucleation sites may develop within the material. No
significant amount of DRX occurs. At a constant strain rate of 10 s−1, this
stage will last approximately 0.03 s, during which no notable grain growth
occurs.

Stage 2 : Interrupt strain is reached. Deformation is stopped. Recrystallisa-
tion may continue depending on the remaining dislocation density, which reduces
due to recrystallisation and annealing effects. Grain refinement takes place due to
recrystallisation. Nucleated MDRX grains grow within the lattice until the new
grain recrystallisation fronts meet. During this period, a limited amount of dam-
age recovery takes place due to the reduction of dislocation density. Normal grain
growth occurs depending on the interrupted intervals. Complex microstructure
evolution takes place during inter-passes.

Stage 3 : Constant strain rate deformation is restarted. Material evolution
this point depending on what stage was reached before deformation was con-
tinued.

The interrupted tests were used to give an indirect measurement of the ma-
terial’s RX characteristics. By interpreting the interrupted flow stress results it
has been possible to identify the relationship between the completeness of RX
and material flow response. This relationship is critical if the model is to remain
accurate in complex RX conditions; the model’s accuracy can be improved by
collecting additional experimental data to directly fit the data for static RX or
grain size evolution.

In the companion paper, it has been discussed that recrystallisation processes
may annihilate or reduce damage nucleations and young (physically small) dam-
age sites. The damage level within the proposed model is reduced by the disloca-
tion-linked reduction in damage nucleation sites; both of plasticity-induced and
grain boundary damage.

The current model is not capable of accurately predicting the peak flow stress
following reloading, which is predicted as varying only slightly with interrupt
time, suggesting that further development of grain size and hardening mecha-
nisms are required to improve the accuracy. The comparison of experimental
and peak flow stress for the reloading state can be observed in Fig. 4. The trend
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of the strain at failure for the reloading stage can be also predicted using the
equation set, although the highest error is about 15% between the experimental
and predicted results, which are shown in Fig. 5.

5. Conclusions

A set of unified viscoplastic damage constitutive equations has been for-
mulated and determined to model the damage evolution features observed in
experiments for a free-cutting steel under hot working conditions. In addition
to recrystallisation, grain size evolution and dislocation hardening, the effects of
microstructure, strain rates and temperature on the grain boundary damage and
plasticity-induced damage can be predicted. The developed constitutive equa-
tion set can also be used to model the viscoplastic flow, microstructure evolution
and failure of the material under interrupted loading conditions, including the
microstructural evolution during the interval of the loadings. The errors of the
prediction are within 20% for peak flow stress and 15% for strains at failure.
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Polymer matrix composites have become highly relevant structural materials. However,
high performance laminates are quite susceptible to transverse cracking and delamination.
Transverse cracks may cause significant stiffness losses, accelerate environmentally induced
degradation and generate delamination. The characterization and modeling of fracture behav-
ior is thus highly relevant for the design of composite parts. In this paper, the delamination
phenomena in the Mixed Mode I+II which is one of the important cause of failure in mul-
tilayer composites, are studied. The composite is a GFRP (Glass Fiber Reinforced Plastic)
and are studied under static monotonic loading. Using the Irwin–Kies criteria, usual laws of
elasticity and VCCT (Virtual Crack Closure Technique), based on finite element method, the
SERR (Strain Energy Release Rate) in Mode I, Mode II, and four ratio Modes (GI/GII) are
evaluated. The finite element analysis of test bars is carried out using ANSYS5.5 software in
two dimensions, and the appropriate boundary conditions are chosen. Our numerical results
are compared with known experimental ones and with application of the local effects, such
as three-dimensional (3D) effect in the width of the test bar with the shape of MMB (Mixed
Mode Bending) specimen, scattering between experimental and numerical results is evaluated
and discussed. For the 3D effect, the variation of the stress components in the mid-plane of
specimen in which delamination occurs, versus the width of specimen, is obtained. Then the
variation of strain energy release rate in different ratio Modes, in the width of test bars is
calculated.

1. Introduction

Composite laminates are one of the most useful materials for the engineering
structures, because of their high strength ratio to their weight. A glass-fiber
epoxy resin composite is one of those composites that its application, because of
its high resistance in tension, the low commercial price of its fibers compared to
others, such as carbon fibers, and its resistance against corrosion, has increased
[1]. When a multilayer composite is loaded, the interlaminar stresses appear in
the interface of the layers. Theses stresses lead to delamination [2], which is one of
the most important mechanisms of rupture of the composite materials (Fig. 1) [3].

1)GFRP – Glass Fiber Reinforced Plastic.
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Hence prediction of delamination and also fracture toughness of these materials
is useful to their amelioration. In the present research the Uni-Directional (UD)
GFRP were modeled. The modeling of a multilayer composite with different
orientation of fibers in each layer will be done in the future researches. In this
case, the evaluation of interlaminar stresses before modeling of delamination is
important [4].

Fig. 1. Delamination in a composite material.

In the mechanism of delamination which is analogous to the crack growth
in isotropic materials, all the possibilities of rupture shown in Fig. 2 exist [5].
Testing of Mode I is standardized by ISO using DCB (Double Cantilever Beam)
specimen and several researches carried on Mode II using ENF (End Notched
Flexure) [6] and ELS (End Loaded Split) specimen are well advanced. In reality
delamination doesn’t occur in a pure mode. Hence investigation on the Mixed
Mode seems to be important [7].

Fig. 2. Modes of rupture.
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2. MMB specimen

Different tests of delamination on the Mixed Mode I + II such as CTS (Com-
pact Tension Specimen) and CLS (Crack Lap Shear) are presented [8]. The most
useful specimen for the Mixed Mode is the MMB specimen. Crews and Reeder,
with the composition of DCB and ENF specimens, have presented a MMB spec-
imen [9]. The first concept of MMB test device, in order to decrease the linear
geometrical errors, which reached about 30%, was redesigned in order to elim-
inate the moment of the loads around the pins through which it is applied to
the specimen [10]. In the corrected concept, the nonlinear errors are decreased
to less than 3% and finally the test device is designed as shown in Fig. 3 [11].

Fig. 3. MMB test apparatus [10]: a) schematic form; b) test apparatus with the device.

The manner of Mode I and Mode II loading composition and their application
to the specimen are shown in Fig. 4 [9]. We can apply the forces using the
unique load P through a lever, having I shape. If this load reaches its critical
value, delamination will occur. The length of the lever c determines the ratio
of the loads and then the ratio of the Modes. When the load P is applied in
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the middle of the span of the beam, (c = 0), the test bar will be loaded in the
pure Mode II, and with increasing c, the ratio GII/GT (GT is the total SERR)
decreases. By moving the lever and lifting it on the hinge, the pure Mode I loading
occurs. Dimensions and mechanical properties of the uni-directional glass fiber
epoxy resin composite, which is used in our numerical analysis, are given in the
Table 1 [11].

Fig. 4. MMB specimen loading.

Table 1. Mechanical properties and geometry of the test bar.

Specimen Dimension Mechanical Property

L = 65 mm E11 = 25.7GPa (±8%)
2h = 5 mm E22 = 6.5 GPa (±8%)
b = 20 mm G12 = 2.5 GPa (±8%)

LT = 150 mm υ12 = 0.32 (±8%)
a0 = 35 mm νfiber = 35.4% (±8%)

νvoid = 4.2% (±8%)

3. Theory of strain energy release rate

In this theory, the Irwin–Kies relationship is given as follows [12]:

G =
P 2

2b

∂C

∂a
,(3.1)

C = δ/P.(3.2)

In this relationship P is the applied load, b is the width of specimen, C is the
compliance, a is the crack length and δ is the deflection in the point of the load
application. When G reaches its critical value (GIC), delamination initiates.



NUMERICAL MODELING OF DELAMINATION IN GFRP COMPOSITES 65

4. Beam theory

Using the elementary theory of beams and their substitution in the relations
of Irwin–Kies, we can obtain the relations for the strain energy release rate.
According to Fig. 4, the Mode I and Mode II components of loading are given
as follow [10]:

(4.1)

PI =

(

3c− L

4L

)

P,

PII =

(

c+ L

L

)

P.

Using the elementary beam theory for the DCB and the ENF specimens, the
Mode I and Mode II components of the SERR are obtained [10]:

(4.2)

GI =
12a2P 2

I

b2h3E11
,

GII =
9a2P 2

II

16b2h3E11
.

With substitution of relations (4.1) with the Eqs. (4.2), we will have:

(4.3)

GI =
3a2P 2

4b2h3L2E11
(3c− L)2,

GII =
9a2P 2

16b2h3L2E11
(c+ L)2.

So the ratio of modes is defined as follows:

(4.4)
GI

GII
=

4

3

[

3c− L

c+ L

]

, c ≥
(

L

3

)

.

So relation (4.4) will not be valid for the values of C less than 21.67 mm.
The ratio of modes is independent of the crack length a, and depends only on
the length c. Using the correction coefficients for the shape deformation corre-
sponding to the rotation of the section of specimen at the end of the crack and
also the shape of shear deformation, relation (4.3) is corrected as follows [13]:

(4.5)

GI =
3a2P 2

4b2h3L2E11
(3c− L)2

[

1 +
2

aλ
+

1

a2λ2
+

h2

10a2

E11

G13

]

,

GII =
9a2P 2

16b2h3L2E11
(c+ L)2

[

1 +
h2

5a2

E11

G13

]

, λ =
1

h
4

√

6E22

E11
.
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5. Calibration method

In this method, the compliance of specimen is calculated by measuring the
critical applied load (which leads to the crack growth), the crack length and the
displacement of the point of load application. This experiment is carried out
for test bars with different initial crack lengths and results are demonstrated by
the curve of compliance versus, the crack length. If we consider two separate
compliances for Mode I and Mode II components, we will have [7]:

(5.1)

CI =
δI
PI

= Kan,

CII =
δII
PII

= C0 +ma3.

In these relations PI and PII are determined with relation (4.2). n and m are
obtained respectively from slope of the curves Ln(CI) − Ln(a) and
CII − a1/3. δI is obtained directly by measurement of the opening of the crack.
Displacement dc is measured in the support, as shown in Fig. 4 and δII is calcu-
lated as follows [7]:

(5.2)
δII = ∆ + dcm,

∆ ≈ δI/4.

Thus, Mode I and Mode II components of SERR are evaluated using the
following relations [7]:

(5.3)

GI =
nPIδI
2ab

,

GII =
3ma2P 2

II

2b
.

In another method for obtaining SERR in Mode I, C is considered as a func-

tion of (a+ |∆|)3 and ∆ is determined using the curve C
1/3
I − a. As a result, the

following relation is obtained. ∆ indicates the phenomena of shear and rotation
at the end of the crack [14].

(5.4) GI =
3PIδI

2b(a+ |∆|) .
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6. Finite element method

In this section, VCCT method is used and the components of strain energy
release rate are obtained using the following relations:

(6.1)

GI = lim
∆a→0

1

2b∆a
p0
y(ν1 − ν2),

GII = lim
∆a→0

1

2b∆a
P 0
x (u1 − u2),

u and v are the relative displacement between nodes 1 and 2. ∆a is the length
of crack which should close virtually. P 0

x and P 0
y are the loading components,

which are used for the closure of the crack (Fig. 5).

Fig. 5. The shape of elements for VCCT.

7. Finite element model of MMB specimen

For two-dimensional (2D) modeling, we have used four corners solid elements
with 8 nodes and three corners solid elements with 6 nodes at crack tip. Since
width of the specimen is higher than its thickness, the problem is studied in plane
strain state. As the stress concentration zone is smaller than the dimensions of
the specimen, the meshes are refined only in a small zone at the crack tip.
We refined the meshes so that we obtained converged results. The convergence
tolerance of stresses was 0.01 MPa, which was sufficiently precise for our research.
Thus we don’t need to include the micromechanics of the structure. The type of
elements leads to singularity of the stresses and strains at the end of the crack
(Fig. 6). The right and left supports of the specimen are modeled by limiting the
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displacements of the nodes, but the rotation remained free. The values of the
applied loads, depending on the ratio of loading mode, is calculated by relation
(4.1) and applied on the nodes.

Fig. 6. Mesh generation for 2D finite element analysis.

Each test bar is in contact with two rollers and two hinges through which
the load is applied (Fig. 3a). In the 2D finite element modeling, for each contact
point, the boundary conditions are applied to the test bar in all of the nodes
in the vicinity of the point of load application in order to take into account the
contact surface of the roller and the test bar.

In three-dimensional (3D) finite element model, we have used twenty nodes
solid elements. The goal of 3D modeling is analyzing the stress and strain energy
along the width of specimen [15]. The elements are refined regularly at the width
of the crack. The x-axis and y-axis are situated at the crack tip and z-axis
is directed along of the width of specimen. As the boundary conditions and
dimensions of 3D specimen are symmetrical about to the xy plane, only half of
specimen is modelled (Fig. 7).

Fig. 7. Mesh generation for 3D finite element analysis.



NUMERICAL MODELING OF DELAMINATION IN GFRP COMPOSITES 69

As the Mode II of delamination is introduced in specimen, for its two can-
tilever parts, the lower face of the upper cantilever could slide on the upper face
of the lower cantilever. So, in 2D and 3D models, contact elements are used.

8. Ruptures in the crack tip

In studying at delamination, identification of the beginning of the crack prop-
agation is a discussible case. In this paper, with using the finite element analysis
of specimen, different stresses at the end of the crack are calculated. Using rup-
ture criteria in composite materials and stresses calculated at the crack tip, we
analyze the delamination. From the mechanical point of view, fracture of the
composite materials with epoxy resin matrix is similar to that occurring in the
brittle materials. So the plastic zone in the crack tip is very small and in the
theoretical analyses and in the finite element model, the rupture in the crack tip
is considered as only elastic.

9. Experimental criterion of rupture

The point of the initiation of crack in an experimental specimen is obtained
using three methods. In the first method, the crack growth leads to a deviation
of the curve of load-displacement from the linear state. The point of deviation is
called NL, which is not always easily distinguishable [16]. In the second method,
a line with a slope smaller than 5% of the initial slope of the curve of load-
displacement is considered [17]. The intersection of this line with the curve of
load-displacement is the starting point of crack propagation. In the third method,
point AE (Acoustic Emission), which corresponds to the registration of the first
signal during the test, is defined as the beginning of the crack growth. All these
criterions are shown in Fig. 8.

Fig. 8. Mesh generation for 3D finite element analysis.
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10. Results and discussion

10.1. 2D Results

Numerical analysis of the specimen is carried out according to the experimen-
tal methods, in pure Mode I, pure Mode II, and four ratios of Mode (GII/GI)
0.25, 0.50, 0.75 and 0.89 which corresponds to the lever length c of 108.3, 56.8, 39
and 31.55mm with an initial crack length of a0 = 35 mm. The stress distribution
σx has the same shape for all of the mode ratios and it has not a significant influ-
ence on the crack growth because of high strength of the composite specimen in
the x-axis direction. Figure 9 shows the σy stress distribution in crack zone for
pure modes loading. The σy distribution for the mode ratios, for which Mode I
exists, has the shape of two tangent circles (Bean Shape). The maximum stress in
y-axis direction has the highest value and is the principal cause of crack growth
in Mode I. The lowest value is in x-axis direction. Figure 10 presents the τxy
distribution in crack zone for pure modes loading. The τxy distribution for the
mode ratios in which Mode II exist has a spindle shape. The maximum stress in
x-axis direction has the highest value and is the principal cause of crack growth

Fig. 9. Stress distribution in crack zone in pure Mode I Loading of 2D model.
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in Mode II. The lowest values are observed in y-axis direction. The maximum
stress σy in pure loading of Mode II and τxy in pure loading of Mode I occurs
in a zone farther than crack tip and it can deviate the crack from its principal
route, (Fig. 9b and 10a).

Fig. 10. Stress distribution in crack zone in pure Mode II Loading of 2D model.

Figures 11 and 12 show Mode I and Mode II components of SERR for
GII/GT = 50% versus the crack length a. The values of SERR of the beam

theory GBT , following relation (4.3), the corrected beam theory GCBT , following
relation (4.5) and calibration method GIC following relation (5.3), are obtained

by substituting the critical values of load and deflection obtained from numer-

ical analysis in the corresponding relations. When the curve of load-displacement
reaches its critical value, using VCCT criterion the SERR is calculated at

the crack tip. As it can be observed, the strain energy release rate doesn’t
change too much for different crack lengths. Also the values of GCBT are higher

than GBT . In the components of Mode I, Gvcct has a well corporation with
calibration method, especially with relation (5.4), because the scatter doesn’t

exceed 1%.
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Fig. 11. The Mode I component of SERR versus crack length for the mode ratio
GII/GT = 50% in 2D model.

Fig. 12. The Mode II component of SERR versus crack length for the mode ratio
GII/GT = 50% in 2D model.

10.2. 3D Results

Figures 13 to 16 present some of the stress distributions of the 3D specimen on
the plane (X–Y), in the vicinity of the crack. These figures explain the variation
of stress in the width of specimen and 3D effects. In all of the cases, peak of the
curve is situated at crack tip. The highest value of σx and σy is in the middle
of specimen width and decreases in the margins, (Fig. 13 and 14). On the mode
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Fig. 13. σx distribution in the width of crack in 3D model, for the mode ratio of
GII/GT = 0.5.

Fig. 14. τy distribution in the width of crack in 3D model, for pure Mode I loading.

Fig. 15. τxy distribution in the width of crack in 3D model, for pure Mode II loading.
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Fig. 16. τxy distribution in the width of crack in 3D model, for the mode ratio of
GII/GT = 0.5.

ratios which Mode II loading exists, the transversal strains of the upper and lower
layers of crack plane are in opposite direction on the z-axis. This phenomenon
leads to sliding of these layers on each other, maximize τxz in the margins and use
a part of the strain energy for the Mode III (Fig. 16). The τxy stress distribution
is a composition of the above-mentioned cases (Fig. 15).

Figure 17 shows the distribution of SERR components in the specimen width
using VCCT criterion. The shape of their distribution for all ratios of modes
remains as shown, with the difference that their quantity varies upon the ratio
of the modes. For all ratios in which Mode II is associated, we observe a local
increasing of GIII in the margins. The Gtotal variation in the different ratio of
modes is influenced by GI, GII and GIII behavior (Fig. 18).

Fig. 17. Distribution of GI, GII and GIII in crack width with VCCT for the mode ratio
GII/GT = 0.5.
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Fig. 18. Distribution of GT in the crack width with VCCT.

11. Conclusion

2D model and plane strain conditions can not explain completely the stress
distribution in crack width and regarding the above behaviors, the fracture
toughness of the 3D model is lower than the 2D model. 3D effects of model
are applied as a percentage of error to the results of fracture toughness of 2D
model. The curve of the fracture toughness for a crack length of 35mm, in the
tested mixed modes, versus numerical results of 2D and 3D, and also experi-
mental results of 5%, NL and AE criteria, are drawn in Fig. 19. Experimental

Fig. 19. Fracture toughness using experimental criterions and numerical analysis for
different modes of loading.
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results of NL and AE have a better agreement with each other, for the ratios of
GII/GT , from 0 to 89%. The fracture toughness of 3D model G3D has decreased
in maximum by 39% relative to the fracture toughness of 2D model G2D, and for
the pure Mode II loading has increased by 35%. In all the cases with increasing
of Mode II loading component, the fracture toughness increases.

Although this finite element code doesn’t contain a complete model of the
fracture mechanisms at the crack tip, however with taking into account the
3D effect, the numerical results are brought to the vicinity of the experimental
results. The effects like friction between the two faces of the crack, kind of the
specimen supports and so on, which need statistical studies, should also enter in
the mechanisms of the fracture and their influence on the SERR rate should be
studied.
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The problem of heat transfer to pulsatile flow of hydromagnetic viscoelastic fluid has been
studied. Expressions for the velocity, temperature distribution and mass flow rate are obtained.
The rate of heat transfer at the plates has also been calculated. These expressions are evaluated
numerically for various values of the parameters. The influence of pertinent parameters on
temperature, heat transfer coefficient and mass flux has been studied and numerical results
obtained are presented graphically.

Key words: Pulsatile flow, Oldroyd fluid, Hartmann number and heat transfer.

1. Introduction

The problems of fluid flow in a channel or pipe have been studied in re-
cent past by many scientists [1–7] with a focus to understand some physical
phenomena such as transpiration cooling and gaseous diffusion. In recent years,
considerable attention has been given to problems of heat transfer to pulsatile
fluid flows [7, 9–16]. The solutions of these problems play a vital role in the study
of blood flow in arteries [8, 17]. Radhakrishnamacharya and Maiti [9] have
made an investigation of heat transfer to pulsatile viscous fluid flow in a porous
channel. Later Ghosh and Debnath [11] analyzed the problem of heat trans-
fer to pulsatile flow in a viscoelastic fluid bounded by impervious rigid parallel
plates.

The present paper considers the heat transfer to the pulsatile hydromagnetic
flow of a viscoelastic fluid bounded by impervious rigid parallel plates separated
by a distance h. The fluid is driven by an unsteady pressure gradient. With
the assumption that the upper plate is at a temperature higher than the lower
one, the solutions for the steady and fluctuating temperature distributions are
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obtained. The rate of heat transfer at the plates is also calculated. Numerical
solutions are discussed with graphical representations. It is found that elastic
properties of the fluid significantly increase the temperature in the boundary
layers near the plates. The magnitude of heat transfer at the plates is also greatly
affected by elasticity of the fluid and the Eckert number.

2. Mathematical formulation

We consider the pulsatile flow of a viscoelastic fluid between two infinitely
long parallel plates, at a distance h apart, which is driven by the unsteady
pressure gradient

(2.1) −1

ρ

∂p

∂x
= A {1 + ε exp (iωt)} ,

where A is a known constant, ε is a suitably chosen positive quantity and ω
is the frequency. Let the x-axis be along one plate and y-axis normal to it.
The plate y = 0 and y = h are maintained at uniform temperatures T0 and
T1(> T0) respectively. It is assumed that the motion is slow so that all second-
order quantities may be neglected. A uniform magnetic field is imposed along
the direction normal to the flow. In the analysis, we assume that the induced
magnetic field is negligible.

This study is based upon the Oldroyd model of a viscoelastic fluid [6], and
the properties of such a fluid are specified by three constants η0, of the dimension
of viscosity, and λ1, λ2 of dimensions of time. The equations of the state relating

to stress tensor pik and the rate of strain tensor eik =
1

2
(ui,k+uk,i) of such fluids

are of the form

pik = p′ik − pδik,(2.2)
(

1 + λ1
∂

∂t

)

p′ik = 2η0

(

1 + λ2
∂

∂t

)

eik,(2.3)

where ui denotes the velocity vector, δik is the Kronecker delta, pik is the part
of the stress tensor related to the change of the shape of a material element, and
p is an isotropic pressure. The liquid (eii = 0) described by the above model
behaves as a viscous liquid if η0 > 0 and λ1 = λ2. The equations of motion
combined with constitutive equations of the hydromagnetic viscoelastic fluid are
given by

(2.4)

(

1 + λ1
∂

∂t

)

∂u

∂t
= −1

ρ

(

1 + λ1
∂

∂t

)

∂p

∂x

+ ν

(

1 + λ2
∂

∂t

)

∂2u

∂y2
−
(

1 + λ1
∂

∂t

)

σB2
0u

ρ
,
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(2.5) 0 = −1

ρ

(

1 + λ1
∂

∂t

)

∂p

∂y
,

where u is the fluid velocity in the x-direction, σ is the electrical conductivity
and B0 is an imposed uniform magnetic field. The energy equation is

(2.6) ρ Cp
∂T

∂t
= χ

∂2T

∂y2
+ µ

(

∂u

∂y

)2

,

where ρ, Cp, χ, µ, ν are respectively the density, specific heat, thermal conduc-
tivity, coefficient of dynamic viscosity and coefficient of kinematic viscosity, and
λ1 and λ2 are the relaxation and retardation times respectively.

The boundary conditions are

u = 0, T = T0 at y = 0,(2.7)

u = 0, T = T1 at y = h.(2.8)

The solution of (2.4) has the form

(2.9) u∗ =
u

(

Ah2

ν

) = u0 + εu1e
iτ ; τ = ωt,

where

u0 =
1

H2

{

1 − sinhH(1 − η) + sinhHη

sinhH

}

,(2.10)

u1 =
1

β2
2

{

1 − sinhβ1(1 − η) + sinhβ1η

sinhβ1

}

(2.11)

with

η =
y

h
, H2 =

h2σB2
0

µ
, R2

∗
=
ωh2

ν
, ν =

µ

ρ
, β2 =

1 + iF1

1 + iF1F2
,

(2.12)
F1 = λ1ω, F2 =

λ2

λ1
(< 1) ,

β2
1 = β2

(

H2 + iR2
∗

)

, β2
2 = H2 + iR2

∗

It can be noted that the results for viscous fluid correspond to the case
λ2 = λ1, i.e. F2 =1, independent of the values of F1.
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Introducing (2.12) and the dimensionless temperature

(2.13) θ =
T − T0

T1 − T0

in (2.6), the energy equation becomes

(2.14) R2
∗

∂θ

∂τ
=

1

Pr

(

∂2θ

∂η2

)

+ Ec

(

∂u∗

∂η

)2

,

where Pr =
µCp
χ

is the Prandtl number, and Ec =
A2h4

ν2Cp(T1 − T0)
is the Eckert

number. The boundary conditions for θ are

θ = 0 at η = 0,(2.15)

θ = 1 at η = 1.(2.16)

In view of (2.9), the temperature θ can be assumed in the form

(2.17) θ (η, t) = θ0 (η) + εF (η) eiτ + ε2G1 (η) e2iτ .

Substituting (2.17) and u∗ in (2.14), equating the harmonic terms, retaining
coefficients of ε2 and solving the corresponding equations for θ0,F (η) and G1 (η)
with the help of (2.15) and (2.16), we obtain

(2.18) θ0 (η) = η +
PrEc
4H2

{

η (η − 1)

[

1 − (coshH − 1)2

sinh2H

]

+ 2

[

coshH − 1

H2 sinh2H

]

sinhHη. sinhH (1 − η)

}

,

(2.19) F (η) = −L (0)

{

coshNη +

(

1 − coshN

sinhN

)

sinhNη

}

+ L (η) ,

(2.20) L (η) = − 4β1PrEc
β2

2H sinhH. sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)

{

1

β2
1 −N2 +H(H + 2β1)

cosh

[

(H + β1) (1 − 2η)

2

]

− 1

β2
1 −N2 +H(H − 2β1)

cosh

[

(H − β1) (1 − 2η)

2

]}

,
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(2.21) L(0) = L(1) = − 4β1PrEc
β2

2H sinhH. sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)

{

1

β2
1 −N2 +H(H + 2β1)

cosh

(

H + β1

2

)

− 1

β2
1 −N2 +H(H − 2β1)

cosh

(

H − β1

2

)}

,

where

(2.22) N = n(1 + i), n = R∗

(

Pr
2

)1/2

,

and

(2.23) G1(η) = − 1

sinh
√

2N

[

G2(0) sinh
√

2N(1 − η)

+G2(1) sinh
√

2Nη
]

+G2(η),

(2.24) G2(η) =
PrEcβ

2
1

2β4
2 sinh2 β1

[

1 − coshβ1

N2

−
(

1 + cosh 2β1 − 2 coshβ1

2
(

2β2
1 −N2

)

)

cosh 2β1η

+
(sinh2β1 − 2 sinhβ1)

2
(

2β2
1 −N2

) sinh 2β1η

]

,

(2.25) G2(0) = G2(1) =
PrEcβ

2
1

2β4
2 sinh2 β1

[

1 − coshβ1

N2

−
(

1 + cosh 2β1 − 2 coshβ1

2
(

2β2
1 −N2

)

)]

.

The instantaneous mass flux Q may be obtained by integrating Eq. (2.9)
across the channel:

(2.26)
Q

(

Ah3

ν

) =
1

H2

[

1 + 2

(

1 − coshH

H sinhH

)]

+
εiωt

β2
2

[

1 + 2

(

1 − coshβ1

β1 sinhβ1

)]

.
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3. Rate of heat transfer

The rate of heat transfer per unit area at the plate η = 0 is given by

Q′

0 = − q0h

χ(T1 − T0)
=

(

∂θ

∂η

)

η=0

,

Q′

0 =

(

dθ0
dη

)

η=0

+ εeiωt
(

dF

dη

)

η=0

+ ε2e2iωt
(

dG1

dη

)

η=0

,

(3.1) Q′

0 = 1 +
PrEc
H2

{(

coshH − 1

sinh2H

)(

2 sinhH

H
+ (coshH − 1)

)

− 1

}

+ εeiωt









−NL(0)

sinhN
(1 − coshN)+

4β1PrEc
β2

2H sinhH sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)















(H + β1) sinh

(

H + β1

2

)

β2
1
−N2 +H(H + 2β1)

−
(H − β1) sinh

(

H − β1

2

)

β2
1 −N2 +H(H − 2β1)























+ ε2e2iωt

{

−G2(0)
√

2N

sinh
√

2N

(

1 + cosh
√

2N
)

+
PrEcβ

3
1(sinh 2β1 − 2 sinhβ1)

2β4
2

(

2β2
1 −N2

)

sinh2 β1

}

=
(

θ′0
)

η=0
+ ε |D0| cos (ωt+ α0) + · · ·,

where D0 = D0r + iD0i and tanα0 = D0i/Dor.
Similarly, the rate of heat transfer per unit area at the plate η = 1 is given by

Q′

1 = − q1h

χ(T1 − T0)
=

(

∂θ

∂η

)

η=1

,

(3.2)

Q′

1 = 1+
PrEc
H2

[

1 −
(

coshH − 1

sinh2H

)(

(coshH − 1) +
2 sinhH

H

)]

+ εeiωt
{

−NL(0)

(

sinhN +

(

1 − coshN

sinhN

)

coshN

)
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(3.2)
[cont.]

− 4β1PrEc
β2

2H sinhH sinhβ1
. sinh

(

H

2

)

sinh

(

β1

2

)

[

H + β1

β2
1 −N2 +H(H + 2β1)

. sinh

(

H + β1

2

)

− (H − β1)

β2
1 −N2 +H(H − 2β1)

sinh

(

H − β1

2

)]}

+ ε2e2iωt

{

−
√

2NG2(0)

sinh
√

2N

[

cosh
√

2N − 1
]

+
PrEcβ

3
1

β4
2 sinh2 β1

[(

sinh 2β1 − 2 sinhβ1

2(2β2
1 −N2)

)

cosh 2β1−
(

1 + cosh 2β1 − 2 coshβ1

2(2β2
1 −N2)

)

sinh 2β1

]

}

=
(

θ′0
)

η=1
+ ε |D1| cos(ωt+ α1) + · · ·,

where D1 = D1r + iD1i and tanα1 = D1i/D1r.

4. Numerical results and discussion

In order to get the physical insight of the problem, velocity, temperature
field, mass flow and rate of heat transfer have been discussed by assigning nu-
merical values to various parameters obtained in mathematical formulation of
the problem and the results are shown graphically.

From Fig. 1a, it can be observed that when the frequency R∗ is small, the
unsteady velocity profile is almost parabolic. Also it can be noted that the un-
steady velocity decreases with the increasing values of the Hartmann number.
Part of the unsteady velocity profile is nearly linear as the frequency increases
and the maximum occurs in the central part of the channel, Fig. 1b. If the fre-
quency is large, the maxima of the velocity are shifted to the boundary layers
near the walls, Figs. 1c and 1d.

The effects of the velocity profiles for different values of the Hartmann number
and frequency parameter are shown in Figs. 2a and 2b. It can be observed from
Fig. 2a that the velocity u of the fluid in the x-direction decreases due to increase
of the Hartmann number H. As the frequency parameter increases, we can note
from Figs. 2b and 2c that velocity decreases

The magnitude of the mass flux of
Qν

Ah3
is plotted in Figs. 3a and 3b. It can

be observed that mass flux decreases as the frequency parameter and Hartmann
number increases.
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F1 = 0.2, F2 = 0.08, Pr = 100, R∗ = 0 F1 = 0.2, F2 = 0.08, Pr = 100, R∗ = 2

F1 = 0.2, F2 = 1, Pr = 100, R∗ = 9 F1 = 0.2, F2 = 1, Pr = 100, R∗ = 10

∗ ∗ H = 0, ∆ ∆ H = 1, + + H = 2, ωt = π/4

♦− · − ♦ H = 0, � − · − � H = 1, o − · − o H = 2, ωt = π/2

∗ − · − ∗ H = 0, ∆ − · − ∆ H = 1, + − · − + H = 2, ωt = 3π/4

♦ ♦ H = 0, � − � H = 1, o − · − o H = 2, ωt = π

Fig. 1. Unsteady velocity profiles.
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F1 = 0.2, F2 = 0.8, Pr = 100, R∗ = 1, ε = 0.1 F1 = 0.2, F2 = 0.8, Pr = 100, R∗ = 3, ε = 0.1

F1 = 0.2, F2 = 0.8, Pr = 100, R∗ = 3, ε = 0.2

∗ ∗ H = 0, ∆ ∆ H = 2, + + H = 8, ωt = π/4

♦ ♦ H = 0, ⊲ ⊲ H = 2, + − · − + H = 8, ωt = π/2

o o H = 0, � − · − � H = 2, ×− · − × H = 8, ωt = 3π/4

Fig. 2. Velocity profiles.
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F1 = 0.1, F2 = 0.2, Pr = 100 F1 = 0.1F2 = 1, Pr = 100

∗ ∗ H = 0, + + H = 0.2, ∆ ∆ H = 0.4, ωt = π/4

o − · − o H = 0, ♦− · − ♦ H = 0.2, ⊲ − · − ⊲ H = 0.4 ωt = π/2

⊳ ⊳ H = 0, � � H = 0.2, H = 0.4, ωt = 3π/4

Fig. 3. Magnitude of the mass flux.

In the problem under investigation, θ0 represents the steady temperature dis-
tribution in the fluid. The expression for θ0 given by (2.18) remains the same
for both a viscous and a viscoelastic fluid of Oldroyd type under similar condi-
tions. Figure 4 depicts the steady temperature profiles corresponding to θ0 for
various values of PrEc. The steady temperature profiles plotted in Figs. 4a, 4b,
4c are almost parabolic and temperature decreases with increase of the Hart-
mann number. Further it can be noticed that the increase in Hartmann number
decreases the rate of heat transfer. We note that there is no change in the char-
acter of the profiles as Ec varies. But as the Eckert number Ec increases, the
steady temperature increases. Regarding the rate of heat transfer in the steady
– state condition the reversal of heat flux from the fluid to the hotter plate takes
place when PrEc > 22 which, in turn, makes the hotter plate more hot. In fact,
the value of PrEc provides a measure of the amount of heat generated due to
friction which, in the present case, increases with the increase of the pressure
gradient. If the temperature difference between the plates is fixed, heat flows
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F1 = 0.2, F2 = 0.8, H = 0, Ec = 1, F1 = 0.2, F2 = 0.8, H = 2, Ec = 1,

F1 = 0.2, F2 = 0.8, H = 3, Ec = 1

∗ ∗ Pr = 300, ∆ ∆ Pr = 100, + Pr = 30,

o o Pr = 22, � � Pr = 1.

Fig. 4. Steady temperature profiles.

from the hotter plate to the fluid as long as the pressure gradient does not ex-
ceed a certain value, i.e for PrEc to be not greater than 22. This phenomenon
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is important for cooling at high pressure gradients. The effect of changing the
Hartmann number (for fixed Ec) and changing Eckert number (for fixed H) are
shown in Tables 1 and 2. Table 1 shows that the rate of heat transfer from the
lower plate decreases with Hartmann number, whereas it increases in the upper
plate. We observe from Table 2 that the rate of heat transfer from the lower
plate increases with Ec while at the upper plate, the heat flows from the fluid to
the plate even if T1 > T0.

Table 1.

Ec = 1, Pr = 100, R∗ = 1

H = 0 H = 1 H = 2 H = 3

(θ′0)η=0 17.6518 14.7787 9.5485 5.69695

(θ′0)η=1 −15.6518 −12.7787 −7.5405 −3.6969

Table 2.

Pr = 10, H = 1.5, R∗ = 1

Ec = 1 2 3 5

(θ′0)η=0 2.1123 3.2247 4.3371 6.5618

(θ′0)η=1 −0.11235 −1.22471 −2.33706 −4.56177

Fixing Pr and R∗, the instantaneous temperature profiles are plotted in

Figs. 5a–5e, enabling us to observe the effect of changing H (with Ec fixed)

and changing Ec (with H fixed). It also depicts the effect of changing values of

the elastic parameters F1 and F2. It can be noted that F2 =1 always represent

the case of a viscous fluid irrespective of the values of F1. From Figs. 5a–5e, it

can be seen that temperature decreases as H increases. The temperature profiles

are almost parabolic for small values of H, but they oscillate more for large val-

ues of H and the maximum temperature is shifted to the boundary layers near

the walls. The temperature increases rapidly with increase in Ec, which may be

due to high viscous dissipation. Comparison of Figs. 5b and Fig. 5c shows that

the presence of the elasticity of the fluid increases the temperature in a region

near the plate and gradually diminishes the same at the central part of the chan-

nel. This study indicates that the temperature in a viscoelastic fluid increases

rapidly with the increase of Ec and also interestingly we find that the increase of

temperature near the plate occurs mainly due to the increase of the relaxation

time of the fluid, while the increase in retardation time of the fluid produces

a gradual decrease of temperature at the central part of the channel. It can be
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observed that there is no significant change in the character of the profile as Ec
varies.

The effect of changing elastic parameters and changing H (for fixed Ec) and

changing R∗ (for fixed Ec) and changing Ec (for fixed H), on the values of the

amplitude and phase of the rate of heat transfer is shown in Tables 3, 4 and 5. In

Table 3, it is observed for a viscoelastic fluid the increase in Hartmann number

decreases the amplitude of heat transfer at both the plates. There is a phase lag

at both the plates when the fluid is viscoelastic. It may be observed from Table 4

that at the lower plate there is a phase lag at higher frequency, but at the upper

plate there is a phase lead. We also find that at both the plates the amplitude

decreases uniformly with frequency for fixed Ec. It can be noticed from Table 5

for fixed R∗ the amplitude increases uniformly with Ec at both the walls. The

increase of the Eckert number Ec increases the amplitude of heat transfer at the

plates for the viscoelastic fluid, while the phase at the plates remains unaffected

by the increase of Ec.

Table 3.

Pr = 200,R∗ = 10, F1 = 0.1,F2 = 0.5, Ec = 3

H |D0| |D1| tanα0 tanα1

0 0.261855 0.0231703 −29.0306 12.9313

0.2 0.260977 0.0231044 −28.8304 12.8729

0.4 0.258385 0.0229097 −28.2463 12.7017

Table 4.

Pr = 200, F1 = 0.1, F2 = 0.4, H = 0.3, Ec = 5.

R∗ |D0| |D1| tanα0 tanα1

5 2.73881 0.265488 −61.0054 5.35171

10 0.649884 0.0575502 −25.151 14.5618

15 0.29009 0.0244279 −29.1139 33.4444

Table 5.

Pr = 200, F1 = 0.1, F2 = 0.5, H = 0.2, R∗ = 5.

Ec |D0| |D1| tanα0 tanα1

5 2.74875 0.266414 −84.1425 5.12845

10 5.49751 0.532828 −84.1425 5.12845

15 8.24626 0.799242 −84.1425 5.12845
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F1 = 0.02, F2 = 0.05, H = 0, Pr = 100, F1 = 0.02, F2 = 0.05, H = 2, Pr = 100,

R∗ = 1, Ec = 1, R∗ = 1, Ec = 5

∗ ∗ ωt = 0, ∆ ∆ ωt = π/4,

o o ωt = π/2 + + ωt = 3π/4

F1 = 0.02, F2 = 1, Pr = 100, R∗ = 1, Ec = 2, F1 = 0.02, F2 = 1, Pr = 100, R∗ = 1, Ec = 4,

[Fig. 5]
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F1 = 0.02, F2 = 1, Pr = 100, R∗ = 2, Ec = 2

H = 2 ωt = 0, ∗ − · − ∗, H = 0, ωt = 0,

♦ ♦ H = 2 ωt = π/4, ∆ − · − ∆ H = 0, ωt = π/4,

× × H = 2, ωt = π/2, o − · − o H = 0, ωt = π/2,

⊳ ⊳ H = 2, ωt = 3π/4, + − · − + H = 0, ωt = 3π/4.

Fig. 5. Unsteady temperature profiles.
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